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Abstract: Nowadays, for numerous reasons, smart farming systems focus on the use of image
processing technologies and 5G communications. In this paper, we propose a tracking system for
individual cows using an ear tag visual analysis. By using ear tags, the farmers can track specific data
for individual cows such as body condition score, genetic abnormalities, etc. Specifically, a four-digit
identification number is used, so that a farm can accommodate up to 9999 cows. In our proposed
system, we develop an individual cow tracker to provide effective management with real-time
upgrading enforcement. For this purpose, head detection is first carried out to determine the cow’s
position in its related camera view. The head detection process incorporates an object detector called
You Only Look Once (YOLO) and is then followed by ear tag detection. The steps involved in ear
tag recognition are (1) finding the four-digit area, (2) digit segmentation using an image processing
technique, and (3) ear tag recognition using a convolutional neural network (CNN) classifier. Finally,
a location searching system for an individual cow is established by entering the ID numbers through
the application’s user interface. The proposed searching system was confirmed by performing
real-time experiments at a feeding station on a farm at Hokkaido prefecture, Japan. In combination
with our decision-making process, the proposed system achieved an accuracy of 100% for head
detection, and 92.5% for ear tag digit recognition. The results of using our system are very promising
in terms of effectiveness.

Keywords: object detector; ear tag recognition; digit segmentation; convolutional neural network;
location searching

1. Introduction

Smart dairy farming emerged from the concept of Precision Agriculture, in which IoT technologies
and artificial intelligence analysis are put to efficient use. Using these technologies to provide individual
care for cows is fundamental to the future of dairy farming. Most dairy farms around the globe adhere
to international ISO standards in identifying individual cows. At birth, every calf gets a unique ID
number. This number is registered in a database, e.g., the database in the National Livestock Breeding
Centre (NLBC) of Japan, as described in [1]. An example of an ear tag image is given in Figure 1.
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Figure 1. A sample ear tag that is attached to the cow’s ear in Japan. 

This ID number is composed of the responsible organization in a country (NLBC in Japan), the 
country code (JP), and the complete unique life number 16018 9955 0, in digits and as a barcode. The 
last four digits (9955) are highlighted as the work number which is most commonly used by the 
farmer. Every cow on a dairy farm has a unique number. Some other organizations also link this 
unique number to an electronic number. They make a unique RFID (Radio Frequency Identification 
Device) transponder that can be used in combination with one of the yellow ear tags.  

The principle behind electronically readable RFID tags is the same as that used for RFID in other 
official identification and registration schemes. These tags can improve cow identification, but the 
long-term irritation of wearing them can also induce stress on cows. Using RFID tags throughout a 
farm can be expensive, so other useful and cost-effective systems are needed for the automatic 
monitoring of cows. 

In recent years, researchers have been combining computer vision techniques with machine 
learning, achieving much success in many areas. Using a computer vision-based system that is 
specifically designed for cow management can reduce costs, especially by reducing the labor 
involved in monitoring each individual cow. In this paper, we propose an individual cow 
identification system using ear tags, expecting that this system will make important contributions to 
the implementation of precision dairy farming. 

This paper is organized as follows. In Section 2, we review the literature, noting related research. 
We describe our proposed methods in Section 3. The experimental results are shown in Section 4 and 
Section 5 provides the conclusions. 

2. Related Works 

In this section, we review some related research, specifically that concerning cow identification 
and monitoring. The black and white pattern on a cow’s body is used for identification and 
classification, using image processing techniques combined with deep learning [2]. Image processing 
techniques are used to extract the cow body region and extracted cow body images are subsequently 
applied to deep learning for identification. An identification system is needed to monitor a cow’s 
health and status for dairy farms. By using a cow’s ear tag, the authors proposed an individual cow 
identification system to be applied in precision dairy farming [3]. In [4], the authors proposed an 
individual cattle identification system using a convolutional neural network (CNN), and a long short-
term memory (LSTM) network. Due to the complex layout of dairy farms, it is sometimes difficult to 
detect and track cows. A custom filter layer combined with YOLO v3 [5] to detect key parts of cows 
is proposed in [6] to overcome these problems. References [7], [8], and [9] encompass a framework 
for detecting and recognizing the faces of cows. Faster R-CNN in [7] concerns cow face detection, and 
PNASNet-5 as described in [8] is applied to detection and recognition in [9]. As documented here, 
machine learning and deep learning techniques are finding applications with promising results. 

To extract prominent features, the authors in [10] used muzzle print images and two detectors: 
Speeded-up robust features (SURF) and maximally stable extremal regions (MSER). These extracted 
features are finally combined into a bag-of-visual-words (BoVW) model for classification. The color 
threshold method is used for detecting ear tags, followed by applying a flood fill algorithm, and a 
Hough transform and projection method for segmenting ear tags, as proposed in [11]. For classifying 

Figure 1. A sample ear tag that is attached to the cow’s ear in Japan.

This ID number is composed of the responsible organization in a country (NLBC in Japan),
the country code (JP), and the complete unique life number 16018 9955 0, in digits and as a barcode.
The last four digits (9955) are highlighted as the work number which is most commonly used by the
farmer. Every cow on a dairy farm has a unique number. Some other organizations also link this
unique number to an electronic number. They make a unique RFID (Radio Frequency Identification
Device) transponder that can be used in combination with one of the yellow ear tags.

The principle behind electronically readable RFID tags is the same as that used for RFID in other
official identification and registration schemes. These tags can improve cow identification, but the
long-term irritation of wearing them can also induce stress on cows. Using RFID tags throughout
a farm can be expensive, so other useful and cost-effective systems are needed for the automatic
monitoring of cows.

In recent years, researchers have been combining computer vision techniques with machine
learning, achieving much success in many areas. Using a computer vision-based system that is
specifically designed for cow management can reduce costs, especially by reducing the labor involved
in monitoring each individual cow. In this paper, we propose an individual cow identification system
using ear tags, expecting that this system will make important contributions to the implementation of
precision dairy farming.

This paper is organized as follows. In Section 2, we review the literature, noting related research.
We describe our proposed methods in Section 3. The experimental results are shown in Sections 4
and 5 provides the conclusions.

2. Related Works

In this section, we review some related research, specifically that concerning cow identification and
monitoring. The black and white pattern on a cow’s body is used for identification and classification,
using image processing techniques combined with deep learning [2]. Image processing techniques
are used to extract the cow body region and extracted cow body images are subsequently applied to
deep learning for identification. An identification system is needed to monitor a cow’s health and
status for dairy farms. By using a cow’s ear tag, the authors proposed an individual cow identification
system to be applied in precision dairy farming [3]. In [4], the authors proposed an individual cattle
identification system using a convolutional neural network (CNN), and a long short-term memory
(LSTM) network. Due to the complex layout of dairy farms, it is sometimes difficult to detect and track
cows. A custom filter layer combined with YOLO v3 [5] to detect key parts of cows is proposed in [6]
to overcome these problems. References [7–9] encompass a framework for detecting and recognizing
the faces of cows. Faster R-CNN in [7] concerns cow face detection, and PNASNet-5 as described
in [8] is applied to detection and recognition in [9]. As documented here, machine learning and deep
learning techniques are finding applications with promising results.

To extract prominent features, the authors in [10] used muzzle print images and two detectors:
Speeded-up robust features (SURF) and maximally stable extremal regions (MSER). These extracted
features are finally combined into a bag-of-visual-words (BoVW) model for classification. The color
threshold method is used for detecting ear tags, followed by applying a flood fill algorithm, and a
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Hough transform and projection method for segmenting ear tags, as proposed in [11]. For classifying
ear tag digits, the authors used the methods of k-nearest neighbor and support vector machines.
Nowadays, the usage of machine learning and deep learning techniques are widely used in different
areas of fields [12,13]. Character segmentation is performed using a hybrid binarization technique
in paper [14]. In this paper, license plates are localized based on texture features and rotated using
the Hough transform. The authors in [15] apply the principle components analysis (PCA) to extract
digit features and the backward propagation neural network to classify features. For invariance by
rotation, scales and translation of digits, the authors in [16] use fractal dimension, lacunarity, and Hu’s
moments as features. To recognize text on low-resolution images, the authors in [17] use a character
recognizer and word recognizer. They use the convolutional neural network (CNN) as the character
recognizer. The language-neutral model and dictionary model are used as word recognizers in their
system. For identifying cows, features such as body parts, ear tags, and the head area are used, though
these methods are subject to ongoing research.

3. Proposed System

Our proposed system aims at obtaining an intelligent cow tracking system by using ear tag
information. The experimental environment is composed of a feeding station under the monitoring
of the front camera. The proposed system is mainly composed of five parts: (1) Cow head detection
and localization, (2) ear tag detection and filtering, (3) normalization for ear tag alignment, (4) ear tag
recognition process, and (5) decision making, which involve list pairs of the related camera ID and ear
tag ID to provide the search system. The overall system architecture is shown in Figure 2.
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validation, and 30% for testing. The dataset information is shown in Table 1. 

Figure 2. The architecture of the proposed system.

3.1. Cow Head Detection and Localization

To obtain the ear tag for each cow, we first perform head detection. At the feeding station,
4K network cameras are installed in front of the cows. The feeding station can accommodate a
maximum of five cows in each camera view. Only one cow can insert her head through a narrow space
between iron bars at the entrance. After head detection, cow localization is performed for each camera
view in positions 1, 2, 3, 4, and 5 in that order. To locate the position of the cow, the region between
each set of iron bars is pre-allocated to know which cow has entered in the region between which iron
bars. The flow for these initial steps can be seen in Figure 3.
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Figure 3. (a) Flowchart of cow head detection, (b) detected and localized cow heads.

Head detection is carried out using a YOLO object detector [18]. This detector is used here because
of its speed, which is about 45 frames per second. We prepare the YOLO object detector model as
described in [19]. To conduct our experiments, we collected 10,793 image frames from recorded videos
(including 44,000 cow heads from these frames). Each image frame can contain the maximum of five
cows. From this dataset of 10,793 frames, we used 60% for training, 10% for validation, and 30% for
testing. The dataset information is shown in Table 1.

Table 1. The dataset information.

Dataset #Image Frames #Cow Heads

Training 6475 26,371
Validation 1080 4429

Testing 3238 13,227

In our network model, we used MobileNetV2 [20] for the feature extraction layer. The Stochastic
Gradient Descent with momentum (sgdm) is used for network training and the initial learning rate is
set to 0.001 with three epochs.

In the training of a cow head detector, the training image frames with their ground truth bounding
boxes are fed into the network. We attained an average precision (AP) of 98% in testing 3238 frames.
In the detection of a cow head region, the input is the image frame. The output of applying our trained
network is a cow head region, which is marked by the bounding box. This process is shown in Figure 3b.
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3.2. Ear Tag Detection and Filtering

After the heads are detected in the input image, ear tag detection is performed. To detect the ear
tag region, images returned after the cow head detection are transformed from the RGB (Red, Green,
and Blue) to the HSV color space. The three channels of the HSV color space are Hue (H), Saturation
(S), and Value (V). By using five videos, the appropriate threshold values for each channel are selected
by analyzing all the existing color values that belong to the ear tag region. The selected parameters for
the ear tag detection process are described in Equation (1). This process is illustrated in Figure 4.

H =

 1, if 0.082 ≤ H ≤ 0.263
0, otherwise

, S =

1, if 0.072 ≤ S ≤ 0.559

0, otherwise
andV =

1, if 0 ≤ V ≤ 1

0, otherwise
(1)
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Figure 4. Ear tag region detection from the head image.

Some noisy images appear when detecting ear tags. These images contain mud and cow feed,
which are mistaken for the yellow tags because of their similar color. An example of detected ear tag
images is shown in Figure 5. To overcome this problem, we perform two steps of the filtering process
on each image.
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3.2.1. Initial Noise Removal

In this process, the detected ear tag images are converted into the HSV color space. The threshold
parameters are empirically set as described in Equation (2), extracting only ear tag color regions while
excluding noisy regions. The segmented binary images are formed after thresholding.

H =

 1, if 0.128 ≤ H ≤ 0.345
0, otherwise

, S =

1, if 0.067 ≤ S ≤ 0.582

0, otherwise
andV =

1, if 0 ≤ V ≤ 0.667

0, otherwise
(2)

We calculate the pixel density values for the ear tag binary image. If the pixel density is between
400 and 2700, we assume this image to be an initial filtered image and save it for the next filtering
step. After the initial step of noise removal, other problematic images remain, such as blurred and fur
covered images. Such images adversely affect ear tag recognition. Therefore, we remove the blurred
and fur covered images in the next filtering step.

3.2.2. Blurred and Fur Covered Image Removal

In the second stage, we extract standard images of the ear tag. To perform the second step filtering,
the initial filtered images are resized into 200× 200. We use the two parameters (contrast and pixel density)
to eliminate the fur covered and blurred image. The threshold parameter values are set by using videos
analysis results. The threshold range of the standard image used in our work are: The contrast is between
0.17 and 0.65, pixel density is greater than 15,500. This process is shown in Figure 6.
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Figure 6. Ear tag filtering.

3.3. Normalization for Ear Tag Alignment

After blurred and noisy images are removed, the next step is image normalization. Due to a variety
of positions appearing in ear tag images, some images are skewed or rotated. Therefore, we must
perform skew correction on images, and transform them into a horizontal alignment. To detect the
horizontal base line for each ear tag image, we use the Hough transform [21] and calculate the incline
angle. Finally, the image is rotated into its normal position using the incline angle value. These steps
are shown in Figure 7.
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Figure 7. Normalization of ear tag image.

Firstly, the input ear tag image is processed using the image preprocessing steps. After we convert
the original image into the HSV color space, we threshold the image to focus on the ear tag region.
The threshold parameters are the same as those used in the initial noise removal step. After that,
we apply the edge detector to find the boundary points of the binary image.

We use the ‘Prewitt’ edge detector [22] in our system and extract the boundary points. After getting
results for the binary contour image, the resulting image is inputted into the ‘Hough Transform’ (HT)
algorithm to detect the horizontal line and get the base line of the image. The degree of skew can be
calculated using a simple linear equation, as described in Equation (2). This process is shown in Figure 8.
The normalized ear tag images are then sent to the ear tag recognition stage for further processing.

m =
y2 − y1

x2 − x1
, and θ = tan−1(m) (3)

where x1, y1 and x2, y2 are the X and Y coordinates of a base line, m is the slope of a base line, and θ:
is the degree of a line.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 18 

 

region. The threshold parameters are the same as those used in the initial noise removal step. After 
that, we apply the edge detector to find the boundary points of the binary image.  

We use the ‘Prewitt’ edge detector [22] in our system and extract the boundary points. After 
getting results for the binary contour image, the resulting image is inputted into the ‘Hough 
Transform’ (HT) algorithm to detect the horizontal line and get the base line of the image. The degree 
of skew can be calculated using a simple linear equation, as described in Equation (2). This process is 
shown in Figure 8. The normalized ear tag images are then sent to the ear tag recognition stage for 
further processing. 

12

12

xx
yym

−
−

= , and )(tan 1 m−=θ  (3) 

where 𝑥 , 𝑦  and 𝑥 , 𝑦  are the X and Y coordinates of a base line, m is the slope of a base line, and θ: 
is the degree of a line. 

 

Figure 8. Illustration of skew image correction. 

3.4. Ear Tag Recognition Process 

The goal of ear tag recognition is to identify the digits printed on the ear tag and then establish 
the position of the individual cow. 

3.4.1. Preprocessing 

Ear tag images obtained from the filtering process must be segmented to get individual digits. 
To simplify the segmentation step, the ear tag images must pass four preprocessing steps. Some 
important pixels can be lost in direct binarization. Therefore, the filtered image is first changed into 
a gray-scale image. This gray image is next inverted as subsequent processes require white digits. 
Histogram equalization is then performed on the inverted image to get a clear image. Finally, the 
equalized image is binarized. This process is illustrated in Figure 9. 

 

Figure 9. Illustration of step-by-step preprocessing: (a) Original Red, Green, and Blue (RGB) image, 
(b) g-scale image, (c) inverted image, (d) histogram equalized image, and (e) binarized image. 

In an ear tag image, only areas with digits need to be recognized. Therefore, such areas are 
extracted by removing other unnecessary borders, as illustrated in Figure 10. The removal steps are 
as follows: 
• Calculate horizontal projection values for the preprocessed image. 
• Remove horizontal (upper and lower) borders with projection values that are less than half of 

the width of the image. 

(a) (b) (c) (d) (e)

Figure 8. Illustration of skew image correction.

3.4. Ear Tag Recognition Process

The goal of ear tag recognition is to identify the digits printed on the ear tag and then establish
the position of the individual cow.

3.4.1. Preprocessing

Ear tag images obtained from the filtering process must be segmented to get individual
digits. To simplify the segmentation step, the ear tag images must pass four preprocessing steps.
Some important pixels can be lost in direct binarization. Therefore, the filtered image is first changed
into a gray-scale image. This gray image is next inverted as subsequent processes require white
digits. Histogram equalization is then performed on the inverted image to get a clear image. Finally,
the equalized image is binarized. This process is illustrated in Figure 9.
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Figure 9. Illustration of step-by-step preprocessing: (a) Original Red, Green, and Blue (RGB) image,
(b) g-scale image, (c) inverted image, (d) histogram equalized image, and (e) binarized image.

In an ear tag image, only areas with digits need to be recognized. Therefore, such areas are extracted
by removing other unnecessary borders, as illustrated in Figure 10. The removal steps are as follows:

• Calculate horizontal projection values for the preprocessed image.
• Remove horizontal (upper and lower) borders with projection values that are less than half of the

width of the image.
• Crop the original RGB image, preprocess the cropped image, and calculate vertical projection values.
• Then, remove vertical (left and right) borders that have projection values less than two-thirds of

the height of the preprocessed image.
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Figure 10. Removal of unnecessary borders: (a) Preprocessed image with two horizontal crop lines,
(b) horizontally cropped original image, (c) horizontally cropped preprocessed image with two vertical
crop lines, (d) unnecessary border removed from original image, and (e) preprocessed image with
unnecessary borders removed.

3.4.2. Segmentation

The segmentation process is performed according to the type of projection [23]. The types of
projection are horizontal or vertical. Horizontal projection is the summation of pixel values for each
row; and similarly, vertical projection is the summation for each column.

Horizontal valley points are used in detecting the barcode area. The valley points are horizontal
projection values that lie lower than both of their neighbor values. Valley points that are less than half
the width of the image are considered predefined barcode end points. Based on empirical results,
the barcode is assumed to extend over one-fourth of the image height. Therefore, the first valley point
greater than one-fourth of the image height is taken as the barcode end point. If the selected point is
the first valley point, then the barcode start point is marked as ‘1’. Otherwise, the prior valley point of
the selected barcode end point is taken as the barcode start point. The barcode area detection process is
shown in Figure 11.

The barcode end point is taken as the horizontal start point of the digit area if the following two
conditions are satisfied. This process is illustrated in Figure 12.

• The remaining digit height must be greater than 1.7 times that of the barcode’s height.
• The largest object width in the barcode area must be greater than half of the image’s width.
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Figure 12. Determination of the digit start point: (a) Correctly taken as a start point, (b) not taken as a
start point.

Since barcodes are sometimes occluded, barcodes are not detected in some images. For such
images, the digit area start point is calculated using a second approach. Firstly, horizontal projection
and valley points are calculated. Then, the estimated start point is calculated by multiplying the image
width by the threshold value of 0.45, according to empirical results. The projection values for the
estimated point, nearest to the valley point, as well as adjacent upper and lower valley points are
compared. The minimum projection value among these four points is taken as the digit area start point.
This process of calculating the digit area start point is shown in Figure 13.

After the digit area is extracted from the original image, individual digits are segmented using
vertical valley points. The valley points are the vertical projection values that lie lower than both of
their neighbor values. Valley points greater than half the image height are discarded. Since there are
four core digits and one mini digit on the ear tag, the minimum possible digit width is assumed to be
one-sixth the value of the image width. With the remaining points as well as image horizontal start
and end points, the widths between two adjacent points are calculated. The two points for widths
greater than the minimum digit width are retained, and other points are discarded. In Figure 14, points
1 through 5 are retained, and the image horizontal start point, end point, and point 6 are discarded.
The image is cut into four parts using the resulting five points.
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Figure 14. Segmentation of individual digits.

3.4.3. Digit Object Determination

Some segmented parts include more than one digit, or can include mini digits or noise due to the
lighting on the image. The digits are distinguished by binarizing the segmented part with the specific
threshold value by taking pixel values that are less than 150. From the binarized image, the object that
meets the following two criteria are chosen as the digit. The criteria are as follows:

• The object’s width is less than its height; and,
• The object’s height is greater than two-thirds of the image’s height.

If more than one object satisfies these criteria, an average segment line is added between objects.
Otherwise, if only one object satisfies these criteria, all other objects are assumed to be noise, and the
detected object area is cropped out. In order to preserve the resolution of the final segmented image,
each cropping process is performed on an original RGB image. The process of digit object determination
is shown in Figure 15.
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3.4.4. Ear Tag Recognition

In the system proposed in [24], a convolution neural network (CNN) is applied in the recognition
step. The CNN architecture is specified in the first hidden layer, using 16 convolutional filters with
a 5 × 5 filter size followed by a batch normalization layer and a rectified linear unit (ReLU) layer.
For the second and third hidden layers, we used 32 filters with a 3 × 3 filter size and ReLU layers.
Then, we added an average pooling layer with a size of 2 × 2 and stride of 2. After that, we used two
consecutive fully connected layers. The output size of the first layer was 100 and that of the second
layer was 10, as required to classify 10 digits. The network training and testing accuracy were 96.88%
and 94.80%, respectively.

The CNN is trained by using ‘stochastic gradient descent with momentum (sgdm)’ as the solver
for the training network, with an initial learning rate of ‘10−4’. Currently, a total of ‘10,000’ digits (or
‘1000’ data points for each digit) are used as ‘training’ data; this includes ‘2000’ digits (or ‘200’ data
points for each digit) used as ‘testing’ data.

In the training process, the individual digits specifically used for training are manually cropped
from the video data. The cropped digits are then transformed into gray-scale and complemented.
Next, the transformed digits undergo histogram equalization, binarization, and resizing into height
and width dimensions of 64 × 32. Each cropped digit is resized into height and width dimensions of
64 × 32. Then, the resized image is classified using the trained CNN. Step-by-step preprocessing for an
individual digit is shown in Figure 16.
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Figure 16. Step-by-step preprocessing of training data: (a) Manually cropped RGB image, (b) gray-scale
image, (c) complemented image, (d) histogram equalized image, and (e) resized image.

3.4.5. Ear Tag Confirmation Process

Since the system processes images of actual ear tags, various types of noise occur, such as that
caused by variations in lighting, mud, and misplaced fur. The resulting occlusion causes poor accuracy
in segmentation. This consequently results in poor recognition accuracy. As mitigation, we perform
ground truth data matching to obtain correct information on ear tags, where a matching of four, or even
three digits can be useful. As the system includes video processing, the ear tag numbers can be updated
on occasion, particularly to cover unrecognized ear tags, or to correct wrongly recognized ear tags.

Recognized ear tag numbers are confirmed using three check lists, which are those with four
digits, three digits, and one digit. Sample check lists using these three types of ground truth data are
shown in Figure 17.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 18 

 

In the training process, the individual digits specifically used for training are manually cropped 
from the video data. The cropped digits are then transformed into gray-scale and complemented. 
Next, the transformed digits undergo histogram equalization, binarization, and resizing into height 
and width dimensions of 64 × 32. Each cropped digit is resized into height and width dimensions of 
64 × 32. Then, the resized image is classified using the trained CNN. Step-by-step preprocessing for 
an individual digit is shown in Figure 16. 

 
Figure 16. Step-by-step preprocessing of training data: (a) Manually cropped RGB image, (b) gray-
scale image, (c) complemented image, (d) histogram equalized image, and (e) resized image. 

3.4.5. Ear Tag Confirmation Process 

Since the system processes images of actual ear tags, various types of noise occur, such as that 
caused by variations in lighting, mud, and misplaced fur. The resulting occlusion causes poor 
accuracy in segmentation. This consequently results in poor recognition accuracy. As mitigation, we 
perform ground truth data matching to obtain correct information on ear tags, where a matching of 
four, or even three digits can be useful. As the system includes video processing, the ear tag numbers 
can be updated on occasion, particularly to cover unrecognized ear tags, or to correct wrongly 
recognized ear tags. 

Recognized ear tag numbers are confirmed using three check lists, which are those with four 
digits, three digits, and one digit. Sample check lists using these three types of ground truth data are 
shown in Figure 17. 

 

Figure 17. Check lists using the three types of ground truth data: (a) Four-digit list, (b) one-digit list, 
and (c) three-digit list. 

Ten conditions must be satisfied in deciding whether a recognized ear tag is saved or discarded. 
We do not consider an ear tag to be recognized when the string length is less than three. If the ear tag 
length is ‘3,’ we check for any similar digit in the three-digit list. For an ear tag with a length of more 
than ‘3,’ we cut into ear tags with a length of ‘4,’ as shown in Figure 18.  

 
Figure 18. Cutting process for ear tags with length of more than ‘3’.  

A search is made for each cut ear tag in the four-digit list. Cut ear tags that do not match with 
any data in the four-digit list are separated into individual digits. Then, the first digit is checked for 

(a) (b) (c) (d) (e)

9955
1234
9779

9 9 5 5
1 2 3 4
9 7 7 9

995
955
123
234
977
779

(a) (b) (c)

1995578

1995 9955 9557 5578

Figure 17. Check lists using the three types of ground truth data: (a) Four-digit list, (b) one-digit list,
and (c) three-digit list.



Sensors 2020, 20, 3564 12 of 18

Ten conditions must be satisfied in deciding whether a recognized ear tag is saved or discarded.
We do not consider an ear tag to be recognized when the string length is less than three. If the ear tag
length is ‘3’, we check for any similar digit in the three-digit list. For an ear tag with a length of more
than ‘3’, we cut into ear tags with a length of ‘4’, as shown in Figure 18.
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A search is made for each cut ear tag in the four-digit list. Cut ear tags that do not match with any
data in the four-digit list are separated into individual digits. Then, the first digit is checked for any
match in the first column of the one-digit list. Similarly, second, third, and fourth digits are checked in
their respective columns in the one-digit list. Then, the indices for all possible three-digit pairs are
intersected, since we use the number for the ear tag with three correct digits. As an example, ‘124_’,
‘12_9’, ‘1_49’, and ‘_249’ all indicate a correct ear tag number of ‘1249’.

A flow chart diagram for the ear tag confirmation process is shown in Figure 19. Once an ear tag
is confirmed, it is immediately saved in the initial ear tag list, along with a respective camera number
and cow position. The final ear tag list is updated every thirty frames, by choosing the optimal result
from the initial ear tag list. For the case in which more than one similar digit is found, a matching with
the history ear tag is performed by finding the same ear tag number using the same camera number
and cow position as in the final ear tag list.Sensors 2020, 20, x FOR PEER REVIEW 13 of 18 
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The recognized ear tag is discarded if it meets one of the following five conditions, described as
D1 through D5.

1. The length is less than ‘3’ (D1).
2. The length is exactly ‘3’, but no match is found in the three-digit list (D2).
3. The length is exactly ‘3’ and more than one match occurs in the three-digit list, but no match is

found in the ear tag history (D3).
4. No intersected result occurs for any of the three-digit pairs of cut ear tags (D4).
5. More than one intersected result occurs, but no match is found in the ear tag history (D5).

The recognized ear tag is saved if it meets one of the following five conditions, described as S1
through S5.

1. The length is exactly ‘3’ and one match is found in the three-digit list (S1).
2. The length is exactly ‘3’. More than one match is found in the three-digit list and one of the results

matches in the ear tag history (S2).
3. One match is found for the cut ear tag in the four-digit list (S3).
4. One intersected result occurs for a three-digit pair of cut ear tags (S4).
5. More than one intersected result occurs, and one match is found in the ear tag history (S5).

The ear tag confirmation process is illustrated in Table 2. The yellow rows represent the recognized
ear tags for both left and right sides of four cows. The green rows represent the confirmed ear tags
together with their respective constraint numbers. The ‘−’ symbol represents ‘non-recognized ear
tag’. The ‘−(Dn)‘ symbol represents ‘discarded ear tag’, where n can be one of five conditions. In the
illustration, we consider ground truth data to be ten ear tags of 0004, 0647, 1127, 1246, 1249, 1733, 3140,
5202, 5208, 9230, four cows with correct ear tags of 1127, 0647, 5208, 9230, and three frame sequences.

Table 2. Brief illustration of the ear tag confirmation process.

Ear Tag
Confirmation

Cow 1 Cow 2 Cow 3 Cow 4

Left Right Left Right Left Right Left Right

Frame 1 112 - 069 064 5208 52087 99231 7231
Result 1 1127(S1) −(D1) −(D2) 0647(S1) 5208(S3) 5208(S3) 9230(S4) −(D4)
Frame 2 11 1127 11641 064 520 15203 9230 9230
Result 2 −(D1) 1127(S3) −(D4) 0647(S1) 5208(S2) 5208(S5) 9230(S3) 9230(S3)
Frame 3 124 1247 0647 11647 5208 5202 7280 9230
Result 3 −(D3) −(D5) 0647(S3) 0647(S4) 5208(S3) 5202(S3) −(D4) 9230(S3)

3.5. Decision Making

The frame rate for the network cameras used in our experiments was 25 frames per second, and we
only processed one frame to reduce the processing time. Cow head detection and ear tag recognition
processes are performed for every input frame. To determine the number of cows and their respective
ear tags, we performed a head and ear tag updating process every 30 frames while running the process.

Cows are not always in their regions of interest (ROI) and may sometimes be in another ROI.
During such times, both head detection and ear tag recognition results occur in another ROI instead
of the actual position. Therefore, we made a decision table using current and previous detection
and recognition history. If the occurrence count of each region is greater than 50% of 30 frames,
we considered that region to have a cow. This process is illustrated in Table 3. The value ‘1’ indicates
the head detection, and ‘0’ indicates that either no detection is made or no head is present. The same
process is also performed on the ear tag updating process.
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Table 3. Illustration of the cow head decision table.

Frames
Cow Head Regions

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5

1 1 0 1 0 1
2 1 1 1 0 1
3 1 0 1 0 1
. . . . . . . . . . . . . . . . . .
29 1 0 1 1 0
30 1 0 1 0 1

Occurrence Count 27 5 30 3 27

Percentage 90% 16% 100% 10% 90%

Cow Present ‘Yes’ ‘No’ ‘Yes’ ‘No’ ‘Yes’

4. Experimental Results

The experiments were performed at a large-scale dairy farm in Hokkaido Prefecture, Japan.
The network cameras (AXIS P1448-LE) were installed to provide a frontal view of the feeding station.
The camera had a resolution of 4K (3840 × 2160) and recorded video at 25 frames per second.
One network camera can cover five cows. For data acquisition, the recorded videos are stored in the
Network Attached Storage (NAS) every five minutes. Feeding time starts at approximately 7 A.M.
In our experiments, videos were randomly selected from the 12th, 13th, and 14th of October, and from
the 17th, 18th, 24th, and 25th of November 2019. Each video is five minutes in length, because they are
sent from each network camera and stored in NAS every five minutes.

In this video processing, we calculate the cow head detection rate using our decision-making rule
(which updates detection results every 30 frames). After recognizing the segmented digits with CNN,
we perform the ear tag confirmation process. Then, the final results for ear tag digits are obtained
every 30 frames in each respective group of confirmed ear tags. The accuracies for head detection rate
and ear tag digit classification for each video are provided in Table 4.

Table 4. Experimental results for head detection and ear tag digit classification.

No. Video Number of Cows Head Detection
Rate

Ear Tag Digit
Classification Rate

1. Video 1 5 100% 100% (5 out of 5)
2. Video 2 5 100% 80% (4 out of 5)
3. Video 3 4 100% 100% (4 out of 4)
4. Video 4 4 100% 100% (4 out of 4)
5. Video 5 4 100% 100% (4 out of 4)
6. Video 6 5 100% 100% (5 out of 5)
7. Video 7 5 100% 100% (5 out of 5)
8. Video 8 5 100% 80% (4 out of 5)
9. Video 9 5 100% 100% (5 out of 5)
10. Video 10 5 100% 80% (4 out of 5)
11. Video 11 3 100% 100% (3 out of 3)
12. Video 12 5 100% 100% (5 out of 5)
13. Video 13 5 100% 80% (4 out of 5)
14. Video 14 4 100% 75% (3 out of 4)
15. Video 15 4 100% 75% (3 out of 4)
16. Video 16 5 100% 80% (4 out of 5)
17. Video 17 4 100% 100% (4 out of 4)
18. Video 18 3 100% 100% (3 out of 3)
19. Video 19 5 100% 100% (5 out of 5)
20. Video 20 5 100% 100% (5 out of 5)

Overall Accuracy 100% 92.5%
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According to experimental results, the proposed system has an accuracy rate of 100% for
head detection, and 92.5% for ear tag digit recognition. Some ear tags were not detected due to
problems such as noise in the ear tag area, fur covering the tag, and blurred images due to head
movement. The proposed system can function in challenging environments, in various and changing
weather conditions.

The graphical user interface (GUI) of the proposed system is shown in Figure 20. The application
accommodates five network camera views. The number of cows involved and their corresponding ear
tags are shown in the application.Sensors 2020, 20, x FOR PEER REVIEW 15 of 18 
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The result of processing five videos is shown in Figure 21. In this figure, the numbers of cows,
corresponding ear tags, and snapshot image views are shown for each camera. If the system can detect
a cow, its position is highlighted in green. Recognized ear tag numbers are displayed on the screen and
undetected ear tag numbers are left blank. Sometimes, cow head is not in a stable position and they
can move to other cow’s region of interest. This can occur duplicate positions of detection.
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When the system completes processing, it is combined with the search system to find another cow.
The user needs to enter the ID of the cow to find her actual position. The running time of the system is
about 15 min to finish all five videos (5 min each), and processing is performed in parallel. The system
was tested using Windows 10, with an Intel® Core (TM) i7-7700 CPU running @ 3.60GHz with a 16 GB
memory. The GUI design of the search system is shown in Figure 22.Sensors 2020, 20, x FOR PEER REVIEW 16 of 18 
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The search system can identify the camera and its specific position. A detail page is also provided
to view the search ID, with its position highlighted in red. This is illustrated in Figure 23.
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5. Conclusions

Systems for identifying and monitoring individual cows are important in precision dairy farming,
because such systems can provide valuable information, such as the status of each cow. Manually
searching for cows takes time and increases labor costs. In this paper, we propose a cow identification
system using printed ear tag numbers. To extract the ear tag region, we first detect the head area using a
pre-trained YOLO detector model. Head detection can also provide the cow’s position, which can then
be applied into the cow’s searching system. Step-by-step processes are carried out to extract the digit
area and ear tag recognition is then performed. The proposed system has already been tested in the
real-world environment of a working dairy farm. The cow finding system also provides information
on the desired location for each cow. According to experimental results, the proposed system shows
promise as a reliable and useful contribution to smart dairy farming. To have a better recognition
accuracy, we need to make modifications in the ear tag detection process for better extraction of the ear
tag’s digit, which can improve the recognition accuracy. For the future, we will extend our work to
apply in different livestock environments.
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