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Abstract: In the computer vision field, many 3D deep learning models that directly manage 3D point
clouds (proposed after PointNet) have been published. Moreover, deep learning-based-techniques
have demonstrated state-of-the-art performance for supervised learning tasks on 3D point cloud
data, such as classification and segmentation tasks for open datasets in competitions. Furthermore,
many researchers have attempted to apply these deep learning-based techniques to 3D point clouds
observed by aerial laser scanners (ALSs). However, most of these studies were developed for 3D
point clouds without radiometric information. In this paper, we investigate the possibility of using
a deep learning method to solve the semantic segmentation task of airborne full-waveform light
detection and ranging (lidar) data that consists of geometric information and radiometric waveform
data. Thus, we propose a data-driven semantic segmentation model called the full-waveform network
(FWNet), which handles the waveform of full-waveform lidar data without any conversion process,
such as projection onto a 2D grid or calculating handcrafted features. Our FWNet is based on a
PointNet-based architecture, which can extract the local and global features of each input waveform
data, along with its corresponding geographical coordinates. Subsequently, the classifier consists
of 1D convolutional operational layers, which predict the class vector corresponding to the input
waveform from the extracted local and global features. Our trained FWNet achieved higher scores
in its recall, precision, and F1 score for unseen test data—higher scores than those of previously
proposed methods in full-waveform lidar data analysis domain. Specifically, our FWNet achieved a
mean recall of 0.73, a mean precision of 0.81, and a mean F1 score of 0.76. We further performed an
ablation study, that is assessing the effectiveness of our proposed method, of the above-mentioned
metric. Moreover, we investigated the effectiveness of our PointNet based local and global feature
extraction method using the visualization of the feature vector. In this way, we have shown that our
network for local and global feature extraction allows training with semantic segmentation without
requiring expert knowledge on full-waveform lidar data or translation into 2D images or voxels.

Keywords: full-waveform lidar data; semantic segmentation; deep learning; supervised learning

1. Introduction

The airborne laser scanner (ALS) offers significant advantages for large-area observations in terms
of speed and time-efficiency, compared to field surveying using a terrestrial laser scanner. However,
manual operations to extract the spatial information from the data observed by ALS (ALS data) are
costly and time-consuming. Automatic data processing methods for ALS data are necessary for practical
applications. As in this review paper [1], most of the automatic processing for ALS data depends on 3D
point-cloud-based methods. A typical method is a rule-based approach, such as classifying land cover
using different thresholds for elevation, alongside statically calculated values [2]. A supervised machine
learning approach is also used for point cloud classification [3]. At present, deep learning-based methods
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are widely used for 3D point cloud analysis. These 3D point clouds are defined as non-Euclidian data
or spatially irregular data [4]. Therefore, most deep learning methods require conversion into Euclidian
images or voxels [5,6]. To address this issue, PointNet [7] was developed to deal with the point cloud
without a conversion process. PointNet can solve several tasks, including classification, semantic
segmentation, and part segmentation. After the publication of PointNet, many studies in the computer
vision field [5] have attempted to apply deep learning methods to ALS data [6]. For applications
featuring deep learning-based 3D point cloud analysis, not only in topographic mapping, but also
in many other fields, such as forest monitoring [8,9], power-line detection [10–13], and building
detection [14,15]. However, most previous studies use limited geometric 3D point clouds without
radiometric information, because such studies are highly dependent on open datasets without rich
radiometric information [16,17].

As a radiometric observation instruments, full-waveform light detection and ranging (lidar)are
widely used in ALS observations [18]. Full-waveform lidar record the entire reflected signal discretely.
Some studies have shown that a full-waveform lidar data provides not only 3D point clouds but
also additional information on the target properties such as the pulse width and the backscatter
cross-section [19–21]. The shape and power of the backscatter of the waveform samples are related
to the geometric and reflection characteristics of the reflective surface. Most full-waveform-based
algorithms use this characteristic as a return signal [22,23]. For example, Mallet et al. (2011) [22]
investigated the possibility of automatically discriminating three classes (buildings, ground,
and vegetation) with an support vector machine (SVM) classifier using full-waveform lidar data. Digital
Terrain Model (DTM) generation is performed by Gaussian decomposition on full-waveform signals,
which increased the number of actual terrain points [23]. Full-waveform lidar data are beneficial
for classification, because they provide valuable insights into the local organization of land use or
land cover, which is detailed structural features about targets located along the transmission path
of the laser signal. These algorithms described above for full-waveform lidar data analysis rely
on handcrafted features [24] that are sent to rule-based algorithms or machine-learning algorithms.
Maset et al. (2015) offered a data-driven alternative method, to solve the unsupervised classification task
of waveform without calculating some handcrafted features, or converting into other data structures
like image using self-organizing maps (SOMs) [25]. Additionally, Zorzi et al. (2019) [26] proposed a
deep-learning based data-driven classification approach for full-waveform lidar data, which consist of
point clouds with associated entire waveforms. In this method, classification tasks are divided into two
steps. First, waveforms are classified using a data-driven feature (we simply refer to data-driven feature
from deep learning model as a feature) extraction by the one-dimensional convolutional neural network
(1D CNN). Next, the semantic segmentation task is solved using a fully convolution network (FCN) for
2D grid data, which includes height information from the point clouds and the class vector predicted
by the trained 1D CNN in the first step. The main limitation of this method is that each waveform
is learned individually in the first step. Furthermore, this method requires a large assumption that
there is no occlusion, because it is projected onto a two-dimensional image. However, Zorzi et al. [26]
demonstrated the necessity of using the spatial learning method for full-waveform lidar data via 2D
FCN. Moreover, Shinohara et al. (2019) showed the effectiveness of applying the spatial learning method
to full-waveform lidar data using a full-waveform network auto encoder (FWNetAE), consisting of a
PointNet [7] based encoder and a naïve multi-layer-perceptron based decoder [27]. FWNetAE [27]
employs PointNet [7] in its encoder, which can input even spatially irregular data and directly handle
waveforms and coordinates (the first peak return) associated with the waveforms, despite the fact
that deep learning methods are usually used for regularly arranged data, such as images, audio,
and text. The PointNet [7] based encoder enables spatial feature extraction, which was not possible
with 1D CNN. This learning method using an auto encoder is called representation learning [28], which
allows models to extract features from the input data. This trained encoder can extract a compact
representation in the latent space of each spatial input data. In a comparison experiment between an
encoder using PointNet [7] and an encoder using 1D CNN, we show that the encoder using PointNet [7]
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is more finely clustered in features than the 1D CNN method. However, the authors only showed
the power of feature extraction with spatial input data using unsupervised representation learning [29],
not the concrete results of supervised classification for waveforms. Furthermore, deep learning based
semantic segmentation methods for waveforms without hand crafted feature generation or conversion
to voxel or image have not been studied extensively.

In this paper, we show the effectiveness of spatial feature extraction in the semantic segmentation
task for waveforms in a supervised manner. Our network is based on FWNetAE [27] using one of
the typical architectures that can directly apply waveforms to representation learning tasks. We extended
FWNetAE [27], where only unsupervised representation learning was possible, to directly predict
the classes of waveforms in a supervised manner. Specifically, our model, namely the full-waveform
network (FWNet), takes spatially distributed waveforms with associated geographical coordinates
as input and predicts class vectors for each input in an end-to-end manner (Figure 1). Our primary
contributions are as follows:

(1) Extending FWNetAE, which have only shown the effectiveness of unsupervised spatial
representational learning on waveforms, we propose FWNet for supervised semantic segmentation
and empirically showed that it outperformed previously proposed methods.

(2) Our FWNet can discriminate six ground objects (ground, vegetation, buildings, power
lines, transmission towers, and street path) with high performance, merely using waveform
and its coordinates without explicitly converting them into images or voxels in the semantic
segmentation task.

(3) We experimentally demonstrated the effectiveness of the waveforms via an ablation study, which is
an experiment to investigate whether or not each element contributes to the accuracy improvement
when multiple elements related to the accuracy improvement are included in the proposed method,
and the spatial learning method by visualizing the features extracted by the trained model.
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Figure 1. Overview of our proposed network (full-waveform network (FWNet)) for full-waveform
light detection and ranging (lidar) data. Our FWNet predicts the class of each input data consists of
waveform and its coordinate. The color of each point in the right figure is a class (land cover/land use).

This paper is organized as follows: Section 2 presents the literature on general deep learning
methods and their application to 3D point clouds, as well as automatic analysis methods for
full-waveform data. Section 3 discusses the approaches for the supervised learning of waveform
and its coordinates data using a PointNet-based semantic segmentation network. Section 4 describes
the dataset used for the experiment, shows the results for the test data, and provides a discussion
on our proposed model via an ablation study and feature visualization. Finally, Section 5 presents a
summary and conclusion.
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2. Related Studies

2.1. Deep Learinig

In this paper, we focus on end-to-end supervised learning using deep learning without handcrafted
features. A deep learning model has a set of functions called a layer and has a hierarchical structure
of layers. The purpose of each layer is to extract features of the input data from the previous layer,
by performing functions with nonlinear transformations and other functions, and send those data to
the next layer. In particular, for image processing, trained deep learning models have been reported to
match several features of the visual cortex [30,31]. This hierarchical feature extraction is also effective
in the remote sensing domain using deep learning method [32]. The primary deep-learning-based
method used in remote sensing is the convolutional neural network (CNN). CNNs are a type of
deep learning method that can learn the features of the input data in a hierarchical and spatial
manner. In each convolutional layer of the CNN, a learnable filter (kernel) extracts features by fusing
spatial and channel information in the local receptive field. By using a series of convolutional layers
with nonlinear activation functions and downsampling operators (max pooling or mean pooling),
CNNs can generate robust feature that capture hierarchical patterns and global theoretical receptive
fields. By performing convolutional operations on a region defined by the size of the kernel, spatial
feature extraction is performed, and by performing further pooling, a wider range of information is
aggregated into a single point. By repeating this operation, it is possible to extract features hierarchically
from lower-level features, such as edges to higher-level abstracted features.

These deep learning methods have been widely used for 3D point clouds. The most conventional
methods for 3D point clouds using deep learning are 2D CNNs that classify each pixel of 2D images
projected from 3D point clouds [33,34]. These methods usually require the calculation of additional
handcrafted features, that are an individual measurable property or characteristic of data, of point
clouds (e.g., height, normal, height difference etc.) when they project 2D images from 3D point clouds.
However, these methods are not used because of the information lost during the 3D projection onto a
2D image. More recent studies have used voxel data to represent 3D information [35]. Voxel-based
methods use 3D convolutions for regular 3D grid data converted from the point cloud. In this case,
when the point clouds are converted to voxels, the classification performance is adversely affected,
because of information loss, because the GPU memory limit for learning the deep learning model makes
it impossible to create high-resolution voxels, and the original information of the point cloud is lost [36].
To address these problems of the information lost in the translation process, a CNN-like network called
PointNet was proposed to handle 3D point clouds. Additionally, some studies have applied CNN
based techniques to irregular point clouds [37–42] after PointNet was proposed. These methods offer
an integrated architecture that avoids high computational costs coming with high resolution voxels
and allows point cloud data to be entered directly for semantic segmentation tasks.

Many researchers have investigated the deep learning-based methods for 3D point clouds acquired
via ALS. For example, Yousefhussien et al. (2018) [37] proposed an FCN-based method. This method
uses two input data, point clouds, and handcrafted features converted from 2D images. These input
data are classified for each point using an end-to-end training process. Wang et al. (2018) [38] created a
three-step pooling-layer method to classify point clouds. First, a point-wise features is extracted using a
weight-shared MLP similar to PointNet [7]. Second, a spatial max-pooling layer is employed to extract
features. Finally, another MLP layer is used to classify each feature. Wen et al. (2019) [18] proposed a
multiscale FCN that considers direction. Winiwarter et al. (2019) [43] investigated the applicability of
PointNet++ for not only benchmark data, but also actual airborne lidar point clouds. Additionally,
a task-specific deep learning method for the extraction of ground information [44,45], and a tree species
classification network were proposed [46].
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2.2. Full-Waveform Data Analysis

Recently, full-waveform lidars have become the mainstream of airborne lidar measurement
systems. The full-waveform lidar can record the reflection of the irradiated laser pulse from the object
as a series of waveforms, representing the reflected intensity. Conventional airborne lidar record
discrete peaks of intense reflection intensity, and there is a limit to the number of returns that can
be recorded. Therefore, it can be said that the full-waveform data contains more information about
the ground and surface than the conventional airborne lidar data. The researches on the generation of
high-density point clouds (called Hyper Point Clouds), which cannot be obtained by the conventional
airborne lidar, are carried out by using the measurement system of the full-waveform lidar [47].

Full-waveform data are highly advantageous for 3D point cloud classification tasks [48–51]. Moreover,
full-waveform lidar data that include waveform provide rich information that easily discriminates some
classes [52]. For example, a rule-based decision tree can be used for classification [53,54]. Other methods
are based on machine learning with handcrafted features, such as support vector machine (SVM)
classifiers [18], which offer a nonlinear classification method. SVM classifiers and other machine-learning
methods have become widely utilized in point cloud classifications featuring some handcrafted features
from full-waveform laser scanners [55–59]. Furthermore, for land use classification, Wang, C. et al.
(2019) demonstrated the importance of not only the features from each waveform, but also the spatial
features [60]. Additionally, Lai. et al. (2019) presented an ensemble method that uses the SVM model
to improve classification ability [61], while some other papers use a multimodal method to combine
hyperspectral images and waveform data [62,63].

Most of the above algorithms strongly depend on handcrafted features that are fed into statistical
classifiers or simple machine learning algorithms. However, another data-driven approach was
proposed by Maset et al. (2015) [25], who used the SOM to solve an unsupervised classification task
on waveform within three classes (grass, trees, and roads) without handcrafted features. The same
group presented an innovative method based on a convolutional neural network (CNN). The authors
used these CNNs to solve a classification task with six classes (ground, vegetation, building, power
line, transmission tower, and street path) for full-waveform lidar data [26]. Their proposed network
includes a 1D CNN and a 2D Fully Convolutional Network (FCN). First, a simple 1D CNN is trained
to predict the class of input waveform. The trained 1D CNN is used to preprocess each waveform
to provide a class probability vector. In other words, the 1D CNN maps waveform into a compact
representation. By leveraging the coordinates of the points associated with the waveform, the output
vector generated by the trained 1D CNN, and height information are projected onto 2D grid data
and subsequently labeled by the 2D FCN. The 2D FCN can easily take into account the spatial/positional
and geometric relationships between adjacent data, as discussed for the semantic segmentation task
for images. In Zorzi et al. (2019) [26], the local method for classifying the waveform separately was not
effective, many models in the field of deep learning, such as image recognition and text translation,
learn spatial information by performing global feature extraction as well as local feature extraction.
The predictive ability of the 2D FCN suggests that the spatial learning method is advantageous for
waveform. As a spatial learning method for waveform, an autoencoder-based representation learning
method called FWNetAE was presented by Shinohara et al. (2019) [27]. Shinohara et al. (2019) can
directly deal with spatially distributed full-waveform lidar data using a PointNet based encoder.
FWNetAE [27] can input multiple waveform directly into the deep learning model by incorporating
PointNet, which is capable of training point clouds, as opposed to the 1D CNN method [26], which trains
waveforms independently. Spatial feature extraction can be achieved by FWNetAE for unsupervised
learning. As a method of spatial learning, FWNetAE uses x, y and z coordinates and associated
waveforms to extract the spatial features of each waveform within a certain range of neighborhood.
The PointNet based encoder extracts the compact representation as a latent vector of each input
data, and the decoder reconstructs the spatial distribution and waveform samples of the input data.
Shinohara et al. (2019) demonstrated the effectiveness of the spatial learning method for waveform,
but did not show the method’s specific classification abilities.
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The remainder of our paper evaluates an end-to-end deep learning approach that uses PointNet
based semantic segmentation architecture for spatially distributed waveform data, without any
processes to convert those data to another data structure.

3. Proposed Method

The proposed method predicts the class probability of each waveform recorded from modern
laser scanners. This paper describes the possibilities offered by deep learning for solving semantic
segmentation tasks for waveform.

3.1. Problem Statement and Notation

The input datum for our network consist of geometric information and waveform. An input datum
for the network is represented as a set of waveforms and coordinates associated with the waveforms (P)
that forms an N×M matrix. N is the number of input waveform, and M is the dimension of waveforms
and consisting of spatial dimensions (x, y, z), along with their waveforms. In addition, the waveforms
are the data featuring intensity or power information in a time series.

Figure 2 illustrates our goal, i.e., to teach the network to estimate the probability of each class as a
vector over spatially distributed waveform as input data (RN×M

7→ RN×C ). Here, C is the number of
classes. Our FWNet is trained to predict the probability of each class Y ∈ RN×C, corresponding to
the input waveform, P ∈ RN×M. The input to our method is not the entire analysis area (training or
test data) at one time, but a small patch is clipped as the smallest unit and input to FWNet.

Sensors 2020, 20, x 6 of 20 

 

The remainder of our paper evaluates an end-to-end deep learning approach that uses PointNet 
based semantic segmentation architecture for spatially distributed waveform data, without any 
processes to convert those data to another data structure. 

3. Proposed Method 

The proposed method predicts the class probability of each waveform recorded from modern 
laser scanners. This paper describes the possibilities offered by deep learning for solving semantic 
segmentation tasks for waveform. 

3.1. Problem Statement and Notation 

The input datum for our network consist of geometric information and waveform. An input 
datum for the network is represented as a set of waveforms and coordinates associated with the 
waveforms (۾) that forms an N ൈM matrix. N is the number of input waveform, and M is the 
dimension of waveforms and consisting of spatial dimensions (ݔ, ,ݕ  .along with their waveforms ,(ݖ
In addition, the waveforms are the data featuring intensity or power information in a time series. 

Figure 2 illustrates our goal, i.e., to teach the network to estimate the probability of each class as 
a vector over spatially distributed waveform as input data (Թ୒ൈ୑ ↦ Թ୒ൈେ). Here, C is the number of 
classes. Our FWNet is trained to predict the probability of each class ܇	 ∈ 	Թ୒ൈେ, corresponding to the 
input waveform, ۾	 ∈ 	Թ୒ൈ୑. The input to our method is not the entire analysis area (training or test 
data) at one time, but a small patch is clipped as the smallest unit and input to FWNet. 

 
Figure 2. Problem statement in this study. Our model predicts the probability of each class (܇	 ∈	Թ୒ൈେ) from the input data (۾	 ∈ 	Թ୒ൈ୑ ) consisting of waveforms and coordinates (the first peak 
return) associated with the waveforms. 

3.2. Proposed FWNet Architecture 

In this section, we present the network used to solve semantic segmentation tasks for 
waveforms. Figure 3 offers an overview of the FWNet. FWNet is characterized by the PointNet 
architecture, and transforms waveforms into the class vector ܇, corresponding to the input data. In 
this study, the data (۾) input into the network are waveforms with two dimensions (N × M); this 
represents a spatial distribution and geometric information and waveform. The PointNet-based 
feature extractor (the left side of Figure 3) contains three blocks. 

The first block takes the input data defined by their geometric coordinates and the waveform 
and computes the local features for each point (as shown by the red triangle in Figure 3). The local 
features are added through 1D convolutional layers with a kernel size of 1 × 1: ݂ሺ࢞ሻ≈Activation(W࢞+ b) (1) 

where ࢞ ∈  is an input datum for each layer, Activation is a nonlinear activation function with ࢄ
batch normalization, W is the learnable weight parameters, and b is biases. In this paper, we used 
three 1D convolutional layers with 256, 512, and 1024 filters, ending with the bottleneck layer of 

Figure 2. Problem statement in this study. Our model predicts the probability of each class (Y ∈ RN×C)
from the input data (P ∈ RN×M) consisting of waveforms and coordinates (the first peak return)
associated with the waveforms.

3.2. Proposed FWNet Architecture

In this section, we present the network used to solve semantic segmentation tasks for waveforms.
Figure 3 offers an overview of the FWNet. FWNet is characterized by the PointNet architecture,
and transforms waveforms into the class vector Y, corresponding to the input data. In this study,
the data (P) input into the network are waveforms with two dimensions (N ×M); this represents a
spatial distribution and geometric information and waveform. The PointNet-based feature extractor
(the left side of Figure 3) contains three blocks.
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The first block takes the input data defined by their geometric coordinates and the waveform
and computes the local features for each point (as shown by the red triangle in Figure 3). The local
features are added through 1D convolutional layers with a kernel size of 1 × 1:

f (x) ≈ Activation(Wx+b) (1)

where x ∈ X is an input datum for each layer, Activation is a nonlinear activation function with batch
normalization, W is the learnable weight parameters, and b is biases. In this paper, we used three 1D
convolutional layers with 256, 512, and 1024 filters, ending with the bottleneck layer of dimension 1024.
Each layer is followed by a ReLU [64] as a non linier activation function and batch-normalization [65].

The second block comprises network transforms or T-nets used in PointNet [7] (as shown by
the orange rectangle in Figure 3). T-nets make the points spatially invariable. T-nets estimate a 3 × 3
transformation matrix, which is applied to the input as a first step. T-nets add a transformation into a
canonical space to roughly align point clouds to ease the following computation [7]. The t-nets consist
of a multilayer perceptron (MLP), a max pooling operator, and two fully connected layers.

The third block computes the global features over all bottleneck layers (as shown by the green
rectangle in Figure 3). To compute the global features, we use a max pooling layer as a symmetric
function (i.e., the other word permutation-invariant function):

f ({x1, x2, · · · , xN−1, xN }) ≈ g(
{
h(x1), h(x2), · · · , h(xN−1), h(xN)

}
) (2)

where x is the individual waveform with coordinate information, f denotes the function to be
approximated, h is an individual input data-wise nonlinear transformation, and g is a symmetric
function. A symmetric function is the function that produces the same output without any dependence
on the input order, although there are input variations with N! when the number of input points is
N. In this case, h is computed using a simple 1D convolutional operation, and g is the max pooling
operation. Max pooling provides invariant features to the input order. To add global information into
each of the local features, after the output of the max pooling layer, we concatenate each local feature
and global feature (as shown by ⊕ in Figure 3). By using these three blocks, not only is feature extraction
by independent one-dimensional convolution for each input point mad possible, but three-dimensional
feature extraction is also possible.

We use the classifier for each feature to solve the semantic segmentation task (as shown on
the right side of Figure 3). We use simple 1D convolutional operations as classification layers.
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After being transformed by three 1D convolutional operations, the class probability is estimated by
the softmax layer:

pi =
eyi∑C

k=1 eyk
(3)

where pi is the class probability of class i, eyi
is the final output value from the classification layer of

each class, C is the total number of classes, and eyk
is the probability of class k. The final output of

our FWNet is the probability of each class Y ∈ RN×C, where N is the number of classes, and C is
the number of classes.

FWNet aims to obtain the output Y ∈ RN×C from the input data, P ∈ RN×M. Y is the probability
of each class p =

{
p1, p2, · · · , pC−1, pC

}
corresponding to the input data. In the optimization process,

we need to minimize the difference (error) between the ground truth G ∈ RN×C and the network output
by minimizing the loss functions. In this study, we use cross entropy (LCE) [66] as the loss function,
which can be defined as

LCE= −
N∑

i=1

C∑
j=1

Gi, j log
(
Yi, j

)
(4)

where C is the total number of classes, Gi, j means ground truth in class j as a one-hot representation,
and Yi, j is the predicted probability of class j in the softmax layer (Equation (3)).

Unlike the benchmarking data, the number of points in each class in the real-world point cloud
data is highly imbalanced, which has an adverse effect on the final performance. We add the weight
for the minor class to calculate LCE. This weighted cross entropy (LWCE) is defined as

LWCE= −
N∑

i=1

C∑
j=1

W jGi, j log
(
Yi, j

)
(5)

where W j is the weight for class j. The formula is defined as

W j =
1

ln
(
1.2 + a

b

) (6)

where a is the number of points of the same category, and b is the number of all point clouds.
In the training process, minimizing the loss function (LWCE) is necessary. This minimizing loss function
can be formulated as the following optimization problem:

argmin
θ

LWCE(θ) (7)

where θ represents all the learnable parameters in our FWNet.

3.3. Model for Comparative Experiments

In order to confirm the effectiveness of our proposed FWNet for spatial learning, we define
an architecture design for comparison and conduct a comparison experiment. For the comparative
experiment, we use a network corresponding to the 1D CNN proposed in Zorzi et al., 2019 [26],
called 1D CNN Reproduce in this paper (Figure 4). 1D CNN Reproduce is only the local feature
extraction in FWNet without T-nets and max pooling for the global feature. The hyper-parameters,
such as the number of convolutional layers and the number of feature maps are set to the same values
as FWNet. Furthermore, the optimization method and the loss function are the same as FWNet.
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3.4. Model for Ablation Study

The use of waveforms, the application of segmentation models, and the implementation of class
weights in the proposed FWNet are experimentally examined to see if each of them contributes to
the estimation results. This effectiveness assessment is called the ablation study. Three models are
defined for the ablation study.

First, to determine the effectiveness of the waveforms, we trained the model with only geometry
data (latitude, longitude, and height) without waveforms called the Geometry Model (Figure 5).
This model is equal to naïve PointNet [7]. In other words, Geometry Model is mapped into
the classification vector from the input point cloud data, RN×3

7→ RN×C , where N is the number
of points.
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Second, in order to confirm the ability of our FWNet, which can deal with many outputs
that correspond one-to-one to many inputs, the One Output Model. This One Output Model is
trained in the same dataset, but the final classification layer is changed to predict the probability
vector of the only central point (Figure 6). In other words, the One Output Model is mapped into
the classification vector from the input waveforms data, RN×M

7→ R1×C , where N is the number of
points, M is the dimension of each waveforms, and C is the number of classes. The following is a
description of the One Output Model. The network design of the One Output Model has the same
feature extractor as the FWNet shown in Figure 3, with the right half of the FWNet in Figure 3 removed.
In other words, the class of the center is estimated from the waveforms data input from the global
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feature shown in Figure 6. In this One Output Model, the feature extractor part, which has the same
structure as FWNet, uses the same settings as in Section 3.2. As shown in Figure 6, the One Output
Model calculates the class probability by applying 1D CNN to the global feature. The loss function
and hyperparameters are the same as those of FWNet.
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Finally, to quantitatively evaluate the loss function that overcome imbalances the training data,
we trained No Weight Model, which is the FWNet (Figure 3) using pure cross-entropy without weight
(Equation (4)). The only difference from FWNet described in Section 3.2 is the loss function at the time
of optimization, and the model architecture and hyperparameters are all the same.

3.5. Training Detail

The Adam optimizer [67] is used with an initial learning rate of 0.001, a momentum of 0.9, values
of 0.5 and 0.999, and a batch size of 1. The learning rate is iteratively reduced based on the current
number of epochs. The weights are initialized as described by Glorot et al. [68]. Our network was
trained in PyTorch [69]. We used one “q node” of TSUBAME 3.0 [70], including one Tesla P100
graphics card.

3.6. Evaluation Metrics

The metrics for evaluating the test-data are recall, precision, and F1 score. These metrics are
widely used to evaluate the performance of semantic segmentation tasks. Recall is an indicator of
how many truly relevant results are returned, precision is an indicator of overdetection. The F1 score
takes into account the precision and recall value and is generally appropriate when the categories are
unevenly distributed.

The recall, precision, and F1 scores for each class are defined as follows:

recall =
true positive

true positive + false negative
(8)

precision =
true positive

true positive + false positive
(9)

and F1 score = 2 ∗
precision ∗ recall

precision + recall
(10)

where true positive is the positive data that were correctly classified, false negative is the positive
data that were misclassified as negative, and false positive is the negative data that were incorrectly
classified as positive.
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3.7. Predictions

During the test stage, we used the patchwise prediction algorithm (Algorithm 1). The trained
model directly handles all points in each small patch for semantic segmentation. We can merge
the predicted class label from each small patch into the final prediction results. First, we loaded
the test file. Next, we obtained the central points (query points) for nearest neighbor search
(NNS) to make small patches with overwrapping. Next, we used the iterative prediction process
shown below. (1) We made an input patch to train our model using NNS. (2) Our trained
FWNet predicts the probability of a class for the input data. (3) We obtained the max value of
the probability of a class. (4) We lastly put the predictions back into the original test file. Finally,
we can get the test data with predicted class represented as predicted_classes in Algorithm 1.

Algorithm 1 Prediction method for test data

Input: test_data
Output: predicted_classes
predict_Testdata(test_data)

define predicted_classes = test_data
central_points = get_Centralpoint(test_data)
for i in len(central_points)

1. input_data, index = get_ NNS (test_data, lentest_data[i])
2. probability_vector = predict_Class(input_data)
3. class_vector = get_Max (probability_vector)
4. predicted_classes[index] = class_vector

return predicted_classes

4. Experimental Results and Discussion

4.1. Dataset

Figure 7 shows the training and test data used in this paper, which were provided by
Zorzi et al. (2019) [26]. The dataset was observed using an ALS (Riegl LMS-Q780 [71]) with a
full-waveform laser scanner. This dataset consists of three pieces of information associated with each
measured point: geometry, waveforms, and class labels. Geometry refers to the three-dimensional
coordinates of a point represented by latitude, longitude, and height. The waveforms are described
by 160 values. If the waveforms are shorter than 160, the value is padded with zeros to this length.
The label indicates the class to which the point belongs. These labels were assigned from the six
classes identified manually. The labels were manually assigned from six classes: ground, vegetation,
buildings, power lines, transmission towers, and street path (Table 1). As the label indicates, the study
area includes both natural surfaces and man-made objects. As shown in Figure 8, ground, building,
and street path have similar waveforms with one strong peak. The vegetation and transmission tower
have many peaks, while the power line has one weak peak.

Table 1. Number of points for the training data and test data.

Class
Train Test

Number of Data % Number of Data %

Ground 1,787,352 20.4 193,070 18.1
Vegetation 4,719,634 53.9 765,327 71.7
Building 1,514,486 17.3 49,138 4.6

Power Line 71,978 0.8 8151 0.8
Trans. Tower 32,008 0.4 1829 0.2

Street Path 633,606 7.2 49,580 4.6
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Figure 8. Example of waveforms used in this study. Each visualized waveform is the average value of
100 values randomly extracted from the classes.

In this study, training data were recorded for 8 million points. We used the training data points
to create small patches to optimize the parameters. The following discusses how these patches were
created. First, the x, y coordinates were randomly selected for the query point. Next, the nearest
neighbor search (NNS) was used for the selected query point to obtain the surrounding k points
and was incorporated as the input data for FWNet. Then, the value of k was determined such that
the input data would have 8192 points. This value of k is dependent on the hardware environment
in the training and prediction processes. A large k allows one to gather contextual information from a
wider area, but it requires a high amount of GPU video memory compared to a small k. We determined
the value of k to be the maximum value that can be used in the experimental environment.

The dataset used in this experiment was constructed by performing these procedures multiple
times. The training and validation data were separated to avoid duplication, and we then used
5-fold cross validation. The cross validation was further divided into “training for cross validation“
and “validation for cross validation” in a ratio of 8:2 for the training data in Zorzi et al. (2019) [26].
Additionally, this dataset includes the test area (as shown by the red rectangle in Figure 4) used by
Zorzi et al. (2019) [26]. We never used this test dataset in the training and validation process (including
parameter tuning and determining the network architecture).

4.2. Classification Result

To quantitatively evaluate the classification results using our trained model, we calculated
the recall, precision, and F1 score of each category and listed the results in Table 2; the average of
the six classes calculated from each metric is shown in the column mean in Table 2. The classification
result using our trained FWNet is shown in the row FWNet in Table 2. Each metric shows the mean
value of the classification results from 5-fold trained models. The proposed model obtained F1
scores greater than 0.6 for five of the categories except for the transmission tower class. The class of
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transmission tower was a minor class with only 0.2% of the total training data, so we determined that
the weighting for the loss function alone could not be enough. However, our model had a spatial
feature extraction function to obtain contextual information, which enabled our model to correctly
classify the ground, building, and street path with similar geometric features. Compared to 1D CNN
using the individual learning method for waveform (1D CNN [26] in Table 2), our method offers
higher performance for its recall values, except for the power line class. For classes with a large area,
such as ground and building and street path, our proposed FWNet can classify simply by adding a
wide range of global information to the local feature. On the other hand, we considered that global
information makes a classification difficult for classes that exist in a narrow range, such as power line
and transmission tower, because the local feature information contributes to the classification result.
Moreover, we examined the reproduced 1D CNN model, as shown in Section 3.3. This reproduced
model was trained on the same dataset used in FWNet. Our FWNet offers a classification ability higher
than that of the reproduced experiment (1D CNN Reproduce in Table 2). We demonstrated applying
the spatial learning method to waveforms in a semantic segmentation task using our FWNet.

Table 2. Prediction results of the test data. Three metrics, recall, precision, and F1 score, were used.
The bold text indicates the best performance. The 1D CNN ref is the result of reference [26], 1D CNN
Reproduce is our experimental result using 1D CNN, and FWNet is our proposed method.

Method Metrics Ground Veg. Build. Power Line Trans. Tower Street Path Mean

1D CNN [26]
Recall 0.07 0.79 0.13 0.91 0.42 0.56 0.48

Precision - - - - - - -
F1 score - - - - - - -

1D CNN
Reproduce

Recall 0.68 0.83 0.02 0.80 0.36 0.58 0.55
Precision 0.51 0.96 0.14 0.26 0.05 0.29 0.37
F1 score 0.59 0.89 0.04 0.40 0.08 0.38 0.40

FWNet
Recall 0.91 0.85 0.83 0.84 0.48 0.62 0.73

Precision 0.56 0.97 0.95 0.92 0.61 0.94 0.81
F1 score 0.69 0.91 0.88 0.88 0.53 0.75 0.76

The final predicted results of trained our FWNet are shown in Figure 9b. Compared to the ground
truth shown in Figure 9c, the proposed FWNet model successfully predicted the correct labels for most
of the visualized points in the test data. In Figure 9b, the final semantic segmentation results of the test
data are shown. Qualitatively, our network tended to fail when classifying a street path (represented
as red points) under the vegetation area (represented as green points) into the ground (represented
as blue points). A typical misclassified area is shown as a circle in Figure 4. This misclassification likely
occurred because of the similar geometric and radiometric waveform characteristics of the street path
and ground in Figure 8. Furthermore, the 1D CNN Reproduce model shown in Figure 6a is severely
misclassified as the building classes shown in green are classified as roads shown in red. A comparison
with the results of the 1D CNN have shown that our proposed FWNet is effective in classifying ground
objects with similar waveforms.
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Our method achieves high performance classification of waveforms, which has not been effectively
utilized in the field of deep learning and computer vision. With the establishment of a high-performance
analysis method for ALS data, it is expected to be applied to the automatic generation of wide-area
land use maps, as well as to the generation and updating of 3D maps for autonomous driving.

4.3. Ablation Study

We evaluated our proposed model with different settings, which were shown in Section 3.4,
on the same dataset shown in Section 4.1. Table 3 represents the performance of the different
models. First, we compared FWNet with Geometry Model to see if the use of waveform affected
the estimation results. The row Geometry Model in Table 3 shows the results of the classification
of the test data. Our model predicted classes with greater performance than Geometry Model for
the test data. The precision values of each class for the Geometry Model test data were 0.52 for ground,
0.96 for vegetation, 0.96 for building, 0.85 for power line, 0.20 for transmission tower, and 0.77 for street
path. Compared to the FWNet precision shown in Table 2, we observed the tendency of overdetection
using the geometric information alone. The comparison results suggest that even in the conditions that
are difficult to judge by geometry alone, the use of waveforms makes classification easier. In this way,
we can show the effectiveness of the waveforms.

Table 3. Ablation study on different components of our proposed method. The metrics in this table,
recall (mRecall), precision (mPrec.), and F1 score (mF1), are the mean values. The boldface text indicates
the best performance. The Time indicates the time required to predict the test data.

Method FW All Points Weight mRecall mPrec. mF1 Time(h)

Geometry Model - 4 4 0.68 0.71 0.65 1
One Output Model 4 - 4 0.63 0.77 0.62 13
No Weight Model 4 4 - 0.28 0.28 0.27 1

FWNet 4 4 4 0.73 0.73 0.73 1

Next, we compared our FWNet with semantic segmentation model and One Output Model,
as shown in Section 3.4. The prediction result of One Output Model is shown in the row Model B
in Table 3. This result produced the highest mean precision value, but it took about 13 h to predict all
of the test data using One Output Model. The reason for this time-investment problem was the use of
point by point predictions with NNS sampling for every test point. Searching the kd-tree for the nearest
neighbor of all N points has O(NlogN) complexity with respect to the sample size; using only a small
amount of NNS sampling was effective for faster predictions. Our semantic segmentation model with
the patchwise algorithm predicted classes faster than One Output Model.

Finally, to quantitatively evaluate the loss function that imbalances the training data, we trained
the No Weight Model, which is the same model as FWNet using pure cross-entropy without weight
(Equation (4)). This imbalanced classification result is shown in the row No Weight Model in Table 3.
Compared to the weighted model shown in the columns FWNet, weighted cross entropy offered high
performance for all metrics. Notably, the No Weight Model provided low recall values in the minor
class. For example, the power line was 0.00, the transmission tower was 0.00, and the street path was
0.13. In this way, we demonstrated that the weighted loss function with class ratios is effective for use
with highly imbalanced data sets.

4.4. Effects of Spatial Feature Extraction

To evaluate the quality of the spatial features extracted by our FWNet, we compared the 1D CNN
(shown in Section 3.3), FWNetAE [27], and our FWNet. To compare the power of the feature extraction,
we visualized the feature vectors of the test data we extracted from the trained 1D CNN, FWNetAE,
and FWNet. For visualization purposes, t-distributed stochastic neighbor embedding (t-SNE) [72] was
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used to obtain the latent space in R2. The t-SNE parameter “perplexity” was set to 50. We visualized
100 randomly selected data in each class from the test data.

First, we showed that the visualization result of our FWNet and 1D CNN. The feature vectors
used in the visualization were the layers used to perform the classifications. For the FWNet model,
the feature vector was observed to cluster consistent with the prior distribution (Figure 10c). The feature
vectors generated from our FWNet provided a latent space where the clusters were more clearly
separable than the 1D CNN model (Figure 10a). However, our model did not map waveforms into
latent space with class-wise small clusters. To address this latent space separation, we considered a
regularizer or penalty function that our model extracts the similar features of each class. Moreover,
a large reception field is needed to more clear latent space, because we could only know the street path
or ground from relative spatial information.
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Second, we compared the unsupervised FWNetAE model and our supervised FWNet model.
The feature vectors used in the visualization were the bottleneck layer of the trained encoder.
The features were extracted by FWNetAE [27] and trained with the same dataset, but the label
information was omitted. FWNetAE shows the tendency to separate each class in a latent vector
without supervised learning (Figure 10b). This means that the spatial feature extraction was very
effective for waveforms. However, the latent space was observed to be mixed in some classes other
than our supervised model. Thus, we considered the task-specific method to be effective.

Generally, A comparison with FWNetAE, which is a supervised and unsupervised learning model
using 1D CNN, shows that our FWNet is able to separate features in latent space, but it is still confirmed
that features obtained from the learned model are still mixed. This is due to the two limitations of
our model. The first limitation is that the PointNet-based model could not extract features at certain
resolutions, despite deep learning methods achieve high performance by hierarchically extracting
features from a wide range of information. To overcome this limitation, we will consider some recent
hierarchical deep learning models with large receptive fields. A data structure of waveform and its
coordinate was used for the geometric data. Considerable effort has been devoted to training geometric
data by applying deep-learning techniques [73]. Recent deep-learning methods for geometric data are
divided into metric-space-based or graph-based networks. One of the metric-space-based methods is
PointNet++ [74]. PointNet++ was improved from PointNet to extract features hierarchically and obtain
large receptive fields via a downsampling process in metric space. Meanwhile, the graph-based
method [75,76] uses a graph convolutional operation for point clouds. In addition, some recent studies
have shown the importance of global contexts when applying these methods to semantic segmentation
tasks [77–79]. The second limitation is that we cannot handle waveform specific features. Waveform is
defined as sequential data consisting of observed times and the power of returns. To learn time series
data, recurrent neural networks, long short-term memory, and attention mechanisms are widely used.
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5. Conclusions

This paper presented an end-to-end semantic segmentation model for spatially distributed
waveform and the coordinate information associated with the waveform data observed from an aerial
laser scanner (ALS). The potential difficulties in analyzing not only waveforms but also general ALS
data using deep learning are that the data are spatially irregularly scattered. We have addressed
this potential difficulty with the PointNet-based deep learning approach. Our FWNet used a PointNet
based architecture that deals with waveforms and its coordinate even if the input data is irregular.
The results demonstrated high classification performance for the invisible test data compared to the 1D
CNN-based methods for waveforms. Specifically, our FWNet achieved a mean recall of 0.73, a mean
precision of 0.81, and a mean F1 score of 0.76. Additionally, the results of this three-ablation study
show the effectiveness of our semantic segmentation model. Moreover, FWNet presented a more
meaningful feature vector than the 1D CNN-based individual classification model and the unsupervised
autoencoder-based FWNetAE.

In future studies, to overcome the limitations discussed in Section 4.4, a more complex network
will be considered, such as a metric space-based model or a graph-structured model, to examine more
effective features on waveform compared to spatially irregular data. Additionally, we will consider
the waveform awareness operation to extract rich features of sequential value.
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