
sensors

Article

Secure Communications for Resource-Constrained
IoT Devices †

Abd-Elhamid M. Taha 1,* , Abdulmonem M. Rashwan 2 and Hossam S. Hassanein 2

1 Electric Engineering Department, Alfaisal University, PO Box 50927, Riyadh 11533, Saudi Arabia
2 School of Computing, Queen’s University, Kingston, ON K7L 2N6, Canada;

arashwan@cs.queensu.ca (A.M.R.); hossam@cs.queensu.ca (H.S.H.)
* Correspondence: ataha@alfaisal.edu; Tel.: +966-11-215-7757
† This manuscript is the extension of the conference paper: Rashwan, A. M.; Taha, A.-E. M.; Hassanein, H.S.

Using Aiders for Securing Communications of Resource-Challenged Mobile Devices. In Proceedings of the
IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019.

Received: 22 May 2020; Accepted: 24 June 2020; Published: 29 June 2020
����������
�������

Abstract: The importance of securing communications on the Internet of Things (IoT) cannot be
overstated. This is especially the case in light of the increasing proliferation of IoT devices and
instances, as well as the growing dependence on their usage. Meanwhile, there have recently been
mounting concerns over a wide array of vulnerabilities in IoT communications. The objective of this
work is to address constraints in IoT devices that are “resource-constrained”, which are devices that
are limited in terms of computing, energy, communication, or range capabilities, whether in terms of
nominal or temporal limitations. Specifically, we propose a framework for resource-aiding constrained
devices to facilitate secure communication. Without loss of generalization, the framework’s viability
is illustrated by focusing on a group of security functions that utilize message authentication codes,
which is a strongly representative example of resource-intensive security functions. Aspects of the
framework are further demonstrated in processing cores commonly used in commercial IoT devices.

Keywords: IoT Security; resource-aiding; resource-lending; mobile computing security;
next-generation Internet security

1. Introduction

The Internet has long outgrown being a convenient mode of communication. Beyond its importance
for myriad financial and social interactions, the Internet plays an increasingly critical role across
a wide range of applications including content distribution, distributed (and/or) cloud computing,
softwarization/virtualization, decentralized ledgering, and sensing and actuation. In response to these
and other applications, the requirements for reliable and scalable performances have substantially
evolved, along with an inevitable emphasis on communication security [1].

In the context of the Internet of Things (IoT), a “Thing” can be a sensor node or an actuation
module. The communication mode for such physical things is often characterized as being machine type
communication (MTC), with direct (non-centralized) interaction sometimes labeled as device-to-device
(D2D) communication. A “Thing” can also be a software instance, whether logical or virtualized, e.g.,
a mobile agent, a crawler, or even a basic thread. Such heterogeneity in definition further necessitates
the need for reliable and scalable performance. More critically, however, it challenges the realization of
secure IoT communication [2,3].

Things vary in both their nominal and operational resources, i.e., resource availability or
accessibility during the time. Furthermore, this heterogeneity is further complicated by aspects such as
hardware design, firmware design, firmware updates, communication protocols, and communications
capability. Application considerations such as mobility and traffic patterns can also vary [4,5].

Sensors 2020, 20, 3637; doi:10.3390/s20133637 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5460-2248
http://dx.doi.org/10.3390/s20133637
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/13/3637?type=check_update&version=2

Sensors 2020, 20, 3637 2 of 18

1.1. Motivation

Various innovations have been made to realize adaptive secure communication. These innovations,
however, do not apply to all device types. For example, devices such as sensors or Radio-Frequncy
Identification (RFID) tags may not have suitable computational resources to handle adaptive
implementation or to integrate a group of security measures that can meet enough security levels for
communication purposes. Meanwhile, even with adaptability, basic asymmetry in the availability of
security functions at the ends may render any secure communication unachievable. The same outcome
is unavoidable if security functions at the ends are not supported by the intermediate network.

Measures are therefore needed in which resource-constrained IoT devices can overcome their
inherent limitations. One manner in which this can be achieved is through collaborative security, e.g.,
two or more devices of similar capabilities with distributed functions of interest among themselves,
including security functionalities. This “distribution” or “federation”, however, is subject to the nature
of the intended functions and the degree to which they lend themselves to decentralization. Meanwhile,
such solutions invariably burden the already resource-constrained nodes with further processing and
communication overhead that impacts their overall lifespan.

A preferable alternative to decentralized shared functions is by engaging a proxy to security
functionality. In such a setting, the resource-constrained device would seek aide from a more capable
device (aider). Such aiding can be either physical (i.e., a tangible and dedicated device) or logical (i.e.,
a service provided through a near-access-level interface). As will be discussed in Section 2, while
various forms of aiding have been discussed in the context of security, none of the aiding forms is
sufficiently adaptive or comprehensive to address IoT’s heterogeneity or scale requirements.

The objective of this work is to address this void. Specifically, we introduce the architectural
concepts of a general-purpose framework for secure communications by resource-constrained IoT
devices and instances. Toward this, we employ notions of resource-aiding that accommodate a wide
range of heterogeneities in IoT. The use of such notions is motivated by the increasing computing
and communications capabilities of supporting devices, as well as by the viability of support modes
previously inaccessible (e.g., edge- and cloud-computing).

1.2. Contributions

In prior work [6], we described the architectural considerations for resource-aided security in
IoT. This work is expanded on here by proposing the architecture, offering more extensive modeling,
and providing a thorough performance evaluation. Specifically, our contributions to this work are as
follows:

• We directly and holistically address the void of securing heterogeneous, resource-constrained
IoT devices;

• We introduce a novel adaptive framework to secure communications in resource-constrained
IoT devices;

• The framework is general-purpose and accommodates the heterogeneity of devices and instances
in IoT, and that of network support to security functions; and

• Viability of implementation is demonstrated through an evaluation based on commonly available
processing cores.

1.3. Paper Organization

The remainder of this paper is organized as follows. Section 2 briefly covers the past efforts in
security aiding and possible design characteristics for having an aiding approach to complement a
communication entrustment framework. It also outlines different resource-aiding approaches that
can be used in helping to secure next-generation network communications. Section 3 introduces the
proposed general-purpose framework for securing resource-constrained IoT devices. In doing so,
it motivates its requirements and highlights the framework’s main elements. Section 4 focuses on the

Sensors 2020, 20, 3637 3 of 18

evaluation of the resource-lending aiding approach as an integral part of the discussed resource-aiding
framework. As a way of demonstration, the evaluation focuses on the use of algorithms processing
message authentication codes, which are representative of the resource-intensive function for which
resource-constrained devices may require support. Additional open issues are discussed in Section 5.
A summary of the paper with possibilities of future work are provided in Section 6.

2. A Review of Resource-Aiding Modes

In this section, we discuss resource-aiding modes (or possibilities) that can be utilized in a secure
communication framework. Before doing so, however, we provide a review of the relevant literature.

Existing security solutions are characteristically resource-intensive, especially those relying on
cryptographic measures. This characteristic imposes a significant load on computational resources
of the communicating entities, in turn leading to noticeable performance degradation for secured
communications. This has motivated recent research and commercial efforts to provide resource-aiding
solutions that offer prompt and efficient resource-availability to secure device communications.

Examples of these efforts include secure sockets layer/transport layer security (SSL/TLS)
acceleration [7], application delivery controllers (ADCs) [8], hardware-accelerated cryptography [9,10],
and the security as a service (SECaaS) model [11,12]. Many of these solutions have proven to be
effective in their targeted areas in providing enhanced and secured communications. However, most of
these solutions were designed with technology-specific insights and with little consideration for the
possibility of inter-communications between networks of different technologies and infrastructures.

Research in the IoT and other areas (e.g., information-centric Networks (ICNs)) have shown
considerable advances in the development of mobile and location-independent entities [13]. Similarly,
advances in the areas of software-defined radios (SDR) [14], software-defined networks (SDNs) [15],
and SDN protocols, such as OpenFlow [16], have facilitated flexible and cost-effective development and
productions process of a wide array of devices, as well as their supporting access and core networks.
Such advances, however, introduced complexities in managing secure communications, especially
for the exponentially increasing number of devices in IoT [5]. They also challenge the capabilities of
existing security frameworks.

There is an evident increasing demand in realizing a generalized, high-level network abstraction
that facilitates inter-device communications while allowing for a wide variety of resource capabilities.
This demand can be observed, for example, in the introduction of protocols and standards for ICN and
IoT based on older technologies that are used in existing Internet infrastructure. Examples of the new
standards include HTTP/2 [17], constrained application protocol (CoAP) [18], which is based on the
representational state transfer (REST) model used by older standards such as HTTP, and the reliance of
some proposed content delivery protocols for ICN to deliver content via an existing protocol such as
HTTP and RTP/RTCP [19].

There are two specific heterogeneities characteristic of future communications: entity and
infrastructure heterogeneity. For entity heterogeneity, we note that future entities may include all
identifiable and communicable objects (e.g., web services, a sensor, a self-publishing content, a mobile
device). Normally, those entities have various characteristics and communication protocols and cannot
communicate without a mediator layer or device. Meanwhile, certain entities may not have their own
physical resources and will require a physical host from where they can communicate (e.g., virtualized
instances) [20].

As for infrastructure heterogeneity, communicating entities may have similar processing
capabilities and use the same software-level communication protocols. However, the underlying
physical infrastructure of such devices may be different [21] (e.g., one end may rely on IPv6 while
the other on 6LoWPAN) [22]. To ensure seamless communication between entities of different
infrastructures, communication mediators must be incorporated within the required physical interfaces
to allow inter-communication between the involved infrastructures.

Sensors 2020, 20, 3637 4 of 18

This work is concerned with generating a high-level abstraction with an emphasis on
resource-aiding. This facilitates accommodating device heterogeneity in terms of resources. In the
following sections, we review possible security resource-aiding modes. We also identify the key factors
involved in the design and implementation of an adaptive security resource-aiding platform.

2.1. Security Gateways

Security gateways are dedicated entities equipped with multiple interfaces that provide
secured communication-relay services between entities and networks of different characteristics and
requirements [23]. Examples include virtual private network (VPN) gateways, firewalls, HTTP/TLS/SSL
proxies, and IoT/ICN network gateways. Such gateways typically provide three common services:
address translation, interface translation, and enhanced services.

(1) Address translation: In some address-limited networks, such as private IP networks, entities are
considered internal and cannot be addressed directly from outside. Gateways act as address
translators that help in relaying communication between internal entities and external networks.

(2) Interface translation: Specialized networks such as IoT or cellular usually have different low-level
communication protocols than IP networks. Gateways in such networks have protocol translation
engines, allowing seamless and abstracted communication between applications from different
network technologies. Such interferences thus lessen the need to interface or application redesign.

(3) Enhanced aervices: Service providers and communication entities may demand certain security
level requirements, e.g., having a minimum-security strength or a digital signature. They may also
have requirements for communication performance levels, e.g., a minimum latency. Gateways
usually apply enhanced services through revising and applying security measures to the
information relayed between entities to meet the security and performance demands. The revision
procedure can take one of two forms: either changing the relayed messages themselves on behalf
of the sending entities or and offering post-receiving services. Verification of the received data is
an example of the latter.

There are two key advantages to using gateways as communication security aiders. First,
they provide privacy and security through filtering malicious messages, limiting inbound access,
and unmasking the true identities of communicating entities. Secondly, they use gateways aids
scalability and applicability. Specifically, gateways can be designed to be scalable in terms of the
services offered and the type of networks serviced. They can also eliminate the need to redesign
communicating entities from networks utilizing different technologies.

Such advantages have made security gateways a popular security aiding approach in the industry,
especially as they facilitate secure inter-entity communications while avoiding the need for major
infrastructure and/or entity overhaul. Despite this, however, security gateways have limitations.
The use of security gateways, for example, does not allow the communicating entities any control over
how their messages can be altered as they pass through the gateways. A vulnerable gateway also
results in vulnerable communication for the entity.

The design complexity of a security gateway is also a potential drawback, especially with the
existence of various network technologies to translate between, and in the absence of a high-level
application communication protocol. Gateways are also commonly designed with translation interfaces
that target the specific networks they interconnect, e.g., LoRa and IP networks. Introducing redundancy
in the gateway design may also unviable as serviced networks may not offer support for multiple
interfacing or entity migration. Only one coordinator per network, for instance, is supported in ZigBee
(IEEE 802. 15. 4) network.

2.2. Resource-Lending (or Offloading) Engines

Resource-lending or offloading enables a communicating entity to access and utilize the resource(s)
of an external entity to process messages or computations [24]. While gateway processes deliver on

Sensors 2020, 20, 3637 5 of 18

behalf of the communicating entity, a resource-lending gateway returns the processed message to the
entity so that the latter can proceed with the transmission.

There are three classes of resource-lending engines that depend largely on how the interaction is
managed between the engine and the communicating entity. These classes are illustrated in Figure 1
and can be described as follows.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 19

Resource-lending or offloading enables a communicating entity to access and utilize the
resource(s) of an external entity to process messages or computations [24]. While gateway processes
deliver on behalf of the communicating entity, a resource-lending gateway returns the processed
message to the entity so that the latter can proceed with the transmission.

There are three classes of resource-lending engines that depend largely on how the interaction
is managed between the engine and the communicating entity. These classes are illustrated in Figure
1 and can be described as follows.

Figure 1. Different classes of resource-lending setups.

(1) Internal lending engines: Also known as hardware accelerators, internal lending engines are a
type of coprocessing hardware integrated into entities to aid in the efficient handling of complex
operations such as processing graphics and cryptography [25]. Existing implementation
examples include cryptographic coprocessors [9] and Transmission Control Protocol (TCP)
accelerators [26].
 Since hardware accelerations are integrated within their serving entities and are usually
protected from external direct access, they are not subject to the same message communication
threat that exists with non-secured gateways. However, hardware accelerators can be
compromised if their hosting entities are compromised, a vulnerability usually made possible
through an exploit that allows direct unrestricted access to the entity’s memory and input/output
(I/O).
 Hardware accelerators are an alternative to software-only solutions as they provide a cost-
effective energy-efficient means of high-performance computing for complex specialized tasks.
However, they still demand energy from their hosting entities especially if the accelerator is used
for general-purpose computations, e.g., graphics processors [27]. Moreover, resource-
constrained entities, such as battery-operated sensors, may choose not to integrate complex
security hardware accelerators due to cost and energy constraints. This leaves such entities with
limited and less-scalable security services when compared to the use of external aiding
approaches such as gateways and external offload engines.

(2) External lending engines: Like gateways, external lending engines are also specialized
communicating entities that provide communication services. They differ from gateways in that
they work like the internal hardware accelerators. They are therefore logically separate from
their serviced communicating entities and do not forward communications on behalf of their
serviced entities.
 External lending engines and gateways share the advantage of achieving scalable and
flexible setup. However, each approach has a disadvantage. Gateways take message processing
control away from communicating entities. If a gateway is compromised, then any passed

In
te
rn
et

External Resource-Lending Engine

Internal Resource-Lending Engine

Hosting Engine for Virtual Entity/Content

Figure 1. Different classes of resource-lending setups.

(1) Internal lending engines: Also known as hardware accelerators, internal lending engines are
a type of coprocessing hardware integrated into entities to aid in the efficient handling of complex
operations such as processing graphics and cryptography [25]. Existing implementation examples
include cryptographic coprocessors [9] and Transmission Control Protocol (TCP) accelerators [26].

Since hardware accelerations are integrated within their serving entities and are usually protected
from external direct access, they are not subject to the same message communication threat that exists
with non-secured gateways. However, hardware accelerators can be compromised if their hosting
entities are compromised, a vulnerability usually made possible through an exploit that allows direct
unrestricted access to the entity’s memory and input/output (I/O).

Hardware accelerators are an alternative to software-only solutions as they provide a cost-effective
energy-efficient means of high-performance computing for complex specialized tasks. However,
they still demand energy from their hosting entities especially if the accelerator is used for
general-purpose computations, e.g., graphics processors [27]. Moreover, resource-constrained entities,
such as battery-operated sensors, may choose not to integrate complex security hardware accelerators
due to cost and energy constraints. This leaves such entities with limited and less-scalable security
services when compared to the use of external aiding approaches such as gateways and external
offload engines.

(2) External lending engines: Like gateways, external lending engines are also specialized
communicating entities that provide communication services. They differ from gateways in that they
work like the internal hardware accelerators. They are therefore logically separate from their serviced
communicating entities and do not forward communications on behalf of their serviced entities.

External lending engines and gateways share the advantage of achieving scalable and flexible
setup. However, each approach has a disadvantage. Gateways take message processing control away
from communicating entities. If a gateway is compromised, then any passed communications are
also compromised. With external lending engines, communicating entities have full control of their
messages and can switch or suspend using offload engines if they are found to be compromised.
Meanwhile, external lending engines do not have any control over how entities communicate with

Sensors 2020, 20, 3637 6 of 18

other ends, which leads to their inability to protect communicating entities from external attacks.
Besides, using external lending engines usually results in additional communication overhead for the
communicating entities due to the piggybacking of messages between the lending engine and the
serviced entity.

(3) Hosting engines: The next generation of virtual entities, such as multimedia content and
portable services, can be uniquely identifiable and mobile. They naturally cannot communicate,
however, without being hosted on a physical resource such as a content server or a virtual processing
server. In this view, a hosting engine is essentially a physical resource that accommodates virtual
entities and communicates on their behalf. Hosting engines are further responsible for providing
communication identification and security services for the hosted virtual entities. This is regardless of
whether they are affiliated with the hosted entities, e.g., as in the case of virtual networks and ICNs [28].

Since hosting engines aim for virtual entities, any capable physical communicating entity can act as a
hosting engine as opposed to having dedicated aiding approaches in the case of external lending engines
and gateways. This viability, however, imposes a challenge in implementing consistently secured
entity identification especially in the absence of standardized virtual communication identification.
In addition, all virtual entities share the strengths and weaknesses of their hosting engines. When a
host is compromised, all its hosted entities are also compromised. Network access control in such cases
can be challenging since there is the possibility of virtual entities migrating from their compromised
host to another.

2.3. Witness (or Guarantors)

A witness or guarantor mediates between a sender and receiver to monitor and validate exchanged
communication between the pair. The validation is performed in a non-involved manner [29]. In other
words, no processing or communication is delegated to the witnesses to be performed on behalf of the
communicating entities.

Scenarios, where witnesses are engaged, are ones where the communicating entities retain full
control of the session with the witness provides some level of security. The process requires setting up
additional channels (sender-witness, witness-receiver) over which the witness provides its service to
the endpoints.

For example, a witness can offer integrity measures if unavailable at the endpoints. Alternatively,
witnesses can authenticate either the communicating entities and/or their communication state. In such
instances, if the original session is rerouted by an attack, the witness can identify inconsistencies in
the original session, and communicate these inconsistencies to the sender. Further applications of
witnesses are illustrated in [30].

Notwithstanding, the general appeal of witnesses as aider is to provide the minimal (or
“better-than-nothing”) security support to resource-constrained entities. Such a solution can readily
be observed to be limited to specific applications. It can also be observed to introduce substantial
vulnerabilities if adopted in a generalized manner in IoT.

3. A Framework for Adaptive Secure Communications in IoT

This section introduces our adaptive secure communication framework. In doing so, we highlight
the design requirements needed to realize aiding for resource-constrained devices. Meanwhile, support
for heterogeneity is realized by allowing for different aiding possibilities. An overview is also provided
for the critical elements of aiding resource discovery, operation, and risk management.

3.1. Design Requirements

A successful framework for resource-aiding is inevitably dependent on three main aspects:
accommodating entity heterogeneity, secured access to entities, and establishing trustfulness of the
resource-aiding operation.

In what follows, we elaborate on each of these elements.

Sensors 2020, 20, 3637 7 of 18

(1) Accommodating entity heterogeneity: We take an expanded view of entity mobility,
accommodating both physical and virtual (logical) communications. This readily entails the need
for different services and their varying expectations. Since it is a challenge to have one design
that accommodates all, a prospective security resource-aiding framework should incorporate
modularity and abstraction within its design to allow for easy integration with various applications
and communication technologies. Any security resource-aider under such a framework should
be able to easily (and, where applicable, promptly) integrate modules for the services they
provide. Such aiders should further benefit from the secured standardized service announcement
interfacing that offers services and resource capabilities for the interested entities.

(2) Secured access to entities: A security resource-aider cannot provide services to the requesting
entities if the aider cannot gain access to the entities that it intends to serve. Restricted access can
be due to risk management actions, e.g., malware quarantining, or prevention measures, e.g.,
firewall access restrictions. For a prospective security resource-aiding framework to be successful,
access restrictions should be considered in its design. This means that the next-generation
of security resource-aiders may need to seek and obtain, if applicable, permission to operate
unrestrictedly within the networks they intend to serve. These aiders may also need to provide a
minimum level of security guarantees to be able to successfully obtain such permission. Therefore,
these aiders must be designed with measures to ensure protection from possible attacks and
uncontrolled tampering to their services and network access.

(3) Establishing trustfulness to the aiding operation: When an entity does not have enough
computational or energy resources to execute an intensive task, an external resource-aiding
service may be sought to help with that task. In many scenarios, the requesting entity may
entrust the task/information to an external aider lacking enough security measures to determine
if that aider is trustworthy or compromised/malicious. Any prospective security resource-aiding
framework proposal should consider incorporating tools for the communicating entities to
seek the trustfulness of their prospective resource-aiders. Such tools may include a trusted
third-party aiding certification, an authorized third-party blacklisting, or a community-based
reputation system.

By adhering to the design criteria and design directions, it is possible to achieve a scalable and
adaptive resource-aiding framework for communication security. The detailed design of such a
framework is not within the scope of this document and is left for future investigations.

3.2. Framework Overview

For the framework to be generally applicable, the type of resource-aiding applied (i.e.,
gateway, external lending engine, or hosting engine) should be appropriated to the nature of the
communicating entity.

• If the communicating entity is limited in its resource but requires communication with other
entities that are under a different infrastructure/network, aiding gateways can be applied;

• If the entities are unable (whether nominally or due to depleting resources) to handle processing
security functions, it can delegate the processing to external lending engines; and

• If the entity is virtual, a hosting engine can be used to handle communication and security service
on the entity’s behalf.

Note that in the latter case, the hosting engine can itself rely on gateways or resource-lending engine
for its resources, especially in cases where virtual entities are migrated between different networks.

The above considerations are illustrated in Figure 2. To achieve adaptive resource-aiding security
services, we propose that all aiders utilize a form of adaptive communication security strategy.
This flexibility maximizes the availability and efficiency of both communication security and resource
utilization. As an example, we focus on the next section on analyzing the performance of external
lending engines using an authentication-trim strategy.

Sensors 2020, 20, 3637 8 of 18

Sensors 2020, 20, x FOR PEER REVIEW 8 of 19

The above considerations are illustrated in Figure 2. To achieve adaptive resource-aiding
security services, we propose that all aiders utilize a form of adaptive communication security
strategy. This flexibility maximizes the availability and efficiency of both communication security
and resource utilization. As an example, we focus on the next section on analyzing the performance
of external lending engines using an authentication-trim strategy.

Figure 2. Overview of possibilities for secure communication within the framework.

3.3. Considerations for Service Discovery

For aiding-gateways, the network operator is expected to provide an updated list of fixed-
location resource-aiding-gateways, essentially eliminating the need to implement a dedicated
service/resource discovery mechanism. In the case of external-lending and hosting engines, however,
a form of service discovery is required.

To contain vulnerabilities, the introduction of a resource-aider into a network is expected to
proceed in a supervised manner that can be either centralized or distributed. Once introduced, the
resource-aider resources can be communicated to the entities within the network or discoverable via
a query, depending on the mode of service discovery applied.

If an entity requires additional resources to process a specific security service used in a
communication session, it seeks out available resource-aiders that are capable of processing such a
service. We believe that the discovery mechanism should be decentralized, i.e., using a peer-to-peer
(P2P) discovery protocol, but with some centralized oversight, i.e., using blacklisting/reviewing
services, like the election of aiders. Having a decentralized discovery can help efficiently maintain
the discovery process in real-time for scenarios where aiders have high mobility and/or the network
topology is continuously changing [31]. Meanwhile, in centralized discovery, it is up to the seeking
entity to filter the discovery result list of capable aiders based on the centralized trustfulness check.

A typical resource discovery would proceed as follows. Once a filtered list of capable and
available resource-aiders is populated (i.e., a resource-aiding pool), the communicating entity begins
by requesting service. This resource query can be made, for example, in a round-robin manner. If a
resource-aider responds to the request, the entity is linked to the aider until either the request is
fulfilled; the entity migrates, or the aiding resource becomes unavailable. In the case of the latter, the
entity may proceed to repeat the process. Through all, if the resource-aiding pool does not satisfy the
entity’s requirement, it may proceed to revise the requested resource or revoke the request.

3.4. Resource-Aiding Operation

When the communicating entity is linked to the aiding resource, the actions that follow are
straightforward, though naturally dependent on the nature of the aider. In the case of aiding gateway
or hosting engine, the entity prepares the message to be secured and passes it on to the gateway or
engine “as-is”. In turn, the gateway or engine engages the relevant security processes agreed upon,
then forwards the secured message to its destination. If the entity is linked to a resource-lending

Figure 2. Overview of possibilities for secure communication within the framework.

3.3. Considerations for Service Discovery

For aiding-gateways, the network operator is expected to provide an updated list of fixed-location
resource-aiding-gateways, essentially eliminating the need to implement a dedicated service/resource
discovery mechanism. In the case of external-lending and hosting engines, however, a form of service
discovery is required.

To contain vulnerabilities, the introduction of a resource-aider into a network is expected to
proceed in a supervised manner that can be either centralized or distributed. Once introduced,
the resource-aider resources can be communicated to the entities within the network or discoverable
via a query, depending on the mode of service discovery applied.

If an entity requires additional resources to process a specific security service used in a
communication session, it seeks out available resource-aiders that are capable of processing such a
service. We believe that the discovery mechanism should be decentralized, i.e., using a peer-to-peer
(P2P) discovery protocol, but with some centralized oversight, i.e., using blacklisting/reviewing services,
like the election of aiders. Having a decentralized discovery can help efficiently maintain the discovery
process in real-time for scenarios where aiders have high mobility and/or the network topology is
continuously changing [31]. Meanwhile, in centralized discovery, it is up to the seeking entity to filter
the discovery result list of capable aiders based on the centralized trustfulness check.

A typical resource discovery would proceed as follows. Once a filtered list of capable and
available resource-aiders is populated (i.e., a resource-aiding pool), the communicating entity begins
by requesting service. This resource query can be made, for example, in a round-robin manner. If
a resource-aider responds to the request, the entity is linked to the aider until either the request is
fulfilled; the entity migrates, or the aiding resource becomes unavailable. In the case of the latter,
the entity may proceed to repeat the process. Through all, if the resource-aiding pool does not satisfy
the entity’s requirement, it may proceed to revise the requested resource or revoke the request.

3.4. Resource-Aiding Operation

When the communicating entity is linked to the aiding resource, the actions that follow are
straightforward, though naturally dependent on the nature of the aider. In the case of aiding gateway
or hosting engine, the entity prepares the message to be secured and passes it on to the gateway or
engine “as-is”. In turn, the gateway or engine engages the relevant security processes agreed upon,
then forwards the secured message to its destination. If the entity is linked to a resource-lending
engine, the engine “envelopes” the entity’s message, then pass it back to the entity for transmission.
The two cases are respectively illustrated in Figures 3 and 4.

Sensors 2020, 20, 3637 9 of 18

Sensors 2020, 20, x FOR PEER REVIEW 9 of 19

engine, the engine “envelopes” the entity’s message, then pass it back to the entity for transmission.
The two cases are respectively illustrated in Figures 3 and 4.

Figure 3. Overview of secure resource-aiding operation in the case of aiding gateway or hosting
engines. In the case of the latter, the communicating entity would be within the hosting engine.

Figure 4. Overview of secure resource-aiding operation in the case of a resource-lending engine.

It should be noted that the above does not assume a dependence on a single aider on either the
sender or the destination part. For example, a virtual content entity with high access demand may
need additional hosting engines to decrease the load on the originating host. Yet, another example
would be when a requesting entity needs different services for different communication sessions
based on the requirements and limitations of each session.

3.5. Managing Resource-Aiding Vulnerabilities

Resource-Lending
Engine

Communicating
Entity

Entity linked
to aider

Prepare message
to be secured

Link to another aider
Service

available
at aider?

Send prepared
message to aider for

processing

Aider processing
entity message

Obtain security
service results from

aider

Send secured
message to
destination

No

Yes

Figure 3. Overview of secure resource-aiding operation in the case of aiding gateway or hosting
engines. In the case of the latter, the communicating entity would be within the hosting engine.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 19

engine, the engine “envelopes” the entity’s message, then pass it back to the entity for transmission.
The two cases are respectively illustrated in Figures 3 and 4.

Figure 3. Overview of secure resource-aiding operation in the case of aiding gateway or hosting
engines. In the case of the latter, the communicating entity would be within the hosting engine.

Figure 4. Overview of secure resource-aiding operation in the case of a resource-lending engine.

It should be noted that the above does not assume a dependence on a single aider on either the
sender or the destination part. For example, a virtual content entity with high access demand may
need additional hosting engines to decrease the load on the originating host. Yet, another example
would be when a requesting entity needs different services for different communication sessions
based on the requirements and limitations of each session.

3.5. Managing Resource-Aiding Vulnerabilities

Resource-Lending
Engine

Communicating
Entity

Entity linked
to aider

Prepare message
to be secured

Link to another aider
Service

available
at aider?

Send prepared
message to aider for

processing

Aider processing
entity message

Obtain security
service results from

aider

Send secured
message to
destination

No

Yes

Figure 4. Overview of secure resource-aiding operation in the case of a resource-lending engine.

It should be noted that the above does not assume a dependence on a single aider on either the
sender or the destination part. For example, a virtual content entity with high access demand may
need additional hosting engines to decrease the load on the originating host. Yet, another example
would be when a requesting entity needs different services for different communication sessions based
on the requirements and limitations of each session.

Sensors 2020, 20, 3637 10 of 18

3.5. Managing Resource-Aiding Vulnerabilities

Entrusting foreign entities with information does not come without risk. This is true for
all intermediate communication nodes in the network including gateways, router, and firewalls.
However, since resource-aiders can be offered by both network operators and communities, the risk
can be even higher. This is largely due to the difficulty of access-control in a distributed manner
(or community-provided, federated, etc.), especially when in a network with dynamic topology due
to mobility.

Therefore, to mitigate the potential risks of resource-aiding, communicating entities need to adopt
certain measures, including:

• Limit the use of aiders by employing a risk-load tradeoff. Where the entity can secure its message
in a resource-effective manner, it should not rely on aiders.

• Similarly, a risk-need tradeoff should be observed, whereby only the messages that require security
are passed on the aider.

• Communication with the aider, and their selection, should both be conducted securely.
• The choice of aiders should be temporally varied.
• Where applicable, multiple aiders can be used for the same communication.
• For control information (i.e., processing instructions), the only necessary information should

be relayed.

4. Performance Evaluation

In this section, we review the performance characteristics of resource-aiding approaches that can
be utilized in our proposed adaptive communication security resource-aiding framework. We focus on
evaluating a set of security functions, namely message authentication codes (MAC), that are used to
ensure communication data integrity between entities. This choice is for demonstration and does not
impact the general applicability of the framework. Meanwhile, the framework can easily be extended
to other security measures with processing or latency considerations, i.e., requires the use of aiders.

4.1. Performance Criteria

In this study, we assume that the resource-aiders are processing MAC tags for the requesting
entities using an authentication-trim adaptive strategy. Therefore, the metrics involved are:

• Total throughput. The data rate for the transmitted messages including the size of the attached
MAC tags (in MB/s).

• Useful throughput. The data rate for the transmitted messages excluding the size of the attached
MAC tags (in MB/s).

• Message latency. The latency of sending 1 byte to the aider for MAC processing.

4.2. Considerations for Evaluation

Without loss of generality, no considerations are made for keying demands or negotiations.
Considerations for such granular aspects are discussed in Section 5 and will be investigated in future
work. Meanwhile, the resource-aiding scenarios examined to facilitate the performance evaluation
from the sending entity perspective.

Gateway and hosting engines different from lending engines in the manner in which they aid
entities and may thus exhibit different profiles for processing overhead. Despite this, however,
we believe that they have comparable performance characteristics. Studying the performance
heterogeneity between the gateways and hosting engine is beyond the scope of this paper but will be
considered in future work.

Sensors 2020, 20, 3637 11 of 18

4.3. Evaluation Environment and Scenarios

The environment is designed to ensure that the operating system imposes minimum influence
upon it. All experiments in this study were conducted under the Linux operating system environment
(Ubuntu 12. 04 LTS). The chosen operating system running in Gnome desktop mode uses the
“Completely Fair” scheduler for scheduling its processes.

A well-known cryptographic library Crypto++ (v.5.6.2) is used for this study as the provider
for the evaluated MAC functions. This selection was motivated by the library’s popularity among
academia for studying cryptographic performance and cryptanalysis [32]. It is also open-source
and has cross-platform compatibility, making it suitable to run under various operating systems
and computer architectures. Furthermore, the library has both hardware-assisted and software-only
implementations for some functions such as AES (using x86 AES-NI extension) and SHA-256/512
(using x86 SSE-2 extension), making it a good option to test the effect of different implementations
utilizing the same hardware.

To further understand resource utilization and message latency impact on aiding performance,
we impose a basic adaptive control for handling authentication functions which we call the
authentication-trim strategy. Specifically, the strategy works on switching between powerful
authentication functions when computational resources are underutilized and weaker functions
when computational resources are over-utilized. To simplify analysis and inference, we focus on two
selected MAC functions for adaptation control: when the resources are underutilized, the stronger
(HMAC-SHA3-512) is invoked; when overutilized, the faster but weaker (HMAC- MD5) is invoked.

To ensure the confidence level of the obtained results, each experiment in this study was run
several times and could reach a steady-state before taking measurements. The communication sessions
in each experiment were averaged with a 10% trimmed-mean calculation to reduce the influence
of the environment context heterogeneity on unfairly affecting the throughput. Finally, an overall
throughput average was calculated for all experiments conducted in correlation to the number of
communication sessions.

Evaluation results were obtained for MAC functions running under the following architectures.

(1) x86-based (32-bit) laptops and tablets Intel Core I3 M350 (32-bit mode; Dual-core with SMT),
Intel Core I5 650 (32-bit mode; Dual-core with SMT), Intel Pentium 4 M 3. 0 GHz (Single-core with
SMT), Intel Atom D525 (Dual-core with SMT), and AMD Opteron 2354 (32-bit mode; Quad-core).

(2) x86-based (64-bit) laptops and tablets Intel Core I5 650 (64-bit mode; Dual-core with SMT).
(3) ARM-based (32-bit) smartphones and tablets Texas Instruments’ DM3730 ARM Cortex A8

(Single-core) and Texas Instruments’ OMAP 4460 ARM Dual-core Cortex A9 (Dual-core).

The above architectures are representative of both existing and future mobile systems in the
market. While newer processors continue to emerge, especially with some possessing more cores
and instruction extensions, operation optimization patterns and techniques did not exhibit significant
changes. For example, techniques such as core-parking, frequency-stepping, hardware multi-threading,
thermal throttling, etc., are still maintained. The following evaluations, therefore, still reflect and scale
the expected performance characteristics for emerging processors.

Finally, two scenarios were considered:

(1) Gateways/hosting engines: Where entities forward messages to be completely handled by their
aider or where entities are hosted by their aider. Both the gateway and the hosting engine are
acting as a regular entity for the authentication-trim strategy.

(2) External offload engine: Where entities send messages to their aider and then obtain the
corresponding MAC tags. We assume two control strategies. The first control strategy is in the
hands of the requesting entity; meaning that the requesting entity maintains the authentication-trim
adaptation control while obtaining the trim-tradeoff from the aider. The second control strategy
is that the aider has full control of the adaptation.

Sensors 2020, 20, 3637 12 of 18

4.4. Latency Overcoming Throughput

Figure 5 shows the total throughput of an aiding-gateway with message delivery at the rate
of 100ns/byte, 1000ns/byte, and 10000ns/byte, and with the hosting engine using the same physical
setup as a reference. All MAC tagging was processed with the strongest available MAC function
(HMAC-SHA3-512), indicating that both the host and the gateways computational resources were not
sufficiently utilized to trigger a security power down.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 19

4.4. Latency Overcoming Throughput

Figure 5 shows the total throughput of an aiding-gateway with message delivery at the rate of
100ns/byte, 1000ns/byte, and 10000ns/byte, and with the hosting engine using the same physical
setup as a reference. All MAC tagging was processed with the strongest available MAC function
(HMAC-SHA3-512), indicating that both the host and the gateways computational resources were
not sufficiently utilized to trigger a security power down.

It is critical to note here that while the measured value in Figure 5 and the following figures is
throughput, the objective is not to showcase throughput improvement by resource aiding. In Figure
5, for example, the throughput shown is per connection, and the decrease in throughput as latency
increases is directly attributed to underutilization, and not to switching load, i.e., the decreased
message arrival rate at the aider “frees” the processor time.

With this in mind, we can observe that as the message latency increases, the resource utilization
by the aider decreases rapidly and the total throughput becomes correlated more to the message
latency than to the resource demands of the MAC processing. This is most prominent in the case of
two connections, where the processor throughput “peaks” at around 100ns/byte, then begins to drop
as the message arrival rate becomes less than the processor service rate. For 10 and 20 connections,
this “peaking” can be observed at the 1000ns/byte and 10000 latency points, respectively.

Figure 5 also shows that when message latency is too small, especially with a lower number of
connections, the throughput slightly decreases. This reflects the aider’s processing resources being
over-utilized, which is a critical observation. Based on this, aider adaptation can be optimized not
only based on processor loading but also based on measured or expected message latency.

With the above in mind, we next proceed with examining the impact of aiding at both the
gateway and the communicating entity.

Figure 5. Impact of message latency on throughput at the aiding-gateway. (Tested on Texas
Instruments’ DM3730 ARM Cortex™ A8, 1.0 GHz).

4.5. Aiders Overcoming Message Latency

Figure 6 compares the impact of processing MAC functions at the resource lending aider (left,
top, and bottom) and the communicating entity (right, top, and bottom). Throughput is measured
against the number of communication sessions and using a single core. For both, a 100 Mbps
connection is used. For the aider, however, a message latency of 1000ns/byte is used. To isolate the
impact of any frequency optimization, the operating frequency was fixed at the highest, middle
(median), and lowest frequencies.

In light of the above, adaptation was limited to the aforementioned authentication-trim. The
result of the trim can be observed in the low frequency in the bottom two figures, where a higher
throughput was achieved due to switching to a lower (lighter) MAC scheme. Due to handling the
message exchange, the trim took place at four connections in the left figure, while taking place at six
connections in the right.

Figure 5. Impact of message latency on throughput at the aiding-gateway. (Tested on Texas Instruments’
DM3730 ARM Cortex™ A8, 1.0 GHz).

It is critical to note here that while the measured value in Figure 5 and the following figures is
throughput, the objective is not to showcase throughput improvement by resource aiding. In Figure 5,
for example, the throughput shown is per connection, and the decrease in throughput as latency
increases is directly attributed to underutilization, and not to switching load, i.e., the decreased message
arrival rate at the aider “frees” the processor time.

With this in mind, we can observe that as the message latency increases, the resource utilization by
the aider decreases rapidly and the total throughput becomes correlated more to the message latency
than to the resource demands of the MAC processing. This is most prominent in the case of two
connections, where the processor throughput “peaks” at around 100ns/byte, then begins to drop as
the message arrival rate becomes less than the processor service rate. For 10 and 20 connections, this
“peaking” can be observed at the 1000ns/byte and 10000 latency points, respectively.

Figure 5 also shows that when message latency is too small, especially with a lower number of
connections, the throughput slightly decreases. This reflects the aider’s processing resources being
over-utilized, which is a critical observation. Based on this, aider adaptation can be optimized not only
based on processor loading but also based on measured or expected message latency.

With the above in mind, we next proceed with examining the impact of aiding at both the gateway
and the communicating entity.

4.5. Aiders Overcoming Message Latency

Figure 6 compares the impact of processing MAC functions at the resource lending aider (left, top,
and bottom) and the communicating entity (right, top, and bottom). Throughput is measured against
the number of communication sessions and using a single core. For both, a 100 Mbps connection
is used. For the aider, however, a message latency of 1000ns/byte is used. To isolate the impact
of any frequency optimization, the operating frequency was fixed at the highest, middle (median),
and lowest frequencies.

Sensors 2020, 20, 3637 13 of 18

Sensors 2020, 20, x FOR PEER REVIEW 13 of 19

One aspect of authentication control placement can be appreciated in comparing the two figures
in Figure 6b. Here, the aider’s useful throughput (left) is less than when the authentication is
performed at the entity (right). This difference is to the message latency and overhead between the
aider and the entity, slowing down the performance at the aider, while directly handled at the entity,
i.e., without delays due to message exchange.

For Figure 6b, the “peaking” in the low-frequency performance is due to authentication trim,
allowing low-frequency processing to yield higher throughput whether at the aider or the entity, with
a higher throughput achieved shortly at the entity (in the range of 4–8 connections).

There are three conclusions to be drawn here. The first is that processing delegation naturally
impacts overall throughput. A decision mechanism is hence needed to decide when is it optimal to
seek the aider’s resources. Secondly, the aider’s involvement must take into account its overall
loading. Finally, the use of authentication trims at aiders carry may allow for overcoming throughput
losses due to latency and message exchange.

Figure 6. Performance of resource-aider vs. resource-equivalent entity running the authentication
trim strategy at different CPU frequencies.

4.6. Impact of Authentication Control Placement

In Figure 7, we compare two scenarios while monitoring the throughput at the aider. In the first
scenario (left, top, and bottom), the aider has full control of the adaptation decision based solely on
the MAC processing performance. In the second scenario (right, top, and bottom), the requesting
entity uses the message exchange latency with the aider’s trim-tradeoff to instruct the aider of the
adaptation decisions. Throughput is measured against the number of communication sessions and
using a single core. The message latency for the top and bottom pairs was respectively set at
1000ns/byte and 100ns/byte. As before, frequencies were fixed at high, middle, and low to isolate the
impact of any frequency optimization.

(a) Texas Instruments’ OMAP 4460 ARM Cortex™ A9 (1 Core) - (L eft: Aider, Right: Entity)

(b) Texas Instruments’ DM3730 ARM Cortex™ A8 - (L eft: Aider, Right: Entity)

 Figure 6. Performance of resource-aider vs. resource-equivalent entity running the authentication trim
strategy at different CPU frequencies.

In light of the above, adaptation was limited to the aforementioned authentication-trim. The result
of the trim can be observed in the low frequency in the bottom two figures, where a higher throughput
was achieved due to switching to a lower (lighter) MAC scheme. Due to handling the message
exchange, the trim took place at four connections in the left figure, while taking place at six connections
in the right.

One aspect of authentication control placement can be appreciated in comparing the two figures in
Figure 6b. Here, the aider’s useful throughput (left) is less than when the authentication is performed
at the entity (right). This difference is to the message latency and overhead between the aider and the
entity, slowing down the performance at the aider, while directly handled at the entity, i.e., without
delays due to message exchange.

For Figure 6b, the “peaking” in the low-frequency performance is due to authentication trim,
allowing low-frequency processing to yield higher throughput whether at the aider or the entity, with a
higher throughput achieved shortly at the entity (in the range of 4–8 connections).

There are three conclusions to be drawn here. The first is that processing delegation naturally
impacts overall throughput. A decision mechanism is hence needed to decide when is it optimal to
seek the aider’s resources. Secondly, the aider’s involvement must take into account its overall loading.
Finally, the use of authentication trims at aiders carry may allow for overcoming throughput losses
due to latency and message exchange.

4.6. Impact of Authentication Control Placement

In Figure 7, we compare two scenarios while monitoring the throughput at the aider. In the first
scenario (left, top, and bottom), the aider has full control of the adaptation decision based solely on the
MAC processing performance. In the second scenario (right, top, and bottom), the requesting entity
uses the message exchange latency with the aider’s trim-tradeoff to instruct the aider of the adaptation
decisions. Throughput is measured against the number of communication sessions and using a single
core. The message latency for the top and bottom pairs was respectively set at 1000ns/byte and

Sensors 2020, 20, 3637 14 of 18

100ns/byte. As before, frequencies were fixed at high, middle, and low to isolate the impact of any
frequency optimization.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 19

An elaboration is needed on the consequences of placing the control at the entity, i.e., right, top,
and bottom. To facilitate this, the aider would report its loading status to the entity which, in turn,
would respond with a suggested trim, i.e., choice of authentication, if needed. In this manner, the
processing of the authentication takes place at the aider, but the choice of the authentication happens
at the entity.

The peaking in Figure 7a (left) is due to loading and is similar to that observed in Figure 5, i.e.,
not due to the authentication-trim. The extended peaking and higher throughput observed in Figure
7a (right) is due to the availability made by latency in both messages and relaying the control signals,
with the fluctuation in the middle frequency at eight connections due to decision between tried
authentication trims.

To distinguish the impact of control placement from the trim, we can observe the throughput in
Figure 7b. In this figure, message latency is set at 100 ns/byte, i.e., higher arrival rate than that of
Figure 7a. In the left figure, we note that a lower authentication is selected at the low-frequency, hence
yielding a higher throughput. A similar observation can be made for low-frequency in Figure 7b,
right when the number of sessions is between 2 and 10. When the number of connections is 12 and
above, however, the middle frequency becomes more dominant. This change is largely due to the
aider managing two things in the presence of increased arrival rate, managing the trim, and the
processing the entity’s control.

Two aspects become apparent here. The first is that although aider autonomy reduces delay and
messaging overhead entity control, it remains desirable in instances where the entity needs to satisfy
an overall latency constraint. The second, which is more subtle, is the intricacy of establishing
performance when various optimizations are not directly controlled. Care should therefore be
exercised when deciding on performance figures when it comes to judging the applicability of an
aiding-based security measure.

Figure 7. Performance of resource-aider with local and requesting entity adaptation control with
varying CPU frequencies.

(a) Texas Instruments’ OMAP 4460 ARM Cortex™ A9 (1000ns/byte – 1 Core) - (Left: Local Control, Right: Entity Control)

(b) Texas Instruments’ DM3730 ARM Cortex™ A8 (100ns/byte) - (Left: L ocal Control, Right: Entity Control)

Figure 7. Performance of resource-aider with local and requesting entity adaptation control with
varying CPU frequencies.

An elaboration is needed on the consequences of placing the control at the entity, i.e., right,
top, and bottom. To facilitate this, the aider would report its loading status to the entity which,
in turn, would respond with a suggested trim, i.e., choice of authentication, if needed. In this manner,
the processing of the authentication takes place at the aider, but the choice of the authentication
happens at the entity.

The peaking in Figure 7a (left) is due to loading and is similar to that observed in Figure 5,
i.e., not due to the authentication-trim. The extended peaking and higher throughput observed in
Figure 7a (right) is due to the availability made by latency in both messages and relaying the control
signals, with the fluctuation in the middle frequency at eight connections due to decision between
tried authentication trims.

To distinguish the impact of control placement from the trim, we can observe the throughput
in Figure 7b. In this figure, message latency is set at 100 ns/byte, i.e., higher arrival rate than that
of Figure 7a. In the left figure, we note that a lower authentication is selected at the low-frequency,
hence yielding a higher throughput. A similar observation can be made for low-frequency in Figure 7b,
right when the number of sessions is between 2 and 10. When the number of connections is 12 and
above, however, the middle frequency becomes more dominant. This change is largely due to the aider
managing two things in the presence of increased arrival rate, managing the trim, and the processing
the entity’s control.

Two aspects become apparent here. The first is that although aider autonomy reduces delay
and messaging overhead entity control, it remains desirable in instances where the entity needs to
satisfy an overall latency constraint. The second, which is more subtle, is the intricacy of establishing
performance when various optimizations are not directly controlled. Care should therefore be exercised
when deciding on performance figures when it comes to judging the applicability of an aiding-based
security measure.

Sensors 2020, 20, 3637 15 of 18

5. Remarks on Some Open Issues

Our focus on secure resource-aiding in this work stems from two inevitabilities: the need to
avail working options in extending Internet security when and where needed, and the limitation
of a substantial number of devices in IoT. As a solution, resource-aiding introduces its own set of
vulnerabilities, some of which we addressed in Section 3.4. There are, however, other considerations to
be made, which we discuss below.

5.1. From Framework to Implementation

Security resource-aiders are meant to serve entities and networks of various types and requirements.
This, in turn, results in a challenge for designing a standardized resource-aiding system, as not all
aiders are going to serve the same types of entities and networks. However, the security resource-aiders
are not intended to be a complete solution on their own and are proposed herein as a complement to a
fuller solution targeting more extensive communication and network scenarios.

To address design diversity challenges in implementing security resource-aiders, we can utilize a
modular security service provider framework design. Resource-aiders need only a basic service layer
and can obtain or load security service modules as demanded by the requesting entities. For addressing
heterogeneity in physical layer communication demands, the resource-aiders can also incorporate
SDR and SDN modules to address those demands. Such granular design would further be subject to
thorough security analysis and comparison with similar solutions [33].

5.2. Aiding Form

References to aiders in this work have largely been made in abstraction while considering
dominating aiding techniques. It should be understood, however, that an aider need not be a singular
entity. The notion of federated IoT, for example, captures an operational mode that lends itself naturally
to security, e.g., [34]. Through such a view, both thing/entity and aider become dually physical and
logical. Similarly, the notion of edge/fog computing (i.e., in the sense of the cloud extended to the
access network) [35], further expands possibilities for aiders, especially in forms of proliferated and/or
systematized security services [36].

5.3. The (Cyber-Physical) Systems View

In evaluating the notions discussed in this work, we noted assumptions on managing security
level based on the processor temporal capability. The results also indicated the interaction between
message latency and aiding effectiveness. Indeed, considerations for IoT security cannot be made
in isolation of other cyber or physical phenomena with which it interacts [34]. This further spans to
physical consideration within the cyber modules, e.g., processor overheating or actuation failure [37].
An expanded view is thus needed in generalizing frameworks for IoT security [38].

5.4. Privacy

As with any system entrusted with information, there is always a privacy concern since the
information is usually shared by a foreign entity. In an ideal scenario, the communicating entity should
not send information for further processing without applying its security measures such as using an
available weak security measure. However, if the originating entity does not have the resources or
the other end does not accept the originating entity’s security measures, the entity must entrust the
information to be processed completely by a security aider.

Addressing privacy with security aiders is very challenging. Unlike network-operated services,
aiders are usually provided by the community. Even with trust scoring and aider certification in place,
there is no guaranteed solution to ensure that aiders do not retain information sent by the requesting
communicating entities. If privacy is important for a resource-constrained entity, and it cannot use

Sensors 2020, 20, 3637 16 of 18

its security measures, it may opt-in a partial aiding support, whereby, the transmitted information is
partially secured to avoid sharing fully useful private information with the aiders.

6. Conclusions

In this paper, we investigated the use of security resource-aiding entities to assist in securing
communications for resource-constrained IoT devices and instances. Different aiding approaches
were explored, with their strengths and weakness outlined. We then introduced a holistic framework
that minds device and instance heterogeneity in both nominal and operational resources. As a way
of demonstration, we conducted a performance evaluation aiding in message authentication codes.
We observed that when giving the adaptation control to the requesting entity, the variation in the
message exchange latency is to have aggressive behavior on the adaptation control. It thus appears that
adaptation control is better handled at aiders. In turn, having control at the aiders further means that
instances of message latency can be exploited to increase authentication levels. The work concluded
with a discussion of relevant open ends.

Based on the findings presented in this work, efforts currently underway are focusing on the
design and implementation of a detailed protocol for secure resource-aiding, and we evaluated its
effectiveness. The protocol will expand on the considerations presented herein to include both physical
aspects of processing and exhaustive communication considerations.

Author Contributions: Conceptualization, A.-E.M.T., A.M.R., and H.S.H.; methodology, A.-E.M.T., A.M.R.,
and H.S.H.; validation, A.-E.M.T. and A.M.R.; writing—original draft preparation, A.-E.M.T., A.M.R., and H.S.H.;
writing—review and editing, A.-E.M.T. and H.S.H.; visualization, A.-E.M.T. and A.M.R.; supervision, A.-E.M.T. and
H.S.H.; funding acquisition, H.S.H. All authors have read and agreed to the submitted version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC)
under grant number RGPIN-2019-05667.

Acknowledgments: The work was generously supported in part by the Office of Research and Graduate Studies
at Alfaisal University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Akamai. State of the Internet-Security: Year in Review. 2019, pp. 3–11. Available online: https://bit.ly/

2QZlw8H (accessed on 16 May 2020).
2. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of threats? A survey of practical

security vulnerabilities in real IoT devices. IEEE Internet Things J. 2019, 6, 8182–8201. [CrossRef]
3. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A survey on IoT security: Application areas,

security threats, and solution architectures. IEEE Access 2019, 7, 82721–82743. [CrossRef]
4. Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D. Security of the internet of things: Perspectives and challenges.

Wirel. Netw. 2014, 20, 2481–2501. [CrossRef]
5. Hamad, S.A.; Sheng, Q.Z.; Zhang, W.E.; Nepal, S. Realizing an internet of secure things: A survey on issues

and enabling technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1372–1391. [CrossRef]
6. Rashwan, A.M.; Taha, A.-E.M.; Hassanein, H.S. Using aiders for securing communications of

resource-challenged mobile devices. In Proceedings of the IEEE International Conference on Communications
(ICC), Shanghai, China, 20–24 May 2019.

7. YoungRick Nelson. SSL/TLS Offloading, Encryption, and Certificates with NGINX and NGINX Plus. 2014.
Available online: https://www.nginx.com/blog/nginx-SSL/ (accessed on 16 May 2020).

8. Gupta, L.; Jain, R.; Samaka, M. Dynamic analysis of application delivery network for leveraging
software-defined infrastructures. In Proceedings of the IEEE International Conference on Cloud Engineering,
Tempe, AZ, USA, 9–12 March 2015; pp. 305–310.

9. Hasegawa, Y. An adaptive cryptographic accelerator for IPSec on a dynamically reconfigurable processor.
In Proceedings of the IEEE International Conference on Field-Programmable Technology, Singapore,
Singapore, 11–14 December 2005; pp. 163–170.

https://bit.ly/2QZlw8H
https://bit.ly/2QZlw8H
http://dx.doi.org/10.1109/JIOT.2019.2935189
http://dx.doi.org/10.1109/ACCESS.2019.2924045
http://dx.doi.org/10.1007/s11276-014-0761-7
http://dx.doi.org/10.1109/COMST.2020.2976075
https://www.nginx.com/blog/nginx-SSL/

Sensors 2020, 20, 3637 17 of 18

10. Juvekar, A. Hardware, and Protocols for Authentication and Secure Computation. Ph.D. Thesis, MIT,
Cambridge, MA, USA, 2018.

11. Zargar, S.T.; Takabi, H.; Iyer, J. Security-as-a-Service (SECaaS) in the Cloud. In Security, Privacy, and Digital
Forensics in the Cloud; Chen, L., Takabi, H., Le-Khac, N., Eds.; Wiley: Hoboken, NJ, USA, 2019.

12. Blanc, G.; Kheir, N.; Ayed, D.; Lefebvre, V.; de Oca, E.M.; Bisson, P. Towards a 5G security architecture:
Articulating software-defined security and security as a service. In Proceedings of the 13th International
Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August 2018.

13. Fang, C.; Yao, H.; Wang, Z.; Wu, W.; Jin, X.; Yu, F.R. A Survey of mobile information-centric networking:
Research issues and challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2353–2371. [CrossRef]

14. Li, K.; Yu, X.; Zhang, H.; Wu, L.; Du, X.; Ratazzi, P.; Guizani, M. Security mechanisms to defend against
new attacks on software-defined radio. In Proceedings of the International Conference on Computing,
Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 537–541.

15. Cox, J.H.; Chung, J.; Donovan, S.; Ivey, J.; Clark, R.J.; Riley, G.; Owen, H.L. advancing software-defined
networks: A survey. IEEE Access 2017, 5, 25487–25526. [CrossRef]

16. Li, W.; Meng, W.; Kwok, L.F. A survey on OpenFlow-based software defined networks: Security challenges
and countermeasures. J. Netw. Comput. Appl. 2016, 68, 126–139. [CrossRef]

17. Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540, IETF. 2015. Available online: https://tools.ietf.
org/html/rfc7540 (accessed on 16 May 2020).

18. The Constrained Application Protocol (CoAP). RFC 7252, IETF. 2014. Available online: https://tools.ietf.org/

html/rfc7252 (accessed on 16 May 2020).
19. Adaptive Video Streaming over Information-Centric Networking (ICN). RFC 7933, IETF. 2016. Available

online: https://tools.ietf.org/html/rfc7933 (accessed on 16 May 2020).
20. Li, J.; Jin, J.; Yuan, D.; Zhang, H. Virtual fog: A virtualization enabled fog computing framework for internet

of things. IEEE Internet Things J. 2018, 5, 121–131. [CrossRef]
21. Lakhlef, H.; Bouabdallah, A.; Raynal, M.; Bourgeois, J. Agent-based broadcast protocols for wireless

heterogeneous node networks. Comput. Commun. 2018, 115, 51–63. [CrossRef]
22. IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem

Statement, and Goals. RFC 4919, IETF. 2007. Available online: https://tools.ietf.org/html/rfc4919 (accessed on
16 May 2020).

23. Yu, T.; Sekar, V.; Seshan, S.; Agarwal, Y.; Xu, C. Handling a trillion (unfixable) flaws on a billion devices:
Rethinking network security for the Internet-of-Things. In Proceedings of the 14th ACM Workshop on Hot
Topics in Networks (HotNets-XIV), Philadelphia, PA, USA, 16–17 November 2015.

24. Yousefpour, A.; Ishigaki, G.; Gour, R.; Jue, J.P. On reducing iot service delay via fog offloading. IEEE Int.
Things J. 2018, 5, 998–1010. [CrossRef]

25. Pilato, C.; Garg, S.; Wu, K.; Karri, R.; Regazzoni, F. Securing hardware accelerators: A new challenge for
high-level synthesis. IEEE Embed. Syst. Lett. 2017, 10, 77–80. [CrossRef]

26. Lee, J.; Sharma, P.; Tourrilhes, J.; McGeer, R.; Brassil, J.; Bavier, A.C. Network integrated transparent TCP
accelerator. In Proceedings of the 24th IEEE International Conference on Advanced Information Networking
and Applications (AINA), Perth, Western Australia, 20–23 April 2010.

27. Fung, J.; Tang, F.; Mann, S. Mediated reality using computer graphics hardware for computer vision.
In Proceedings of the Sixth International Symposium on Wearable Computers, Seattle, WA, USA, 7–10
October 2002; pp. 83–89.

28. Liao, S.; Wu, J.; Li, J.; Bashir, A.K.; Mumtaz, S.; Jolfaei, A.; Kvedraite, N. Cognitive popularity based AI service
sharing for software-defined information-centric networks. IEEE Trans. Network Sci. Eng. 2020. [CrossRef]

29. Mbarek, B.; Ge, M.; Pitner, T. Enhanced network intrusion detection system protocol for internet of things.
In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Prague, Czech Republic,
30 March–3 April 2020; pp. 1156–1163.

30. Nieto, A.; Rios, R.; Lopez, J. Digital witness and privacy in IoT: Anonymous witnessing approach.
In Proceedings of the IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, 1–4 August 2017; pp. 642–649.

31. Li, J.; Bay, Y.; Zaman, N.; Leung, V.C.M. A decentralized trustworthy context and QoS-Aware service
discovery framework for the internet of things. IEEE Access 2017, 5, 19154–19166. [CrossRef]

32. Law, Y.W.; Doumen, J.; Hartel, P. Survey and benchmark of block ciphers for wireless sensor networks.
ACM Trans. Sens. Netw. 2006, 2, 65–93. [CrossRef]

http://dx.doi.org/10.1109/COMST.2018.2809670
http://dx.doi.org/10.1109/ACCESS.2017.2762291
http://dx.doi.org/10.1016/j.jnca.2016.04.011
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7933
http://dx.doi.org/10.1109/JIOT.2017.2774286
http://dx.doi.org/10.1016/j.comcom.2017.10.020
https://tools.ietf.org/html/rfc4919
http://dx.doi.org/10.1109/JIOT.2017.2788802
http://dx.doi.org/10.1109/LES.2017.2774800
http://dx.doi.org/10.1109/TNSE.2020.2993457
http://dx.doi.org/10.1109/ACCESS.2017.2756446
http://dx.doi.org/10.1145/1138127.1138130

Sensors 2020, 20, 3637 18 of 18

33. Naveed Aman, M.; Taneja, S.; Sikdar, B.; Chua, K.C.; Alioto, M. Token-based security for the internet of
things with dynamic energy-quality tradeoff. IEEE Internet Things J. 2019, 6, 2843–2859. [CrossRef]

34. Sciancalepore, S.; Piro, G.; Caldarola, D.; Boggia, G.; Bianchi, G. On the design of a decentralized and
multiauthority access control scheme in federated and cloud-assisted cyber-physical systems. IEEE Int.
Things J. 2018, 5, 5190–5204. [CrossRef]

35. Wazid, M.; Das, A.K.; Bhat, K.V.; Vasilakos, A.V. LAM-CIoT: Lightweight authentication mechanism in
cloud-based IoT environment. J. Netw. Comput. Appl. 2020, 102496. [CrossRef]

36. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the
internet of things. IEEE Access 2018, 6, 6900–6919. [CrossRef]

37. Taha, W.; Taha, A.-E.M.; Thunberg, J. Cyber-Physical Systems: A Model-Based Approach; Springer:
Berlin/Heidelberg, Germany, 2020.

38. Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated
key agreement scheme in cloud-assisted cyber–physical systems. Future Gener. Comput. Syst. 2020, 108,
1267–1286. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JIOT.2018.2875472
http://dx.doi.org/10.1109/JIOT.2018.2864300
http://dx.doi.org/10.1016/j.jnca.2019.102496
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1016/j.future.2018.04.019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Contributions
	Paper Organization

	A Review of Resource-Aiding Modes
	Security Gateways
	Resource-Lending (or Offloading) Engines
	Witness (or Guarantors)

	A Framework for Adaptive Secure Communications in IoT
	Design Requirements
	Framework Overview
	Considerations for Service Discovery
	Resource-Aiding Operation
	Managing Resource-Aiding Vulnerabilities

	Performance Evaluation
	Performance Criteria
	Considerations for Evaluation
	Evaluation Environment and Scenarios
	Latency Overcoming Throughput
	Aiders Overcoming Message Latency
	Impact of Authentication Control Placement

	Remarks on Some Open Issues
	From Framework to Implementation
	Aiding Form
	The (Cyber-Physical) Systems View
	Privacy

	Conclusions
	References

