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Abstract: Reconstructing a standard 12-lead electrocardiogram (ECG) from signals received from
electrodes packed into a patch-type device is a challenging task in the field of medical instrumentation.
All attempts to obtain a clinically valid 12-lead ECG using a patch-type device were not satisfactory.
In this study, we designed the hardware for a three-lead patch-type ECG device and employed a
long short-term memory (LSTM) network that can overcome the limitations of the linear regression
algorithm used for ECG reconstruction. The LSTM network can overcome the issue of reduced
horizontal components of the vector in the electric signal obtained from the patch-type device attached
to the anterior chest. The reconstructed 12-lead ECG that uses the LSTM network was tested against
a standard 12-lead ECG in 30 healthy subjects and ECGs of 30 patients with pathologic findings.
The average correlation coefficient of the LSTM network was found to be 0.95. The ability of the
reconstructed ECG to detect pathologic abnormalities was identical to that of the standard ECG.
In conclusion, the reconstruction of a standard 12-lead ECG using a three-lead patch-type device is
feasible, and such an ECG is an equivalent alternative to a standard 12-lead ECG.

Keywords: LSTM network; patch-type device; reconstructed electrocardiogram; synthesized ECG;
ubiquitous healthcare; hypertension; cardiovascular monitoring

1. Introduction

A 12-lead electrocardiogram (ECG) is a standard lead system used in clinical practice. A standard
12-lead ECG was designed to show the frontal components of a three-dimensional electric vector in
six limb leads and the horizontal components in six precordial leads. In the frontal plane leads (I, II,
III, aVR, aVL, aVF), the vectorial components of the frontal plane in I, II, and III are mathematically
described as II = I + III. Augmented leads, aVR, aVL, and aVF, can also be derived from leads I, II, and
III. Therefore, if two among leads I, II, and III can be obtained, we can reconstruct six frontal plane
ECGs. Precordial lead (V1−V6) attachment sites are located anteriorly covering only half of the chest for
the convenience of the patient. For the standard 12-lead ECG to be obtained, 10 electrodes are usually
attached [1], however, attaching this large number of electrodes is not suitable for monitoring purposes.

Therefore, previous studies proposed limited lead systems for the reconstruction of the standard
12-lead ECG [2]. The most widely used limited lead system is the EASI lead system [3]. This system
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uses five electrodes instead of 10 electrodes. Even though the EASI system requires fewer electrodes,
the electrodes still need to cover a large area of the upper chest. Not only the EASI lead system, but also
many other special lead systems, were investigated in previous studies for the reconstruction of the
12-lead ECG. In addition to an effort to reduce the number of electrodes, several investigators [4,5]
showed the feasibility of obtaining a 12-lead ECG from the signals obtained from a small area of the
chest. In order to be used as the wearable device, not only should the number of electrodes be reduced,
but the attachment sites should also be limited to only a small area.

The most common method to reconstruct the 12-lead ECG from a limited lead set is a linear
regression (LR) because the electrical system of the human heart-torso is theoretically linear and
quasi-stationary [6]. Reconstructing a 12-lead ECG, based on the linearity, has been widely used by
many researchers, but there has been the opinion that the electrogenesis of the heart is not a purely linear
process [7]. Therefore, the recommendation to improve performance was to use neural networks for the
purpose of reconstruction [8], when noise and uncertainty caused by possible electrode misplacement
are present [9].

In this study, we designed three lead patch-type devices with four electrodes inside each, and made
an optimal model for the synthesis of a standard 12-lead ECG. Lead positions were determined based
on the previous study [5]. We adopted the use of a recurrent neural network using a long short-term
memory (LSTM) cell which is widely used in time series modeling [10]. Models are developed for
each individual, that is, a personal set of equations are used. We made the reconstruction model
with 10 s data. It was our intent to make the model with 10 s data because 10 s data is obtained in
one go with a standard 12-lead ECG examination. Therefore, this personal model would not impose
additional inconvenience on the user, other than obtaining a single standard 12-lead ECG. We validated
the reconstructed ECG by comparing it with a standard 12-lead ECG in terms of the identicalness of
parameters in normal subjects, and in terms of the detectability of pathologic findings in patients.

2. Materials and Methods

2.1. Subjects

We recruited 30 normal subjects and 30 patients. The 30 normal subjects (M:F 17:13, mean age:
42.2 ± 3.2) were negative for cardiac symptoms and showed normal echocardiograms. Additionally,
30 in-hospital patients (M:F 12:18, mean age: 53.1 ± 4.3), whose ECGs were recorded for their
clinical needs, were enrolled. Informed consent was obtained for all normal subjects and patients.
This study was approved by the institutional review board of Seoul National University Hospital
(IRB No. 1707-094-870).

2.2. Experimental Setup

2.2.1. Hardware

We established a system which was composed of a patch type device, an analysis program,
MATLAB (Mathworks, MA, USA), and a commercial standard ECG device (MAC5500, GE, USA).
A patch-type device was designed to measure a three-lead ECG from the left-upper chest, which is
shown in Figure 1. The distance between each electrode’s location was 5 cm to get a reliable and strong
ECG signal based on the signal-to-noise ratio reported in the previous studies [11,12]. A previous
study reported that reconstructed ECGs from three leads obtained from the left-upper chest resulted
in the highest correlation with the standard 12-lead ECG. An analog circuit was designed to prevent
the distortion of the ECG baseline, which may have affected the displacement of the ST segment.
The ECG signal was band-pass filter between 0.05–150 Hz, according to recommendation by the
American Heart Association [13] and amplified by a factor of 1000. Signals were digitized using a
16-bit sigma-delta analog-to-digital converter (STM32F373, STMicroelectronics, Switzerland) at 250 Hz
and were transmitted by a Bluetooth module (Bot-CLE110, Chipsen, South Korea) to a data processing
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PC. A high pass filter frequency was 0.05 Hz, which was vulnerable to noise. Therefore, we obtained
signals in the static situation to avoid the noise.
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of the front side. (a.4) Components of the back side. (b) Block diagram showing the signal processing
and data acquisition of the device.

2.2.2. Software

The data acquisition program was made using Labview (National Instrument, Austin, TX, USA).
It can receive the three-lead ECG signal continuously and save the file as a text file. As shown in Figure 2,
the operator set the comport number and this was transmitted by a Bluetooth module (Bot-CLE110,
Chipsen, South Korea) to a data processing PC. Waveforms subsequently transferred from the device
were plotted on the graph. To compare the signal quality, we extracted a diagnostic parameter,
such as P amplitude, PR interval, QRS voltage and duration, and QT duration. We programed
an analysis program using MATLAB that can align an ECG signal and segment P, Q, R, S, and T
waves. First, we detected the R peak using the Pan and Tompkins algorithm [14]. This algorithm
uses the characteristics of the QRS complex which predominantly contains 8–16 Hz components,
the slope of which changes rapidly. We can detect the R peak easily by a band-pass filter and
derivatives. After obtaining the R peak in this way, other peaks, such as P, Q, S, T, are detected using
ECGPUWAVE [15] which is the PhysioNet’s open source algorithm. After getting the onset, offset,
and peak of P, Q, R, S, and T we calculated the parameters, such as the amplitude of each peak and
interval, which is shown in Figure 2. In regards to the pathologic ECG findings in this study, we looked
for the presence of a pathologic Q wave, ST depression, ST elevation, T wave inversion, and wide QRS
complex. ECG diagnosis was made based on the following criteria. Wide QRS: QRS duration ≥ 120 ms,
ST elevation: elevation of ST segment ≥ 0.1 mV 0.08 ms after J point, ST depression: depression of ST
segment ≥ 0.1 mV 0.08 ms after J point, pathologic Q wave; amplitude ≥ 25% of R wave and ≥ 0.04 ms
in duration. With all the clinical results, double-checking procedures were done by the clinician.

2.3. Measurement Protocols (Data Acquisition Program)

Patient preparation using our patch-type device is shown in Figure 3. When the standard 12-lead
ECGs were obtained for 10 s using a commercial ECG device (MAC 5500, General Electric, USA) with
a sampling rate of 250 Hz, data from the three-lead patch-type device were also recorded. Ag/AgCl
electrodes were used. Signals were obtained in the supine position and subjects were requested not to
move at the time of signal acquisition. The data from the ECG device were transferred wirelessly to a
PC using a Bluetooth module. Signals from our patch system were digitally stored for the synthesis
of a 12-lead ECG using linear and nonlinear methods. The synthesized 12-lead ECG was compared
with the standard 12-lead data obtained by the ECG machine. All ECG diagnoses were confirmed by
the cardiologist.
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of ECG reconstruction and analyzing program using ECGPUWAVE.
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ECG: electrocardiogram.

2.4. Reconstruction Model

We developed the models based on two major assumptions of the electrical vectors of the human
heart. One is LR and the other is the LSTM network. As mentioned in the introduction, each model was
established with 10 s data. The size of the training data was determined by 5 s data (half of the saved
data). To verify the algorithm, the transformation matrix and LSTM network were determined by 5 s
training data and tested by another 5 s of data. For the training of the LSTM network, we performed a
1 s sliding window with a 4 ms time step, as shown in Figure 4.

As the training and test datasets were obtained consecutively in our experiment, we validated the
comparable outcome when these two datasets were obtained 5 days apart for five normal volunteers
in an identical test setting.
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2.4.1. Linear Regression

To reconstruct 12-lead ECGs from the three-lead ECGs using LR, we employed a method widely
used in the previous studies [4,16,17]:

Y = α∗X+β (1)

Y contains the target standard 12-lead ECG which we want to reconstruct. α is the transformation
matrix which is needed to reconstruct the ECG. X is a combination of the reduced number of ECG
data. β is a matrix which contains vectors of error. The matrix for which we want to get α is obtained
using the least squares method. Transformation matrix α is obtained by using the 5 s training data
taken from a total of 10 s of data. Once α and β were obtained, we synthesized a 12-lead ECG with the
test data. Transformation matrix X is obtained individually. Since the subjects have their own electric
vector, the electrical activity of the heart can be assumed to be a single fixed location dipole.

2.4.2. Long Short-Term (LSTM) Network

The LSTM cell, which was designed by Sepp Hochreiter and Jürgen Schmidhuber [18], is used
for time series modeling. The LSTM network is efficient for ECG modeling because these cells solve
the “gradient vanishes or explodes” issue by incorporating gate units and memory cells. Important
features of data can be efficiently delivered and maintained in the LSTM during calculation, which can
be achieved through an input gate, forget gate, and output gate [18]. The LSTM structure is shown
in Figure 5. The input signals are a component of the three-lead ECG from the device, and the final
output is a reconstructed ECG.Sensors 2020, 20, x FOR PEER REVIEW 6 of 14 
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The weights of input, forget, and output gates are represented as wi, w f , and wo respectively.
Each part of LSTM can be represented as:

It = σ(wixt + wiht−1) (2)

Ft = σ
(
w f xt + w f ht−1

)
(3)

C̃t = tan h(wcxt + wcht−1) (4)

Ot = σ(w0xt + w0ht−1) (5)

In the above equations, σ denotes the sigmoid activation. The input gate annotated as vector It is
calculated by the hidden state ht−1 from the former LSTM cell and input vector xt of the current stage.
In the forget gate, vector Ft is determined by the hidden state ht−1 and the input xt determines whether
the state vector c from time t−1 is carried or not, as shown in (4):

Ct = σ
(
Ct−1Ft + C̃tIt

)
(6)

Ht = Ottan h(Ct) (7)

As shown in (6), the input gate It regulates the calculation C̃t in Ct. The output Ht is generated by
applying a tanh activation function on Ct which is used to regulate the Ot, which is the output gate.
In this study, we made 12 LSTM networks which perform the process of reconstructing the output ŷt

by x1, x2, x3, which means each lead of data can be represented as:

ŷt = f (W1x1 + W2x2 + W1x3 + b) (8)

For network training, the reconstruction error should be minimized, known as cost function J:

J =
1
m

m∑
i=1

h(yt, ŷt) (9)

yt is the standard ECG (lead1~V6) and m is the number of signals. h(yt, ŷt) is the reconstruction
error, which is represented by the mean square error between the original signal yt and its reconstructed
signal ŷt, as shown in Figure 4. It can be expressed as:

h(yt, ŷt) =
∣∣∣∣∣∣yt − ŷt

∣∣∣∣∣∣2 (10)

In this study, the number of layers and neurons were three and 50, respectively, which was decided
experimentally by comparing the performances of various numbers of networks with training data.
A batch size of 50 and an epoch number of 500 were used. The time-step was 250, so the input data
size was 3 × 250 and the output data size was 1 × 250. We selected the Adam optimizer with a learning
rate of 0.001. The performance of the network was estimated with test data that were not used to train
the network.

Training loss can be reduced by the increase in the hidden nodes. (Figure 6) However, we adopted
a hidden node number of 50 to reduce the time that was consumed in training and to avoid overfitting.

2.5. Statistics

Standard 12-lead and reconstructed ECGs were compared using correlation and root mean square
error. In the diagnosis of pathologic findings using reconstructed ECGs, sensitivity and specificity were
obtained. In the comparison of numerical parameters in three groups, a repeated measures ANOVA
was used with a significance level of p < 0.05.
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3. Results

Correlation coefficients and root mean square errors (RMSE) between standard 12-lead and
synthesized ECGs are shown in Table 1 and Figure 7.

Table 1. Mean correlation coefficients and RMSE between standard 12-lead and synthesized ECGs.

Outcome I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Correlation
Coefficient

(mean)

Linear
Regression 0.76 0.75 0.70 0.77 0.68 0.71 0.75 0.77 0.78 0.75 0.74 0.75

LSTM
Network 0.92 0.96 0.95 0.96 0.93 0.95 0.93 0.96 0.96 0.96 0.96 0.95

Root Mean
Square

Error (µV)
(mean)

Linear
Regression 23.40 74.46 64.09 45.16 68.26 32.05 34.69 48.58 58.90 59.49 66.53 62.27

LSTM
Network 20.81 17.42 18.01 47.76 20.85 18.02 20.68 15.56 16.12 16.06 16.09 17.58

RMSE: root mean square error, ECG: electrocardiogram.
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3.1. Identicalness

We compared waveforms for identicalness using the root mean square error (RMSE) and correlation
coefficient (CC). The CCs in LR and LSTM were 0.74 and 0.95, respectively. The RMSE in LR and
LSTM were 53.16 ± 15.52 µV and 20.41 ± 8.45 µV, respectively. Reconstructed ECGs using both
methods showed considerable identicalness with the standard ECG, especially in ECGs reconstructed
by the LSTM network. However, clinical usefulness does not solely lie in identicalness. If pertinent
information regarding the magnitude and direction of the electric vector can be delivered to the
physician, clinical usefulness can still be maintained.
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3.2. Measurement of Normal Parameters

Both LR and LSTM methods did not show significant differences in axis, PR interval, QRS
duration, QT duration, or T wave amplitudes from standard 12-lead ECGs, as shown in Table 2.
The reconstructed ECG using LR showed statistically significant lower voltages in QRS and P wave
amplitude. The reconstructed ECG using LSTM also showed a tendency for lower voltage in QRS and
P wave amplitudes but the difference was not statistically significant.

Table 2. CC and RMSE between standard 12-lead and reconstructed ECGs.

ECG Parameter Standard ECG
Synthesized

ECG by Linear
Regression

Synthesized
ECG by LSTM

Network
p-Value

Axis (degree) 58.6 ± 35.2 60.2 ± 35.0 61.0 ± 35.0 n.s
P wave: Amplitude in lead II (mV) 1.73 ± 0.63 * 1.17 ± 0.93 * 1.57 ± 0.72 0.004

PR interval (ms) 152.7 ± 22.6 143.4 ± 35.1 148.5 ± 27.8 n.s

QRS Duration (ms) 57.4 ± 11.0 56.9 ± 9.2 56.0 ± 10.3 n.s
Total Voltage (mV) 140.7 ± 31.2 * 110.2 ± 30.6 * 139.9 ± 32.4 0.004

QT duration (ms) 57.4 ± 11.0 56.9 ± 9.2 56.0 ± 10.3 n.s

T wave
amplitude (mV)

V4 2.5 ± 2.1 2.6 ± 1.7 2.6 ± 2.3 n.s
V5 2.5 ± 2.0 2.6 ± 1.9 2.5 ± 2.2 n.s
V6 2.1 ± 1.6 2.1 ± 1.5 2.2 ± 1.7 n.s

*: p < 0.05, CC: correlation coefficient, RMSE: root mean square error, ECG: electrocardiogram.

3.3. Detection of Pathologic Findings

Multiple pathologic findings can be seen in a single patient, and in this study 66 total pathologic
findings were noted in 30 patients. Sensitivity and specificity were calculated from these 66 pathological
findings. Diagnostic sensitivity and the specificity of reconstructed ECGs in predicting various
pathologic ECG findings are shown in Table 3.

Table 3. Sensitivity and specificity of pathologic findings in the reconstructed ECGs.

Synthesized ECG by Linear Regression Synthesized ECG by LSTM Network
Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

LVH (n = 11) 64 100 100 100
ST elevation ant. and Inf.

combined (n = 6) 63 95 100 100

ST depression in inf. and
lat. combined (n = 13) 46 88 100 100

Wide QRS (n = 6) 100 83 100 100
Pathologic Q (n = 8) 86 96 100 100

T wave inversion in V4-6
(n = 12) 83 100 92 100

ECG: electrocardiogram.

3.3.1. Left Ventricular Hypertrophy (LVH)

Although specific, the sensitivity of detecting LVH was quite poor in the reconstructed ECG using
LR. This finding is expected considering the finding that the reconstructed ECG using LR showed
significantly lower voltage when compared to the normal subjects. Thus, it did not fulfil the diagnostic
criteria of LVH (S wave voltage in lead V1 + R wave voltage in lead V5 or V6 ≥ 35 mV) (Figure 8).

3.3.2. ST Change

In contrast to predicting the presence of Q wave or T wave inversion, sensitivities in detecting ST
segment changes in the reconstructed ECG using LR were quite poor. Therefore, the reconstructed
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ECG using LR is clinically not applicable in the detection of ST changes, both in ST depression and ST
elevation. However, reconstructed ECGs using LSTM are free of this limitation, as shown in Figure 9.
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3.3.3. Wide QRS

The reconstructed ECG can detect, with high sensitivity, wide QRS (QRS duration ≥ 120 ms).
However, in four patients, the ECG reconstructed using LR showed false positive wide QRS, as shown
in Figure 10.
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Owing to this false positive result, the specificity of detecting wide QRS was found to be only 83%
in the ECG reconstructed by LR. In addition, in three patients with false positive wide QRS, the ECG



Sensors 2020, 20, 3278 10 of 13

showed reduced voltages in the limb leads. We hypothesized that the ECG reconstructed by LR is
vulnerable to this type of error, as our leads system predominantly reflects frontal plane vectors and
has a limitation in detecting the horizontal components of the QRS vector.

3.4. Training and Test Performed with a Time Interval

For five normal volunteers, training was carried out 5 days in advance of the test. The mean CCs and
RMSEs of the standard 12-lead and synthesized ECGs using LR were 0.73 ± 0.21 and 53.41 ± 16.42 µV,
respectively. Those using the LSTM network were 0.95 ± 0.04 and 17.64 ± 7.22 µV, respectively.

4. Discussion

The reconstructed ECG with a reduced number of leads has been studied for a long time due to
the clinical need for continuous monitoring in the intensive care unit with diagnostic test machines
or for application in wearable devices. These studies aimed to reduce the number of electrodes from
the standard lead positions [19–21]. The three or four lead positions selected in these studies were
leads I, II, V3, and V5 or V6. For the best performance, precordial leads that can represent the vector
component in the horizontal plane (V3, V5 or V6) were included. In one such study [21], when only one
precordial electrode location was used in the reconstruction, the leads used in capturing the horizontal
component of the vector were reduced, and the CC dropped to 0.854 (0.642–0.912). Our patch system
also has an intrinsic limitation in capturing the horizontal component of this vector.

The spread out locations required for the lead attachment sites are a critical limitation for their
usage in wearable devices. For this purpose, the numbers of electrodes need to be reduced, the leads
need to be comfortable to wear [22], and the lead locations should be close enough to be packed into
a patch-type system [23,24]. This patch system has the additional advantage of easy adaptation to
Bluetooth and the incorporation of an additional sensor if required.

In our study, the reconstruction of ECG using LSTM showed a similar performance compared to
the previous studies (Table 4), the majority of which were achieved by the linear regression method.
However, our study aimed at the feasibility of reconstruction using signals obtained by the patch
device. The lead system incorporated in the small-sized patch used in our study is limited in terms
of the spatial resolution of the electric vector of the ECG. Even if we had to reconstruct ECG in a
personalized manner, this drawback is less problematic for application in a wearable device than are
the widely separated multiple leads.

Table 4. Previous studies on reconstruction ECGs.

Study Source ECG Synthesis Method Subjects Performance
(Average CC)

Atoui, H et al. [8] Subset of standard ECG
(I, II, V2)

Neural Network and
Linear Regression 120 patients 0.948

Trobec, R et al. [16] Three bipolar lead Linear Regression 30 normal,
35 patients

0.959
(median)

Lee, D et al. [25] Three bipolar lead Artificial Neural Network 14 normal 0.920

Zhang, Q et al. [26] Subset of standard ECG
(I, II, V2)

Linear Regression,
LSTM network 20 patients 0.820

Tomašić, I et al. [27] Three bipolar lead Regression Trees 20 normal,
22 patients 0.985

Zhy et al. [28] Subset of standard ECG
(I, II, V2) Linear Regression 39 patients 0.947

Our system Three bipolar lead LSTM network 30 normal,
30 patients 0.950

ECG: electrocardiogram.

In the measurement of normal parameters, there were no significant differences between the
standard 12-lead ECG and the ECGs reconstructed by LR and by the LSTM network, although the
reconstructed ECG using LR showed a slightly reduced QRS and P amplitude. Even if the reconstructed
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ECG by LR tends to show a reduced voltage in QRS, these ECGs are well suited to be used in the
majority of situations. However, our study showed that in our system, the ECG reconstructed using LR
is not practically useful in detecting ST changes, which is one of the important reasons for monitoring
the ECG in patients with ischemic heart disease. In our study, this limitation can be overcome by
reconstructing an ECG using the LSTM network. In detecting the presence of pathological Q wave
and T wave inversion, the ECG reconstructed using LR has practically no limitations. Therefore,
we assume that an ECG reconstructed using LR is good at detecting the changes in the direction of the
electric vector, but insensitive in the detection of the magnitude of changes for this vector, such as the
ST segment elevation and depression. In addition to this insensitivity, in ECGs reconstructed using LR,
there were several cases of false positive results in ST changes, which is another problematic issue
when applied to the purpose of monitoring patients with ischemic heart disease.

The most conspicuous false positive result for the ECG reconstructed using LR was the false positive
wide QRS. This is because a wide QRS morphology can possibly be mistaken for a serious ventricular
arrhythmia, unless an initial check for the possibility of a false positive wide QRS is conducted.
We cannot precisely explain the cause of this phenomenon but believe that this phenomenon was more
likely to be seen in patients with a large discrepancy in amplitudes between the limb and precordial
leads. The proposed LSTM network, however, was not likely to result in this false positive wide QRS.

There might be a criticism that an ECG reconstructed using the LSTM network in our study was
simply repeating the training data. However, this criticism can be refuted by the fact that the ECG
reconstructed using the LSTM network in our study can accurately reproduce the ventricular ectopic
beats with quite a different QRS morphology, as shown in Figure 9, that is not present in the 5 s training
data. This finding suggests that the LSTM network is not simply repeating the training data, rather
it is finding a nonlinearity between the patch-type ECG and a standard ECG. Previous studies used
artificial neural networks (ANNs) in the reconstruction of ECGs [8]. These methods showed good
performances, but when we applied an ANN to our system, it could not reconstruct the ectopic beat,
as shown in Figure 11. In our study, an recurrent neural network(RNN) using LSTM cells was used,
as we assumed that the LSTM cell, which has the advantage of reflecting time information, is better
suited for the reconstruction of ECGs.
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For practical applications, we limited the data to 5 s for training purposes; these data can be
obtained in a single ECG examination. Nevertheless, the LSTM network requires an average of 30 min
to 1 h for the training of an individual subject. Therefore, the LSTM network cannot be applied
immediately after the signal acquisition but requires a preparation period. In addition, as our study
was performed in the static position, the applicability of our method in a dynamic condition should be
validated in future studies. In conclusion, the reconstruction of a 12-lead ECG using an LSTM network
from a three-lead patch-type device is feasible and valid for the measurement of parameters and in the
detection of pathological findings in patients.
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