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Abstract: This study aimed to propose a prognostic method based on a one-dimensional convolutional
neural network (1-D CNN) with clustering loss by classification training. The 1-D CNN was trained
by collecting the vibration signals of normal and malfunction data in hybrid loss function (i.e.,
classification loss in output and clustering loss in feature space). Subsequently, the obtained feature
was adopted to estimate the status for prognosis. The open bearing dataset and established gear
platform were utilized to validate the functionality and feasibility of the proposed model. Moreover,
the experimental platform was used to simulate the gear mechanism of the semiconductor robot to
conduct a practical experiment to verify the accuracy of the model estimation. The experimental
results demonstrate the performance and effectiveness of the proposed method.
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1. Introduction

In industry, production lines are required to be automated and operate more stably for the quality of
products. With early prognosis, the manufacturer can schedule downtime maintenance more efficiently.
Many studies have been proposed on the diagnosis and prognosis of mechanical parts such as bearings,
gears, and motors [1–4]. The study in [2] proposed a current signal analysis method by empirical mode
decomposition and the Hilbert spectrum for the incipient broken rotor of induction motors. Through
statistical analysis, the damage was detected by the kurtosis value in early phases. Xiaohang Jin et al. used
the health index obtained from preprocessing the data to detect early faults of bearing that demarcate the
remaining useful life (RUL) [3]. Additionally, a motor current signature analysis method for gear wear
monitoring has been proposed based on the modulation signal bispectrum [4]. The monitoring process
was implemented on the current signals from a run-to-failure test on helical gearbox accelerated fatigue.

In recent years, data-driven technologies are glowing with the popularity of automation and the
convenience of data acquirement. Data-driven technologies make heavy use of artificial intelligence
and machine learning to diagnose through larger amounts of data analysis and learning [1,5]. It does
not need complex modeling and can intelligently improve the diagnosis accuracy by adaptively
learning. Guo et al. proposed a recurrent neural network based health indicator for the RUL prediction
of bearings [6], which is proposed to map the vibration signal features from 0 to 1 through a recurrent
neural network (RNN) and the double exponential model was introduced to predict the bearing RUL.
Furthermore, a variety of deep learning researches has been proposed recently [7–10] and show that
through training on data, the features can be automatically extracted by the deep learning model
instead of manual extraction. These studies require full-time monitoring to collect the corresponding
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data; however, obtaining wear data for the complete process is difficult. On the other hand, it is much
easier to collect the data of normal and malfunctioning samples, but the original model cannot achieve
estimation as there are only classification labels for data.

According to the research proposed by Erxue Min et al., they surveyed the research of clustering
with deep learning, and showed that the models could extract clustering features by training with
designed clustering loss [11]. Moreover, Elie Aljalbout et al. proposed a taxonomy of clustering
methods of deep neural networks [12]. Deep learning models were trained on both non-clustering loss
and clustering loss to suit their tasks. It has also been shown that vibration signals manifest the status
of the machine in the time domain, frequency domain, and time–frequency domain [1,13–17]. In this
paper, a deep learning model with clustering loss was proposed for vibration signals, and proper
features for clustering were extracted through training. The extracted features were subsequently used
to estimate the current wear status through raw vibration signals. The proposed approach was applied
to the open bearing dataset, and an established gear platform was utilized to validate the functionality
and feasibility of the proposed model. Finally, the experimental platform was used to simulate the
gear mechanism of the semiconductor robot to conduct a practical experiment to verify the accuracy of
model estimation.

The rest of this paper is organized as follows. The proposed method is introduced in Section 2.
Section 3 introduces the first experiment is a preliminary validation by the open bearing dataset and
the gear experimental platform is introduced to evaluate the proposed method in practical problem in
Section 4. Finally, the conclusions are given in Section 5.

2. One-Dimensional Convolutional Neural Network (1-D CNN) with Clustering Loss for
Prognosis

This section provides an introduction to the deep neural network data-driven technology and
the approach of establishing a one-dimension convolutional neural network (1-D CNN) model.
The characteristics of this approach are suitable for the time-series concept and are subjoined by
clustering loss. Finally, the estimation of wear with a simple linear function mapping is introduced.
By monitoring the estimation continuously, the prognosis can be achieved.

2.1. One-Dimensional Convolutional Neural Network

Convolutional neural networks (CNNs) have been widely used in many image recognition
systems, as shown in Figure 1 [18–20]. A CNN typically consists of convolutional layers, pooling
layers, and a fully connected network. The convolutional layers contain many kernel filters that are
used to catch the image features; the pooling layers have the ability of downsampling to obtain a lower
resolution feature map. Subsequently, the final feature maps connect to fully connected layers. In the
end, the model is trained to reduce the error between the network output and target output through
the backpropagation algorithm. CNN can detect the information of hidden features from raw input
inherently due to the reused kernel filters. Therefore, if the defect characteristic signals also occur in
vibration signals repeatedly, then each defect characteristic signal is similar to each other.
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A sequence of the one-dimensional CNN model, proposed by Turker Ince et al. [21], was applied
in this study. They proposed a motor anomaly detection and condition monitoring system using
an adaptive one-dimensional convolutional neural network (1-D CNN). The 1-D CNN structure
is introduced in Figure 2 [22], and xl

j denotes the forward propagation from previous layer l − 1,
in other words:
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At the pooling operation ds, the output Sl
j is

Sl
j = ds

(
yl

j, 2
)

(3)

As shown in Figure 2, the input length is L + 2 and the length of the sequence after the convolution
operation is L because the kernel filter length is 3. The pooling operation, which down-samples the
signal by a factor of 2, shows that the final length of output sequence should be L/2. After multiple
layers of convolution layers and pooling layers are connected, the classifier or regressor is connected
below through a flattened layer.

2.2. Clustering Loss

In the first attempt to experiment with the data, the normal vibration signals were very similar to
the failure samples and it was difficult to extract useful features by 1-D CNN alone. One can expect that
as the wear progress develops, the extracted features would not only gradually change from normal
(OK) to wear failure (NG), but are also clustered separately. For clustering the intermediate features of
the hidden layer output extracted by 1-D CNN, clustering loss in feature space for training the 1-D
CNN classification model is introduced, as shown in Figure 3, where blue, red, and green are the input,
convolution, and classification, respectively. Furthermore, the proposed 1-D CNN model after training
can extract clustering features, and the outputs from the hidden layer are added and trained in the
whole model with both classification and clustering loss functions. This is based on the Euclidean
distance of features in high dimensional feature space. Figure 4 shows the result of clustering features
f 1, f 2, and f 3 in the hidden layer, respectively; blue circles, yellow crosses, magenta triangle, and red
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star markers are the OK, NG, mean of OK, and mean of NG data distribution, respectively. As the
feature outputs of OK data cluster well on one side, NG data cluster on the other side.
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The purpose of clustering loss Lcluster is to obtain group separation features (i.e., a large value
of distance D and small r0, r1,), where D denotes the distance of mean values fµ0 and fµ1 of OK and
NG data:

D =

√√√ N∑
n=1

(
fµ,0
n − fµ,1

n

)2
(4)

and Nis the hidden layer feature output number; fµ,0
n is the nth average output of label 0 data; f m

n is the
nth feature output of mth data; M0 is the number of label 0 data; and r0 and r1 are the cluster radiuses,
in other words

fµ,∗
n =

1
M∗

M∗∑
m=1

f m
n , ∗ = 0, 1 (5)

r∗ =
1

M∗

M∗∑
m=1

√√√ N∑
n=1

(
f m
n − fµ,∗

n

)2
, ∗ = 0, 1. (6)

A two-dimension feature space illustration is also shown in Figure 3 of the estimation part.
The clustering loss function is designed as

Lcluster(Dnorm) = ln
(

1 + e−β(x+1−α)

1 + e−βα

)
(7)

where

Dnorm ≡
D− (r0 + r1)

D
(8)

α and β are the parameters of the loss function with α ≥ 0, β ≥ 1. With the aim to increase the
distance between two clusters and reduce the dispersion of each cluster simultaneously, Dnorm was
designed as a ratio variable instead of D, r0, and r1 directly. Then, an exponential loss function was
designed for the gradual and smooth convergence of training. As Dnorm approached 1, loss approached
zero. Figure 5 shows the curve of Lcluster(Dnorm) with different values of α and β.
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To minimize the loss function results in Dnorm approaches to 1, D would be much larger than
(r0 + r1), which makes the feature outputs cluster. The reason for applying exponential function as
a loss curve instead of a linear function is the smooth learning of the model, which learns from not
only the clustering loss, but also the classification loss. It is necessary to adjust α and β moderately
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to prevent the model from overly learning against the clustering loss and results in highly sensitive
estimating. The estimation approach is introduced in the next section.

2.3. Time Series Input

Wear is a gradual process caused by the damage from the removal of the material over time [23].
As a result, the current situation depends on the previous one. Therefore, a 1-D CNN model was
introduced to take the vibration signals of both the current time and previous time as an input, instead
of the signal of current time only. The corresponding 1-D CNN with clustering loss and time-series
inputs is introduced in Figure 3, where the time-series input is shown in the blue block, and Ls is the
input sequence length; Ns is the number of input sequences; n = 1, . . . , Ns; and Ts is the time-shift
interval between each signal. A more detailed illustration is shown in Figure 6. Herein, the signal
length Ls must be greater than or equal to two times the length of the signal period. In addition,
a larger value of Ns results in a greater amount of calculation, and takes more time for data acquisition.
Moreover, the time series interval would be meaningless since there is little variation of the signal if Ts

is too small.
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2.4. The Proposed Approach for Prognosis Approach

Estimation by vibration signals can timely and continuously monitor the wear of mechanism
components. Therefore, the proposed approach in this research is an estimation based on classification
wear data: 1-D CNN with clustering loss was applied for further prognosis. As above, the 1-D CNN
model was trained on the classification data with classification loss at the output layer and clustering
loss at the intermediate hidden layer. After training by the proposed model shown in Figure 3,
the proper feature was obtained in the flattened layer. Hence, a linear neuron layer weighting sum
of these nodes of the flattened layer was designed as a fixed number of outputs. The wear amount
was calculated by these features, an illustration of estimation is also shown in the estimation part of
Figure 3, where fµ0 and fµ1 in feature space were obtained from the OK and NG data of the training
data. When new data are obtained, the estimation system maps the input signals to feature outputs,
shown as point p. Then, project p onto the line of fµ0 and fµ1, d0 and d1 can be obtained. Moreover,
the variation in the location of p to a linear function is mapped. Final estimation wear amount P is
calculated by

P = W
(

d0

d0 + d1

)
(9)

where W is the average wear amount of the NG sample.
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3. Analysis and Validation: IEEE Prognostics and Health Management (PHM) Open Dataset

Bearings are essential mechanical parts and have operated for a long time as consumables, hence
the wear of the bearings is quite considerable. In this section, an open bearing dataset was used for the
experiment to preliminarily validate the proposed method. The lack of the entire wear process data
was to simulate an actual manufacturing field and the data were labeled by the categorical RUL ratio.
The effect of Ls, Ns, and Ts were also analyzed on the 1-D CNN with clustering loss. The proposed
method on the RUL estimation was verified by comparing the estimation error and functionality with
other studies.

3.1. Data Acquirement and Processing

The open bearing dataset was obtained from the Institute of Electrical and Electronics Engineers
(IEEE) Prognostics and Health Management (PHM) 2012 Prognostic Challenge [24]. It is a run-to-failure
experiment and is an online health monitor through the accelerated degradation of bearings under
adjustable operating conditions. The data gathered under three different loads (rotating speed and load
force) contains rotating vibration, speed, load force, and the temperature of bearings. The sampling
frequency was 25.6 kHz and the recording time was 0.1 s while the time interval of each piece of
data was 10 s. Furthermore, six run-to-failure datasets were provided to build the prognostic models,
11 remaining bearings were used to evaluate the estimation accuracy of the bearings’ remaining useful
life (RUL). In this experiment, the wear amount was replaced with the RUL of the bearings to simulate
what manufacturers are lacking in the complete wear process data.

The RUL ratio of bearings was used as the target for the model estimation at first. The elapsed
time of each piece of data was divided from the beginning by the total wear time of the bearing.
Next, since the model requires time-series input, an arrangement of data is necessary, according to
the Ls, Ns, and Ts designed, Ns pieces, Ls length of the one axis vibration signal data, and the RUL
ratio of the last signal is set as an input and output pair (training pattern). Note that it was assumed
that the manufacturer acquires only a few vibration signals of and wear failure samples in this study.
The arranged data whose RUL ratio greater than 0.75 and less than 0.25 would be treated as OK and
NG data. To evaluate the estimation performance, the whole dataset of 17 bearings was kept with the
original RUL ratio target as an estimation set.

Generally, the total dataset was divided into three parts: training, validation, and test sets. Therefore,
for building the 1-D CNN classification model, the 80% data of six bearings were used for the training
set, and 20% of the remaining data were used for the validation set; the data of 11 bearings were used for
the test set, similar to the IEEE PHM challenge. Finally, the input data were normalized for preventing
abnormal calculation values, and the vibration signal was re-scaled to within the range [−1, 1].

3.2. 1-D CNN with Clustering Loss Model Analysis

In this section, the training results and the effect of selected parameters Ls, Ns, and Ts on the 1-D
CNN with the clustering loss model are introduced. For a rotation speed of about 1500~1800 rpm,
the characteristic defect frequencies of the bearing were higher than 25 Hz. The input signal length Ls

was selected as 2048 and the longest signal period of one cycle was determined as 1024 samples. There
were 2560 sampling points in a single separated data as the maximum data length, so it is feasible for
the Ls to be consequently designed to 2048.

The proposed 1-D CNN shown in Figure 3 was adopted to treat the problem. Herein,
the convolution of the first few layers does not stack with the pooling layer. After multiple layers
of convolution, it overlaps with the pooling layer for reducing excessive calculations and outputs
the hidden layer features f 1, f 2. The clustering loss was added to the intermediate hidden layer
output calculation to make the features extracted from the OK and NG data have a clustering effect.
Subsequently, the classifier part is to distinguish the eight hidden layer features of OK and NG data into
two classes. Its structure is a fully connected simple neural network structure of [2,8,32] (one hidden
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layer). The final one is the estimation part. Since the data were pre-processed by dividing them by the
0.75 and 0.25 RUL ratio (i.e., the fµ0 and fµ1 was 0.875 and 0.125), the estimation value P is

P = (0.875− 0.125)
(

d0

d0 + d1

)
+ 0.125 (10)

The learning parameters designed are shown in Table 1; and the training result of the root mean
square error (RMSE) is shown in Figure 7, blue: training loss; orange: validation loss. This shows that
the training was successful and the overfitting phenomenon was not serious.

Table 1. The training algorithm and parameters.

Algorithm and Parameters Values
Learning algorithm Adam
Initial learning rate 0.0001

Decay 0
Learning epochs 1000

Batch learning size 64
α 2
β 1

Sensors 2020, 20, x FOR PEER REVIEW 8 of 18 

 

( ) 125.0125.0875.0
10

0 +







+

−=
dd

dP  (10) 

The learning parameters designed are shown in Table 1; and the training result of the root mean 
square error (RMSE) is shown in Figure 7, blue: training loss; orange: validation loss. This shows that 
the training was successful and the overfitting phenomenon was not serious. 

Table 1. The training algorithm and parameters. 

Algorithm and Parameters Values 

Learning algorithm Adam 

Initial learning rate 0.0001 

Decay 0 

Learning epochs 1000 

Batch learning size 64 

α 2 

β 1 

 
Figure 7. The training loss history. 

Discussion 1: Learning Algorithm Selection 
The effects and results were compared to other popular algorithms in Table 2, which are the 

results of the same model trained on different algorithms. It can be seen that the use of Adam could 
obtain lower loss and higher accuracy under the same initial learning rate and epoch number. For the 
reasons of efficiency and convenience, Adam was selected as the training algorithm. 

Table 2. The comparison results of popular algorithms. 

 Adam Rmsprop Adagrad Momentum Gradient 
descent 

Initial learning rate 0.0001 
Epoch number 1000 
Clustering loss 0.007 0.012 0.099 0.061 0.130 

Classify loss 0.314 0.314 0.694 0.693 0.694 

Figure 7. The training loss history.

Discussion 1: Learning Algorithm Selection
The effects and results were compared to other popular algorithms in Table 2, which are the results

of the same model trained on different algorithms. It can be seen that the use of Adam could obtain
lower loss and higher accuracy under the same initial learning rate and epoch number. For the reasons
of efficiency and convenience, Adam was selected as the training algorithm.

Table 2. The comparison results of popular algorithms.

Adam Rmsprop Adagrad Momentum Gradient Descent
Initial learning rate 0.0001

Epoch number 1000

Clustering loss 0.007 0.012 0.099 0.061 0.130

Classify loss 0.314 0.314 0.694 0.693 0.694

Train data accuracy 100.00% 99.91% 10.13% 50.00% 50.00%

Val. data accuracy 99.61% 99.65% 12.11% 50.00% 50.00%

Test data accuracy 91.29% 50.00% 50.00% 50.00% 50.00%
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Discussion 2: Time-Series Input Scheme
Herein, a comparison result of parameter analysis for the time-series input scheme is introduced

in Table 3, where each trained model is depicted by (Ns, Ts). It can be observed that the classification
ability is feasible since the accuracy of the training and validation set classification was almost 100%
and the accuracy of the test set was greater than 80%. Then, the data of the training set bearings with the
original RUL ratio target were used for comparing each model. The mean square error (MSE) of each
model estimation is shown in Figure 8, where the color bar shows the corresponding MSE. The model
(5, 10) had the minimum MSE 0.0139. Hence, the parameters (Ns, Ts) of 1-DNN with clustering loss
designed were suggested as (5, 10). Moreover, the entire process data of the training sets were used for
observing the continuous monitoring ability, which is shown in Figure 9, blue: estimation RUL ratio;
orange: actual time of vibration signal data. The estimation RUL ratio gradually decreased over time.

Table 3. The classification accuracy comparison results for each trained model.

Model (2, 2) (3, 2) (4, 2) (5, 2) (6, 2) (7, 2) (8, 2)

Accuracy
Training 99.96% 99.96% 99.92% 100.00% 99.92% 100.00% 99.92%
Validation 99.48% 99.65% 99.83% 99.13% 99.65% 99.83% 99.83%
Testing 92.00% 89.70% 91.23% 91.02% 91.39% 82.30% 86.43%

Model (2, 5) (3, 5) (4, 5) (5, 5) (6, 5) (7, 5) (2, 10)

Accuracy
Training 100.00% 99.92% 99.96% 99.96% 100.00% 99.96% 100.00%
Validation 99.83% 100.00% 100.00% 99.80% 99.80% 99.48% 99.48%
Testing 91.93% 91.29% 91.29% 87.50% 91.36% 91.42% 88.78%

Model (3,10) (4, 10) (5, 10) (6, 10) (2, 20) (3, 20) (4, 20)

Accuracy
Training 99.92% 99.96% 100.00% 99.91% 99.96% 99.96% 99.91%
Validation 99.80% 99.61% 99.61% 100.00% 99.65% 100.00% 100.00%
Testing 90.31% 91.10% 91.29% 87.40% 90.94% 92.09% 91.07%

Model (5, 20) (2, 40) (3, 40) (4, 40) (2, 60) (3, 60) (2, 80)

Accuracy
Training 99.95% 99.96% 99.90% 99.89% 99.91% 99.89% 99.90%
Validation 99.80% 99.80% 100.00% 100.00% 99.80% 100.00% 99.80%
Testing 91.84% 94.36% 92.38% 87.28% 97.48% 90.91% 97.23%
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Discussion 3: CNN with Clustering Loss
In addition, the corresponding feature after training is introduced in Figure 10, where • and ×

denote OK and NG, respectively. There was a model trained without clustering loss for comparing the
effect of clustering loss, confirming that the clustering loss is feasible for intermediate feature outputs
clustering into each other. From Figure 10a, the CNN with clustering loss separated the features of
both clusters; in contrast, the feature outputs overlapped and mingled messily with each other, as
shown in Figure 10b. Simultaneously, Table 4 shows the cluster distance D and cluster radiuses r0, r1

of each cluster. Although distance D without clustering was larger than the model with clustering,
the radiuses and Lcluster(Dnorm) with clustering loss were smaller. Consequently, the clustering loss was
effective for the feature outputs to cluster into each category.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 

 

 
Figure 9. The continuous monitoring of the entire process data of the training set. 

Discussion 3: CNN with Clustering Loss 
In addition, the corresponding feature after training is introduced in Figure 10, where ● and × 

denote OK and NG, respectively. There was a model trained without clustering loss for comparing 
the effect of clustering loss, confirming that the clustering loss is feasible for intermediate feature 
outputs clustering into each other. From Figure 10a, the CNN with clustering loss separated the 
features of both clusters; in contrast, the feature outputs overlapped and mingled messily with each 
other, as shown in Figure 10b. Simultaneously, Table 4 shows the cluster distance D and cluster 
radiuses r0, r1 of each cluster. Although distance D without clustering was larger than the model with 
clustering, the radiuses and Lcluster(Dnorm) with clustering loss were smaller. Consequently, the 
clustering loss was effective for the feature outputs to cluster into each category. 

  
(a) (b) 

Figure 10. The features output clustering chart, (a) CNN with clustering loss; (b) CNN without 
clustering loss. 

Table 4. The clustering performance comparison. 

 Without Clustering Loss With Clustering Loss 

D 174.0700  0.8884  

r0 11.3940  0.0190  

r1 122.7900  0.0326  

Lcluster(Dnorm)  0.1316  0.0071 

  

Figure 10. The features output clustering chart, (a) CNN with clustering loss; (b) CNN without
clustering loss.

Table 4. The clustering performance comparison.

Without Clustering Loss With Clustering Loss
D 174.0700 0.8884

r0 11.3940 0.0190

r1 122.7900 0.0326

Lcluster(Dnorm) 0.1316 0.0071
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4. Experimental Results: Gear Wear

To verify the proposed method, an experimental platform was designed to simulate one of the
axes on a semiconductor robot arm.

4.1. Experimental Platform Setup

In this experiment, the gear wear problem of the robot was for transporting wafers in the
semiconductor industry. To improve productivity and quality, robots operate stably for a long time in
a vacuum environment. As a result, manufacturers have increased the maintenance standards and
shutdown the robots frequently for repair, which increases production costs. However, the uncertainty
between the samples of the robots was high, and there were also differences between the individual
samples and the operating conditions, which makes the life of the robots different. Therefore, it is
necessary to monitor the robot for a long time and determine whether it is malfunctioning. Furthermore,
the robot arm is composed of a gear mechanism, and the vibration signal provides important information
for the state of the mechanical part.

Considering that the axis closest to the wafer affects the clamping action, this study focuses on the
end mechanism to establishing an experimental platform for research and analysis. Figure 11 shows
the wear plant form, which is manufactured and assembled with a motor, controller, and finished
product. An AC servo motor and a computer numerical control (CNC) milling machine controller
was used to simulate the actual operation of a robot arm, where the motor rotation was set at 60 rpm
reciprocation 360◦ forward and reverse, and paused for 0.3 s at the end of both turns. The motor shaft
rotated for 360◦, and the output shaft rotated for 257◦ since the gear ratio was 40:56:56. The selected
sensor, which was wireless data transmission, was provided by Microprogram Information Co. Ltd.
As the sampling frequency was 2048 Hz, the max gear meshing frequency was 40 Hz simultaneously.
Through the experimental measurement of the gear vibration signal, the frequency spectrum is shown
in Figure 12, from which the meshing frequency was observed at about 40 Hz. It was confirmed that
the frequency of the signal to be measured was within the measurement range.
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To accelerate the degradation, the new gears that were deburred manually were to wear in about 
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collected. The radial vibration direction was reasonable and obvious on the physical characteristics, 
thus the y-axis signal was only selected. The numerical control (NC) code used for the experiment 
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Figure 12. The frequency spectrum of the gear vibration signal; the meshing frequency at 40 Hz
was observed.

4.2. Gear Wear Data Acquisition

In order to measure the physical quantity of gear wear, the newly unsealed gear was manually
sanded with sandpaper for deburring, then the gear was photographed with an electron microscope
Keyence VK-X1000 and the wear amount was measured by drawing auxiliary lines in the analysis
software. The difference in the gear profile was defined as shown in Figure 13a. The auxiliary line
1 and 2 of the third midline for the key points of gear tip were drawn by following the definition of
industrial gear profile tolerances [25]. The measured physical wear value was auxiliary line 3 to the
parallel tangent to the profile, as shown in Figure 13b. In actual gear samples of the robot, the wear
amount was 4.271 µm; and the average value of the gears on the experimental platform before and
after wear were 27.463 µm and 23.217 µm, respectively, and the wear amount was about 3.464 µm.
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Figure 13. Measure of gear. (a) Industry gear profile tolerance [25]. (b) Measurement diagram; the
distance of auxiliary line 3 to the parallel tangent is the wear amount.

To accelerate the degradation, the new gears that were deburred manually were to wear in about
30,000 rounds on the experimental platform, and the vibration signals of the entire wear process were
collected. The radial vibration direction was reasonable and obvious on the physical characteristics,
thus the y-axis signal was only selected. The numerical control (NC) code used for the experiment was
as follows.
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G90G54X0.F300.
#31 = 30,000
N1
IF[#31 <=0]GOTO2
G91 X +5. F300.
G04 X0.3
G91 X -5. F300.
G04 X0.3
#31 = #31-1
GOTO1
N2
M30

There was rotation forward and reverse with a pause for 0.3 s in the middle as one loop. The sensor
was set to store 10 s of data in length. As a result, about 15,600 files of vibration signals during a gear
wear process were obtained. Before training, the data clearing was done to observe the statistical
features in root mean square (RMS) and Kurtosis. Figure 14 shows the Kurtosis and raw data of each
sample, respectively. It can be observed that the area selected by the red circle was abnormal data and
standby time. The raw vibration signal is shown in Figure 14b, where there was an oscillation caused
by a larger collision. The running-in problem of gears was also considered, furthermore, 1000 data
were selected after running-in as OK, according to RMS and Kurtosis features.
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4.3. Experimental Results

The model structure of the proposed method is shown in Figure 15. The length of the input
vibration signal Ls was 12,000, which was twice as long as the operating cycle; the time series input
parameters were Ns = 5 and Ts = 6. The classifier part was designed as a fully connected simple neural
network structure of [8,16,2] (one hidden layer). Finally, the estimation P was done by Equation (10),
and W is the average wear amount of the experimental gears of 3.464. As above, the OK and NG
training data were used to train the model. The corresponding learning parameters were introduced
in Table 5, and the training results of the model is shown in Figure 16, it shows that the overfitting
phenomenon is not serious. The final training loss and classification accuracy of each set are shown
in Table 6. The training results of features are shown in Figure 17, and it could be observed that the
feature outputs were divided into two clusters.
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Table 6. The training performance.

Performance Values
Train data accuracy 100.00%
Val. data accuracy 100.00%
Test data accuracy 87.03%

Train data loss 0.318
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In order to evaluate the estimation performance of the proposed method, the test gear entire wear
process data were used for estimation. The estimated value was plotted with time as shown in Figure 18
to simulate obtaining pieces of data over time. As it can be seen that the variations in estimated values
were positively correlated with wear time, and the final estimated and actual wear amounts were
about 2.240 µm and 2.471 µm, respectively, which were the average values of 10 points. The estimation
error was about 0.231 µm, which is about 10%, and shows the ability of the proposed method.
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Figure 18. The continuous estimation chart.

Figure 19 shows the user interface of a continuous monitoring program for prognosis gear wear
by integrating the trained model and the proposed estimation method. It runs concurrently with
the vibration sensor measurement program provided by the manufacturer of the sensors. When the
program judges that the sensor has accessed a new vibration signal, it estimates the wear amount
through the previous data, according to the parameters Ns, Ts, and Ls.
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Figure 19. The continuous monitoring user interface program.

5. Conclusions

This paper proposed a prognosis method by using 1-D CNN with hybrid loss functions in the
absence of entire wear data. Referring to the other studies, the 1-D CNN model was used as a suitable
characteristic and subjoined the time-series concept, combined with clustering loss. The features for
prognosis were automatically extracted by a deep learning model instead of manual extraction and
clustered into each category. Then, the open bearing dataset was used to validate the proposed method
preliminarily. After a series of pre-processing data simulating the manufacturer’s lack of the entire wear
process data, the proposed method was analyzed by designing different Ns and Ts and comparing the
estimation error and functionality with other studies. Furthermore, a practical problem of gear wear
was obtained for verification. An experimental platform was designed to simulate one of the axes on a
semiconductor robot, and collected the vibration signals of the gear wear process, and measured the
wear amount of the gears after the wear. As can be seen from the results, the variations in the estimated
values were positively correlated with wear time, and the estimation error was about 0.231 µm (10%),
which demonstrated the performance of the proposed method. In addition, a continuous monitoring
program for prognosis gear wear was obtained by integrating the trained model and estimation method
into a user interface program.
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