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Abstract: Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications.
AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical
facilities. The aim of the present work is to propose a new artificial neural network for reliable AF
identification in ECGs acquired through portable devices. A supervised fully connected artificial
neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on
heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in output,
was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was created
and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs belonging to
the “AF Classification from a Short Single Lead ECG Recording” database and acquired with the
portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in terms of area under
the curve (AUC) and confidence intervals (CIs) of the received operating characteristic. RSL_ANN
performance was very good and very similar in training, validation and testing datasets. AUC was
91.1% (CI: 89.1–93.0%), 90.2% (CI: 86.2–94.3%) and 90.8% (CI: 88.1–93.5%) for the training, validation
and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of
AF in ECGs acquired by portable devices.
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1. Introduction

Arrhythmias are among the most common cardiac disorders that can cause severe and sometimes
fatal complications, even when asymptomatic [1,2]. Among the different kinds of serious cardiac
arrhythmias, atrial fibrillation (AF) is the most common, affecting 1–2% of the worldwide population [3].
AF is associated with a high morbidity (especially stroke and heart failure) and mortality. Mortality
(per 100,000 population), in particular, has shown an increasing trend with time; from 1990 to 2010 it
increased from 0.8 to 1.6 in men, and from 0.9 to 1.7 in women, with peaks in developed countries
reaching 2.7 and 2.4, respectively [3]. Thus, AF represents, worldwide, a significant public health
problem with huge socio-economic repercussions.

AF is a supraventricular arrhythmia characterized by uncoordinated continuous atrial electrical
activation, causing the deterioration of atrial functionality. In normal conditions, the contraction
of the heart is initiated by an electrical impulse that, after having been generated by the sino-atrial
node, propagates through all atrial myocardial cells, causing their electrical depolarization and
mechanical contraction followed by the electrical repolarization and mechanical relaxation. Successively,
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the electrical impulse reaches the atrioventricular node, in which it is slowly conducted before
propagating through all ventricular myocytes, causing their ventricular depolarization and contraction
and subsequent repolarization and relaxation. The electrical phenomena associated with the
propagation of this impulse through the heart result in typical waves of the electrocardiogram
(ECG) measured at the body surface. Normally, the ECG is a pseudo-periodic signal (Figure 1A)
constituted by the repetition of a pattern showing a sequence of typical waves (Figure 1B): the P wave,
which reflects the atrial depolarization; the QRS complex, which reflects the ventricular depolarization
and hides the atrial repolarization; and the T wave, which reflects the ventricular repolarization.
In AF, the sino-atrial node is overruled by the continuous fibrillatory activity and is no longer able
to provide its pseudo-periodic impulse, so the heart rhythm becomes irregular (Figure 1C) and the
impulse propagates though the atria following chaotic pathways [4]. However, once the impulse
reaches the atrioventricular node and finds it not refractory, the impulse normally propagates through
the ventricles. Combination of the AF random nature and the complex conduction/blocking properties
of the atrioventricular node generates an irregular heart rate. These abnormalities of the electrical
activity of the heart are reflected in the ECG that is no longer a pseudo-periodic signal but, rather,
shows a high level of heart-rate variability (HRV) (Figure 1C). The P wave is no longer present; instead,
continuous fibrillatory waves, also called F waves, are seen as rapid low amplitude oscillations that
reflect the continuous uncoordinated atrial depolarization (Figure 1D).Sensors 2020, 20, x FOR PEER REVIEW 3 of 16 

 

 
Figure 1. Panel A shows a normal pseudo-periodic electrocardiogram (ECG) tracing. Panel B shows a normal beat, constituted by a P wave (the smallest wave), a 
QRS complex (with R being the highest wave) and a T wave. Panel C shows an ECG tracing with atrial fibrillation (AF) and thus increased heart rate variability 
(HRV). Panel D shows a beat during AF with F waves but no P wave. 

 

Figure 1. Panel (A) shows a normal pseudo-periodic electrocardiogram (ECG) tracing. Panel (B) shows
a normal beat, constituted by a P wave (the smallest wave), a QRS complex (with R being the highest
wave) and a T wave. Panel (C) shows an ECG tracing with atrial fibrillation (AF) and thus increased
heart rate variability (HRV). Panel (D) shows a beat during AF with F waves but no P wave.

AF diagnosis is typically ECG-based and is usually made by a cardiologist, possibly supported by
computerized applications [5–18], in hospitals or in clinical facilities. However, traditional medical
ECG devices, even when used out-of-the-hospital (such as the Holter ECG recorders), are coupled to a
limited amount of people, who are symptomatic or have cryptogenic stroke and, hence, for whom there
is an indication for long-term monitoring. But, due to the sneaky and oftentimes asymptomatic way
AF develops, a large-scale monitoring would be preferable, especially in the population above a certain
age. The use of wearable devices (such as watches, patches and bands) and portable devices (such as
smartphone and tablets) is becoming more and more common among the entire population worldwide.
The modern devices are able to record the ECG and thus have opened the possibility to remotely
monitor AF on a plethora of individuals. However, in order to be useful in the preventive diagnosis
of AF, they have to be associated with a reliable diagnostic software. As a result, several algorithms
for automatic detection of AF have been proposed in the literature [5–9], several of which are based
on machine and deep learning approaches [10–18]. Most of them claim very high performances but,
when critically analyzed, show some common limitations. Firstly, performances of some algorithms
for AF identification have been tested only against sinus rhythm [5–11,13–15], without considering
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the main confounders that are the level of noise affecting ECGs and the presence of other kinds of
arrhythmias [12,16–18]. Secondly, most algorithms only rely on HRV to identify AF [5–10,13,14],
despite high HRV being also associated with many other arrhythmias (not AF-specific) [19,20] and AF
being also associated with absence of electrocardiographic P wave and presence of electrocardiographic
F waves. Finally, some algorithms have been tested only on ECGs recorded by traditional medical
devices [11–16,18] and not by modern wearable or portable devices; thus, their applicability to the
latter remains to be demonstrated.

The aim of the present work is to propose a new artificial neural network (ANN) for a reliable
identification of AF based on several input ECG features and to test it on ECG recordings acquired
through portable devices, and thus typically affected by noise, made in healthy subjects and in
cardiac patients exhibiting various types of abnormal cardiac rhythms. To this aim, a supervised
fully connected artificial neural network was created using the repeated structuring and learning
procedure [21] and tested on the “AF Classification from a Short Single Lead ECG Recording”
database [19] by Physionet [22], consisting of thousands of short single-lead ECG recordings acquired
with the portable KARDIA device by AliveCor [19].

2. Materials and Methods

2.1. Study Datasets

Data belong to the “AF Classification from a Short Single Lead ECG Recording” database by
Physionet [19,22] (https://physionet.org). They include 8244 single lead ECGs (typically Einthoven lead
I), collected with the portable KARDIA device by AliveCor (https://www.alivecor.com). ECG duration
ranges from 9 s to 61 s (average: 33 s) and the sampling rate is 300 Hz. All ECG recordings were manually
annotated by an expert as showing AF rhythms (738 recordings), normal rhythms (5050 recordings)
or other rhythms (different from AF and normal rhythms, such as premature ventricular contraction;
2456 recordings) [19,22]. For the scope of this paper, these ECG recordings were classified into two
reference classes, the AF class (738 recordings) and the non-AF class (7506 recordings).

All ECGs were characterized in terms of signal-to-noise ratio (SNR) (in dB, where the signal and
noise amplitudes were defined as maximum signal amplitude and 4 times signal standard deviation,
respectively) and submitted to an automatic algorithm for R-peak detection [23]. Only ECGs for which
at least three consecutive R peaks could be identified were accepted for feature extraction and AF
identification. Specifically, only the accepted ECGs were considered and grouped into three datasets,
the training dataset, the validation dataset and the testing dataset. The training dataset and the
validation dataset, including 55% and 15% of accepted ECGs, respectively, were used to create the
ANN for AF identification, while the testing dataset, including the remaining 30% of accepted ECGs,
was used to evaluate the created ANN performance. In all datasets, the prevalence of subjects in AF
and non-AF classes was maintained unaltered.

2.2. ECG Processing and Feature Extraction

Initially, each ECG was prefiltered with a 6th order bidirectional Butterworth bandpass filter (cutoff

frequencies of 0.5 Hz and 45 Hz) and R-peak positions were identified [23]. Then, several different
signal processing steps were applied to obtain a set of 19 features from each ECG, 11 morphological
features, 4 F-waves features and 4 HRV features. For an interpretive approach, the features were
selected to include all those on which the criteria for AF diagnosis rely, namely P-wave disappearance,
F-waves appearance and HRV increment, possibly quantified with different methods.

The 11 morphological features were extracted from the median ECG beat (MECGB), obtained
as the median of the n (with n being the number of beats in the recordings) ECG segments included
between 250 ms and 450 ms before and after each R peak, respectively. Specifically, the following
6 standard landmarks [24] were identified: Pp (position of the absolute maximum of | MECGB | to
the left of the R wave; it corresponds to the P-peak position in the presence of the P wave or to the

https://physionet.org
https://www.alivecor.com
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highest oscillation position in the presence of F waves); Rp (position of the absolute maximum of
| MECGB |; it corresponds to the R-peak position); Tp (position of the absolute maximum of | MECGB |

to the right of the R wave; it corresponds to the T-peak position); QRSon (position of the point where
the MECGB derivative changes its sign for the second-to-last time before Rp; it corresponds to the
QRS-onset position); QRSoff (position of the point where the MECGB derivative changes its sign for
the second time after Rp; it corresponds to the QRS-offset position or J point); and Toff (position of the
point where the MECGB derivative changes its sign for the first time after the Tp; it corresponds to
the T-offset position). Using these 6 landmarks, 11 morphological features, 5 time intervals (namely
PpRp, PpQRSoff, QRSonQRSoff, QRSonToff and QRSoffToff) and 6 amplitudes (namely AP, AQRSon,
AQRS, AQRSoff, AT and AQRS/AP), are computed as described in Table 1. All amplitude features are
computed with respect to baseline level identified 80 ms before Rp [25].

The 4 F-waves features are based on the power spectral density estimation of the residual ECG
obtained by subtracting the dominant ECG waveform obtained using the segmented beat modulation
method [26,27], from the original ECG. Specifically, the F-waves frequency ratio (FWFR) (dimensionless);
was computed as the ratio between the spectral area in the F-waves frequency band (4–10 Hz) and the
total spectral area [27]. Since four different methods were used to estimate the power spectral density,
4 FWFR values (namely FWFRFFT, FWFRWLC, FWFRYWK, and FWFRTHM,) were obtained as described
in Table 1.

Table 1. Summary of the 19 ECG features (11 on morphology, 4 on F waves and 4 on heart-rate
variability) characterizing each ECG recording.

Feature Type Feature Name Feature Unit Feature Description

Morphology

PpRp ms time interval between PP and RP
PpQRSoff ms time interval between PP and QRSoff

QRSonQRSoff ms time interval between QRSon and QRSoff

QRSonToff ms time interval between QRSon and Toff

QRSoffToff ms time interval between QRSoff and Toff

AP µV amplitude of the MECGB at PP
AQRSon µV amplitude of the MECGB at QRSon

AQRS µV max-min of MECGB amplitude between
QRSon and QRSoff

AQRSoff µV amplitude of the MECGB at QRSoff

AT µV amplitude of the MECGB at TP
AQRS/AP dimensionless ratio between AQRS and AP

Fwaves

FWFRFFT % Fast Fourier Transform spectral ratio
FWFRWLC % Welch’s method spectral ratio
FWFRYWK % Yule-Walker’s method spectral ratio
FWFRTHM % Thomson’s method spectral ratio

Heart-rate variability

MRR ms mean RR interval
SDRR ms RR-interval standard deviation

RMSRR ms Root mean square of RR interval
PRR50 % % of RR > previous RR of more than 50 ms

Finally, 4 HRV features (namely MRR, SDRR, RMSRR, and PRR50) were obtained from the RR
interval series [28] as described in Table 1.

2.3. Artificial Neural Network Construction

The iterative repeated structuring and learning (RSL) procedure [21] was used to create a
supervised fully connected artificial neural network (RSL_ANN). Details about the RSL procedure
can be found in [21]. In the present study, RSL_ANN was designed according to the following
specifications: (a) the input layer consists of 19 neurons (one for each extracted feature), the output
layer consists of one neuron that provides a value between 0 and 1, with 0 representing the non-AF
class and 1 representing the AF class, and all other neurons had weights and biases between −1 and
+1 and a sigmoid activation function; (b) optimization was done with the scaled-conjugate-gradient
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algorithm [29]; (c) to avoid overfitting, the validation-based early stopping criterion was used [30];
and (d) the AF and non-AF classes were weighted according to the inverse of their prevalence in order
to compensate their disproportionality [31]. The procedure dynamically alternated structuring and
learning phases. The primitive RSL_ANN (initially composed of a neuron in a hidden layer) was
upgraded in different alternatives according to the following rules: each alternative presented only an
additional neuron in an existing layer or in a new layer; the number of neurons in a layer could not
be larger than the number of neurons in the previous layer; the maximal number of layers was three;
and initialized weights and bias of the additional neuron had to improve RSL_ANN performance after
only one epoch. If one rule was not fulfilled, the alternative was not acceptable. Then, all alternatives
were learnt, and their validation errors were compared with the validation error of the primitive
RSL_ANN. The RSL_ANN with the smallest validation error was considered as the new primitive
RSL_ANN, and the procedure started anew. The stopping criteria were the following: there were
no acceptable alternatives; the same alternative was confirmed as primitive for 10 consecutive times;
or there were no misclassifications in both training and validation datasets. When one of the stopping
criteria occurred, the primitive RSL_ANN was also the final RSL_ANN. In order to avoid dependency
from initialization, 100 different RSL_ANNs were created by considering 100 different initializations.
The optimal RSL_ANN was selected as the one showing the smallest validation error.

2.4. Statistics

Feature distributions over classes were described in terms of 50th [25th;75th] percentiles in all
datasets and compared using the Wilcoxon ranksum test for equal medians. Statistical significance
(p-value) was set at 0.05. RSL_ANN performance was evaluated by computing the receiver operating
characteristic (ROC) curve from which area under the curve (AUC) and associated 95% confidence
intervals (CIs) were computed. Sensitivity (Se) and specificity (Sp) were eventually determined for
two specific operating points on the ROC curve of the testing dataset. The first operating point (Case 1)
was that for which Se equals Sp; the second operating point (Case 2) was that for which Sp is set at 75%
and Se is computed accordingly.

3. Results

Out of 8244 ECGs available in the Physionet “AF Classification from a Short Single Lead ECG
Recording” database, 8028 (97.4%) were accepted for the study while the remaining 216 (2.7%) were
rejected. Accepted ECGs were characterized by a SNR significantly higher than rejected ones (3.7[1.2;4.3]
dB vs. 0.1[−2.5;2.5] dB, respectively; p-value < 0.05). Table 2 shows accepted ECGs grouped into
training, validation and testing datasets.

Table 2. Data division into training dataset, validation dataset and testing dataset.

ALL TRAINING
DATASET

VALIDATION
DATASET

TESTING
DATASET

AF 707 395 99 213
Non-AF 7321 4098 1026 2197
TOTAL 8028 4493 1125 2410

Feature distributions over datasets are reported in Table 3. Most features (15 out of 19) were found
to be significantly different when statistically comparing the subjects in the AF and non-AF classes in
all datasets.
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Table 3. Feature distributions of both AF and non-AF of all data, training, validation and testing datasets.

ALL DATA
TRAINING VALIDATION TESTING
DATASET DATASET DATASET

AF Non-AF AF Non-AF AF Non-AF AF Non-AF

Morphological
Features

PpRp 207 * 150 203 * 150 197 * 150 220 * 150
(ms) [161;243] [130;183] [157;240] [130;180] [153;237] [130;187] [183;247] [130;183]

PpQRSoff 257 * 200 250 * 200 250 * 200 267 * 200
(ms) [210;287] [177;233] [203;287] [177;233] [203;286] [177;240] [227;293] [179;233]

QRSonQRSoff 103 103 100 103 103 103 103 103
(ms) [93;113] [93;113] [93;113] [93;113] [90;113] [93;113] [93;113] [93;113]

QRSonToff 333 * 386 330 * 387 337 * 383 333 * 383
(ms) [261;387] [320;427] [260;383] [323;427] [276;399] [313;423] [259;407] [317;427]

QRSoffToff 230 * 283 223 * 287 240 * 280 230 * 283
(ms) [157;283] [217;320] [150;277] [220;320] [178;290] [213;320] [153;301] [213;320]

AP 12 * 52 13 * 52 12 * 49 −10 * 55
(µV) [−25;34] [−34;82] [−25;37] [−37;82] [−26;38] [−36;80] [−24;26] [−27;83]

AQRSon 0 * −5 0 * −5 0 * −4 1 * −4
(µV) [−7;7] [−17;4] [−8;6] [−18;4] [−5;7] [−16;4] [−5;9] [−17;4]

AQRS 852 * 895 852 894 873 873 836 * 905
(µV) [637;1075] [651;1158] [664;1075] [646;1533] [615;1092] [636;1140] [631;1062] [670;1175]

AQRSoff −27 −24 −29 * −22 −16 −22 −28 −28
(µV) [−73;9] [−64;13] [−75;8] [−63;13] [−55;16] [−62;15] [−76;9] [−67;11]

AT 185 * 246 180 * 248 195 * 236 188 * 247
(µV) [109;259] [165;332] [109;253] [167;334] [127;253] [156;319] [105;269] [167;336]

AQRS/AP −3 * 9 −1 * 9 −3 * 9 −7 * 9
(dimension-less) [−24;20] [−1;13] [−24;19] [−2;13] [−26;15] [−1;13] [−23;23] [−1;14]

F-Waves Features

FWFRFFT 24 * 14 23 * 14 25 * 14 23 * 15
(%) [16;31] [9;21] [16;30] [9;21] [16;31] [9;21] [16;31] [10;21]

FWFRWLC 25 * 14 25 * 14 25 * 14 24 * 15
(%) [17;32] [9;21] [17;32] [9;21] [16;32] [10;22] [17;32] [10;21]

FWFRYWK 35 * 23 35 * 23 37 * 22 34 * 23
(%) [25;45] [17;31] [26;45] [17;31] [25;44] [16;31] [24;43] [17;31]

FWFRTHM 24 * 14 24 * 14 25 * 14 23 * 14
(%) [16;31] [9;21] [16;32] [9;21] [16;31] [9;21] [16;31] [10;21]
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Table 3. Cont.

ALL DATA
TRAINING VALIDATION TESTING
DATASET DATASET DATASET

AF Non-AF AF Non-AF AF Non-AF AF Non-AF

HRV Features

MRR 712 * 864 692 * 862 717 * 869 755 * 863
(ms) [580;860] [758;976] [565;835] [760;979] [577;878] [751;980] [616;902] [758;970]

SDRR 157 * 57 155 * 58 157 * 58 163 * 54
(ms) [104;224] [24;134] [101;208] [25;136] [101;227] [24;133] [112;242] [22;129]

RMSRR 218 * 57 215 * 59 223 * 56 223 * 52
(ms) [144;309] [19;172] [138;299] [20;174] [142;319] [19;170] [159;320] [18;167]

PRR50 92 * 67 93 * 67 93 * 67 93 * 67
(%) [90;94] [0;83] [90;94] [0;83] [90;94] [0;83] [89;94] [0;80]

* p-value < 0.05 when comparing corresponding feature in AF vs. non-AF classes, within a dataset.
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The optimal RSL_ANN had a three hidden layer architecture with 6 neurons in the first hidden
layer, 6 neurons in the second hidden layer and 5 neurons in the third hidden layer (Figure 2). The ROC
curves for the testing dataset obtained with optimal RSL_ANN are depicted in Figure 3. The AUCs
for the training, validation and testing datasets are 91.1% (CI: 89.1–93.0%), 90.2% (CI: 86.2–94.3%),
and 90.8% (CI: 88.1–93.5%), respectively. Case 1 was characterized by values of Se and Sp both equal to
81.2% in the testing dataset. Eventually, Case 2 was characterized by a value of Sp equal to 75.0% and a
value of Se equal to 88.7% in the testing dataset.Sensors 2020, 20, x FOR PEER REVIEW 10 of 16 
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4. Discussion

This work proposes RSL_ANN as a supervised fully connected artificial neural network created
using the repeated structuring and learning procedure [21] for reliable AF identification in ECGs
acquired with the portable KARDIA device by AliveCor, as those used here and available in the
Physionet “AF Classification from a Short Single Lead ECG Recording” database [19,22]. The repeated
structuring and learning procedure has to be considered as a general method to construct ANNs
and not in association with a specific clinical application. The used innovative repeated structuring
and learning procedure [21] is indeed particularly suitable for applications of neural networks to
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relatively small databases (and not only to big data, as is usually done) since improving the loss
function by iteratively alternating structuring and learning phases during the training (activation
functions are standard).

RSL_ANN was fed with a set of 19 input features automatically extracted from ECGs (Table 1).
By considering the three criteria for AF diagnosis, the features set includes standard morphological
features of ECG waves (to reflect possible P-wave disappearance) as well as ECG features that typically
characterize AF, that are F-waves features (to reflect possible F-waves appearance) and HRV features
(to reflect possible HRV increment). Statistical analysis of feature distributions (Table 3) confirmed the
known clinical observations that, in AF, the P wave disappears, F waves appear and HRV increases.
P-wave disappearance and F-waves appearance are indicated by the finding that AP values are
significantly higher in the non-AF class than the AF class. AP values in the AF class are not 0 (as one
would expect in the absence of the P wave) because of representing F-waves amplitude and not the
P -wave amplitude (see Section 2.2). F-waves appearance in AF is also indicated by the fact that all
FWFR features were significantly higher in the AF class than in the non-AF class. Finally, the HRV
increment in AF is indicated by the fact that all HRV features were significantly higher in the AF class
than in the non-AF class. These findings, together with the observation that only two morphological
and not AF-specific features out of 19 (both related to the QRS complex) were not significantly different
in AF vs. non-AF classes (Table 3), confirm the reliability of the automatic feature extraction and the
appropriateness of the feature selection.

RSL_ANN output is the ECG classification score, that is a value between 0 (indicating a subject not
affected by AF) and 1 (indicating a subject affected by AF). No further stratification for cardiac rhythms
other than AF was provided for the non-AF cases since optimal identification of a specific cardiac rhythm
or pathology requires a specifically designed artificial neural network and proper selection of input
ECG features (for example, in [21,32] optimal artificial neural networks for identification of heart failure
in post-infarction patients and of ischemia in patients who underwent elective percutaneous coronary
intervention are proposed, both obtained using the repeated structuring and learning procedure and a
different set of 13 input ECG features).

As said, use of ECG features instead of raw data (as sometimes done when using long short-term
memory, 1D convolutional neural network and others [11,15,16,33,34]) at the input of RSL_ANN
implies adding an ECG processing step for feature extraction before classification; however, it also
allows the construction of a faster and simpler artificial neural network, since based on a reduced
number of hidden layers, through a smaller training dataset. In addition, since each feature, if well
selected, reflects a specific physiologic phenomenon, classification logic of a network is physiologically
more understandable than when it is based on raw data, and this is very much appreciated in context
in which interpretability of the model is desirable.

RSL_ANN was constructed and tested on the “AF Classification from a Short Single Lead ECG
Recording” database [19] by Physionet [22]; this database was selected for several reasons. First,
it contains more than 8000 short single-lead ECG recordings and thus represents a suitable database for
the design of a tool based on artificial neural networks. Additionally, these ECGs were acquired using
the KARDIA [19], which is a portable device by AliveCor, in healthy subjects and patients showing
several types of cardiac rhythm besides AF. These characteristics of the database allowed us to test the
proposed algorithm in relation to the two main confounders in automatic AF identification, which are
the level of noise affecting ECGs acquired using portable devices and the presence of arrhythmias other
than AF.

Less than 3% of the ECGs included in the database could not be used in this study due to high
levels of noise that jeopardized R-peak detection, and thus not for issues related to feature extraction
or RSL_ANN construction. Nevertheless, all the observations that can be done on RSL_ANN ability
to identify AF hold for ECGs affected by various levels of noise but in which the signal is dominant
with respect to noise. Reliability of RSL_ANN in very noisy conditions remains to be demonstrated
and requires availability of an R-peak detector able to perform correctly in such adverse conditions.
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Performance of RSL_ANN was very good and very similar in all datasets, with AUC over 90%.
This result confirms the ability of RSL_ANN to correctly generalize the problem of AF identification.
We made the choice to express RSL_ANN performance in terms of AUC in order to optimize Se
and Sp (and thus working points in ROC and the threshold value of an output neuron) according to
applications. When RSL_ANN is applied to a subject with no history of AF, errors in AF and non-AF
classifications should be equally probable. Consequently, the threshold should be chosen to have equal
values of Se and Sp. This case corresponds to Case 1, in which Se and Sp are 81.2% in the testing
dataset. Instead, if RSL_ANN is applied to a subject with history of AF, AF occurrence is more likely
and errors in AF identification should be minimized with respect to errors in non-AF identifications.
Consequently, the threshold should be chosen to have the maximum Se obtainable by setting Sp at its
minimum acceptable value. This case corresponds to Case 2 in which a Se of 88.7% is obtained by
setting Sp at 75.0%.

Comparison of our RSL_ANN performance against that of other studies in the literature is not
a straightforward task due to the many differences among them. Firstly, some studies used data
acquired with traditional ECG recorders [11–16,18] and some others with portable devices [5–10,17].
Recorded signals included ECGs [11–18] but also photoplethysmograms [5–10]. Moreover, some studies
performed intra-subject AF episodes identification within an ECG [11,15,18], others identified ECGs
with at least one AF episode among patients [5–10,12–14,16,17]. Only a few studies took into account
the main AF confounders, which are other abnormal rhythms [12,16–18] or noises [10,16]. All studies
relied on their own selected features; most studies considered features related to HRV [5–10,13,14,18],
few studies also included features related to ECG morphology [12,17], and no study but ours
considered features related to Fwaves. Some studies directly considered ECG time-sequences (instead
of features) as classifier input [11,15,16]. Different types of classifiers were proposed, among which the
standard statistical comparison [5–9], the support vector machine [10,14,17], the convolutional neural
network [11,15], the ANN [12,18], the XGBoost classifier [13], the modified Elman neural network [15]
and the hierarchical extreme learning machine [16]. Finally, most studies reported only values of Se and
Sp (higher than 90%) [5–7,9–16]; few of them also reported values of AUC [5,13]. Despite the several
observed differences among studies, an attempted qualitative comparison is reported in Table 4.

Our RSL_ANN uses the highest number of data acquired by a portable device, considers all main
confounders in AF identification and uses all AF diagnosis features. Some studies report values of Se
(>90%) or AUC (>90%) higher than ours but involved discrimination of clinical ECGs (acquired with
medical machines such as electrocardiograph or Holter ECG) [11–16,18] showing AF rhythm from
clinical ECGs showing normal sinus rhythm only [5–11,13–15]. These working conditions are much
easier than those considered in this study, in which ECGs were acquired by a portable device and
discrimination of AF rhythms is not only from normal sinus rhythm but also from other arrhythmias.
One work [17] created a classifier able to detect AF using the same database of our paper and obtained
values of Se and Sp equal to 77.5% and 97.9%, respectively; thus, differently from us, it made the choice
to optimize Sp over Se. In any event, we believe that the ROC curve should always be provided since
the choice of a threshold is for the specialists in medical decision making. Finally, some proceedings
from Computing in Cardiology 2017 used the same database as training dataset, but then validated
their methods in another dataset, which however is not open-source available. Considering this
discrepancy, a comparison between these studies and our work would be biased.

Eventually, reliable identification of AF in ECG acquired by portable or wearable devices is
important for large scale preventive screening among the entire worldwide population [35]. In this
context, our RSL_ANN represents a reliable software application to be associated to one of them to
contrast the socio-economic repercussions related to AF due to its usual late diagnosis. Future studies
are needed to definitely validate the use of the RSL_ANN for large scale AF screening.
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Table 4. Comparison between our work and the literature.

Reference Data acquisition Confounders Input Classifier AUC Se Sp

[5] Portable devices (iPhone 4S);
120 PPGs Not considered HRV features Statistical

comparison 93.1 95.0 95.0

[6] Portable devices; 242 PPGs Not considered HRV features Statistical
comparison Not reported 98.0 88.0

[7] Portable devices (iPhone); 97 PPGs Not considered HRV features Statistical
comparison Not reported 93.1 90.1

[8] Portable devices (iPhone); 88 PPGs Not considered HRV features Statistical
comparison Not reported 66.6 78.9

[9] Portable devices (iPhone 4S); 25 PPGs Not considered HRV features Statistical
comparison Not reported 97.6 99.6

[10] Portable devices (Sony Xperia); 16
PPGs Noise HRV features SVM Not reported 93.8 100

[11] Holter ECG recorders; 139 ECGs Not considered ECG time sequence CNN Not reported 99.2 98.7

[12] ECG recorders; 2363 ECGs Other abnormal
rhythms

Morphological and HRV
features ANN Not reported 89.9 92.8

[13] Holter ECG recorders; 1656 ECGs Not considered HRV features XGB 98.9 98.4 99.5

[14] Atrial ECG recorder; 113 ECGs Not considered HRV features SVM Not reported 99.9 96.6

[15] Holter ECG recorders; 23 ECGs Not considered ECG time sequence CNN + MENN Not reported 97.9 97.1

[16] ECG recorders; 47 ECGs Other abnormal
rhythms ECG time sequence HELM Not reported 98.77 100

[17] Portable Devices (KARDIA by
AliveCor); 8244 ECGs

Other abnormal
rhythms and noise

Morphological and HRV
features SVM Not reported 77.5 97.9

[18] ECG recorders; 12 ECGs Other abnormal
rhythms HRV features ANN Not reported 84.9 75.4

This work Portable Devices (KARDIA by
AliveCor); 8244 ECGs

Other abnormal
rhythms and noise

Morphological, F-waves
and HRV features ANN 90.8 Case1: 81.2

Case2: 88.7
Case1: 81.2
Case2: 75.0

ANN: artificial neural network; AUC: area under the curve; CNN: convolutional neural network; ECG: electrocardiogram; HELM: hierarchical extreme learning machine; HRV: heart-rate
variability; MENN: modified Elman neural network; PPG: photoplethysmogram; Se: sensitivity; Sp: specificity; SVM: support vector machine; XGB: XGBoost classifier.
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5. Conclusions

Our proposed supervised fully connected artificial neural network created using the repeated
structuring and learning procedure was able to reliably identify atrial fibrillation from the data acquired
with the portable KARDIA device by AliveCor available in the Physionet “AF Classification from a
Short Single Lead ECG Recording” database. Thus, our proposed artificial neural network represents a
promising tool for a reliable identification of atrial fibrillation from ECGs acquired by portable devices,
even when affected by other abnormal rhythms and corrupted by noise.
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