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Abstract: As there come to be more applications of intelligent robots, their task object is becoming
more varied. However, it is still a challenge for a robot to handle unfamiliar objects. We review
the recent work on the feature sensing and robotic grasping of objects with uncertain information.
In particular, we focus on how the robot perceives the features of an object, so as to reduce the uncertainty
of objects, and how the robot completes object grasping through the learning-based approach when
the traditional approach fails. The uncertain information is classified into geometric information and
physical information. Based on the type of uncertain information, the object is further classified into
three categories, which are geometric-uncertain objects, physical-uncertain objects, and unknown objects.
Furthermore, the approaches to the feature sensing and robotic grasping of these objects are presented
based on the varied characteristics of each type of object. Finally, we summarize the reviewed approaches
for uncertain objects and provide some interesting issues to be more investigated in the future. It is found
that the object’s features, such as material and compactness, are difficult to be sensed, and the object
grasping approach based on learning networks plays a more important role when the unknown degree
of the task object increases.
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1. Introduction

Robots have been used in industrial manufacturing for decades and are being applied in more flexible
scenarios with the improvement of robotic capability to manipulate varied objects [1–3]. In particular,
the robotic capabilities of sensing and manipulating unfamiliar objects spawn more applications and
enormous economic benefits. For instance, robots used in restaurants improve the efficiency of food
delivery and also reduce labor cost [4]. Moreover, the successful applications of domestic robots help
people to handle some housework to save people’s time [5], and robots in factories perform repetitive
tasks quickly for a long time and reduce the loss caused by the worker’s fatigue [6].

For objects with certain information, their features—such as position, shape, pose, rigidity, etc.—are
well known previously to the robot before grasping. According to these known features, a reasonable
motion trajectory is planned easily and then a grasping strategy is developed, such as form-closure grasp [7]
and force-closure grasp [8]. An important issue is that approaches designed for objects with certain
information cannot be applied directly to objects with uncertain information. For instance, the form-closure
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grasping fails to handle objects with uncertain shapes for the limitation of degrees of freedom [9]. Similarly,
the force-closure grasp relies on the contact forces that depend on the rigidity of the object [10]. It means
that objects with a rigidity uncertainty are difficult to be grasped through the traditional force-closure
approaches. Moreover, as the unknown object may have many kinds of uncertain features, the assumptions,
such as simplified contact models [11] and rigid body modeling [12], are not suitable to deal with this kind
of object. On the contrary, data-driven grasping—i.e., a learning-based approach—is more inclusive to the
object’s unknown nature and receives more and more attention from researchers.

In order to grasp the object, the robot needs to complete two processes, which are feature sensing and
robotic grasping. On the left side of Figure 1, feature sensing is divided into two steps—sensor sensing
and feature identification at different phases. Different types of sensor are used to detect the object to
obtain the original data. Furthermore, object features—such as position, pose, shape, etc.—are estimated
by decoding these sensing data. On the right side of Figure 1, the robotic grasping is realized through
varied grasping strategies, which are based on various metrics, such as grasper structure, grasping force,
grasper form, success probability, etc. Based on object features from feature sensing, the grasping strategy
generates parameter configurations for the manipulator and grasper, and then the robot grasps the object
with the given robotic configurations.

Figure 1. Pipeline describing feature sensing and robotic grasping.

In this paper, we review the latest advances in the topic of the feature sensing and robotic grasping of
objects with uncertain information. There have been many surveys covering the topics of object grasping
or object manipulation, such as 3D object grasping synthesis [13], data-driven grasping synthesis [14],
deep learning applications in robotic grasping detection [15], and the robotic manipulation and sensing of
deformable objects [10]. Sahbani et al. [13] reviewed computational algorithms for generating 3D object
grasping, particularly the analytical as well as empirical grasp synthesis approaches. Bohg et al. [14]
focused on the data-driven grasp synthesis and divided the approaches into three groups for known,
familiar, or unknown objects. Caldera et al. [15] summarized the current state-of-the-art approaches
in regard to the application of deep learning methods to generalized robotic grasping and discussed
the effect that the deep learning approach has on the overall performance of robotic grasping detection.
Sanchez et al. [10] presented recent work on the robotic manipulation and sensing of deformable objects,
where the reviewed deformable objects are classified into four categories, which are cloth-like objects,
linear objects, planar objects, and solid objects. Following these reviews, the field of object grasping has
made great progress.
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Our work focuses on the recent state-of-the-art approaches in the robotic community to address the
sensing and grasping of objects with uncertain information. Although the classification of objects may vary
with the type of uncertain information, objects with uncertain information could be classified considering
their geometric features and physical features. Objects could be categorized based on the category of
uncertain parameters. For instance, an object with an uncertain shape or position could be seen as a
geometric-uncertain object because the shape or position could be described with geometric parameters,
such as length and coordinates. Similarly, an object with an uncertain mass or rigidity could be regarded as
a physical-uncertain object, as the mass or rigidity belongs to physical parameters. Based on these criteria,
the reviewed approaches are classified into the following three main categories, as shown in Figure 2.

Figure 2. Classification of objects with uncertain information.

(1) Geometric-uncertain objects: This type of object usually lacks some generalized geometric
information that not only includes objects’ geometric information but also the necessary geometric
information for the grasp. For instance, the object’s intrinsic shape and the global position of the object
both belong to the generalized geometric information. This type of object is often seen in service and
industrial scenarios, such as the delivery of multi-shape fruits or picking up multitype parts within a box.

(2) Physical-uncertain objects: This type of object commonly is short of some physical information,
particularly the object’s physical property, which may be used in object grasping. For instance, the mass
and rigidity of the object, which could be utilized to generate a feasible grasping configuration for the robot,
are significant physical properties for objects to be operated. This type of object is also commonly found in
unfamiliar service scenarios or industrial scenarios with multi-unfamiliar objects, like food sorting and
garbage classification.

(3) Unknown objects: Compared to geometric-uncertain objects and physical-uncertain objects,
the partial geometric and physical information of this type of object may be both uncertain. This kind
of object is usually referred to as objects that are not common in daily life and often coincide with an
unknown environment.

This paper is organized as follows. Section 2 provides an overview of the feature sensing and robotic
grasping of geometric-uncertain objects, which include position-uncertain objects, pose-uncertain objects,
and shape-uncertain objects. Section 3 concerns of sensing and grasping approaches for physical-uncertain
objects. Particularly, it includes sensing approaches for the object’s mass, rigidity, and texture and grasping
approaches for rigid objects and deformable objects, respectively. Section 4 introduces the localization
and feature identification of unknown objects and summarizes several typical approaches for unknown
object grasping. Finally, Section 5 discusses the pros and cons of the reviewed approaches for each type of
uncertain object and gives some interesting problems to be more investigated in the future.
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2. Geometric-Uncertain Objects

In this section, we review sensing and grasping approaches used on geometric-uncertain objects,
such as position-uncertain objects, pose-uncertain objects, and shape-uncertain objects. Although there
are other geometric features for objects, they may be not very important for robotic grasping or could be
replaced with the given features. Most of the research, particularly for the robotic grasping process, focus on
these features of objects. For instance, the robot localizes the object based on the position information,
calculates the feasible grasping points based on the shape or pose information, and then grasps the object
with a planned movement and a reasonable pose of the grasper.

2.1. Position Detection

In service and industrial applications, particularly food handling and packaging, different types
of sensors—such as 2D cameras, 3D cameras, and depth sensors—are commonly used for object
localization [16]. For instance, a 2D camera obtains the object image and identifies the object through
image processing algorithms [17]. The 2D image could achieve the plane localization of the object, while it
is difficult to obtain the space coordinate of the object. Based on this consideration, the distance sensor is
added into 3D cameras to detect the object’s depth information. Following these researches, the point
cloud data [18] from depth sensors are also used for object localization.

Research into position detection based on vision has been highly reliable after decades of development.
Particularly, camera calibration technology [19–21] enables a robot to obtain an object’s position with
higher accuracy. The RGB pixel values of the object are easily obtained by RGB cameras, and the spatial
coordinates of the object could be calculated by a Decision Tree and Decision Fusion [22]. With the
development of machine learning techniques, neural networks are gradually used in the field of object
recognition. The trained Convolutional Neural Network could be used to identify objects in multi-cluttered
2D images and test the performance of object recognition. In the paper [23], a general CNN-based
multi-modal learning framework is proposed for object recognition. This framework constructs the depth
CNN layer for color data and depth data and connects them by a specially designed multimodal layer.
This approach could not only segment the object from clutter but also estimate the object’s position.
Additionally, the color data and depth data from the RGB-D camera could be processed by Hierarchical
Matching Pursuit (HMP) [24] to localize the object. The HMP is a multi-layer sparse coding network,
and the data of the RGB-D camera are presented as abstract features to facilitate the SVM to obtain a
better recognition result. The discriminative features extracted from RGB-D images are used to encode the
RGB-D point cloud data, and the object could be recognized by Hierarchical Cascaded Forests [25] and
Recurrent Convolutional Fusion [26].

Moreover, the spatial-temporal features of objects could be extracted from the point cloud data,
which are significant information for object recognition and classification [27–30]. This process consists
of three main periods: (a) depth sensor data filtering, (b) object segmentation and noise reduction,
and (c) object recognition and classification using CNN. The point cloud data can not only be used alone
but can also combine with RGB images for object localization. A sensory-fusion framework, Multi-View 3D
Networks, is proposed [31]. This framework takes both point cloud data and RGB images as inputs to
detect 3D objects.

2.2. Shape Identification

The object’s shape is an important reference for robotic grasping. The object’s shape could be used to
calculate the feasible grasping points. For uniform objects, the object’s shape could be previously provided
for the robot—i.e., the shape could be seen as the known feature. However, as for nonuniform objects



Sensors 2020, 20, 3707 5 of 30

or objects with occlusion, it would be a challenge regarding shape identification. There are two types of
approaches to deal with this issue.

The first is to extract the 2D image feature of the object and then estimate the 2D shape to provide
supports for robotic grasping. Generally, there are multiple objects in a single image. The first step
is to partially recognize the object based on the context information and exploit edge information to
estimate the object’s shape at the same time. This process has been realized by the learning-based
approach [32]. Besides this, the generative model is also available. In research [33], a generative model
for the object geometry was studied and could be extended to recognize the object’s shape in a cluttered
image, with which the robot calculates the grasping point; the example is as shown in Figure 3.

Figure 3. Shape identification with completed 2D boundary [33].

The rest is that the object’s 3D data is used to calculate the 3D shape of the object. The advantage of
this approach is that it provides rich information for the calculation of grasping points to find the best
grasping point in space, particularly for unstructured objects. Chiu et al. [34] built a 3D class model to
estimate the object’s 3D shape, including occluded parts, from a single image. This model is learned
from a few labeled images for each class. Moreover, the 3D shape identification could be realized by
learning networks. Kalogerakis et al. [35] introduced a deep architecture for the 3D shape identification of
objects. This architecture combines image-based Fully Convolutional Networks (FCNs) and surface-based
Conditional Random Fields (CRFs) to yield a coherent segmentation of 3D shapes. The image-based FCNs
are used for efficient view-based reasoning about 3D object parts. Through a special projection layer,
FCN outputs are effectively aggregated across multiple views and scales, then are projected onto the 3D
object surfaces. At last, a surface-based CRF combines the projected outputs with geometric consistency
cues to yield the 3D shape. Although their results show that this architecture is effective, there are particular
cases where the training data is not enough, showing that the need for a better design of architectures and
networks. Additionally, the CAD matching approach is a good choice to reconstruct and identify the 3D
shape of the object. Kong et al. [36] use the dictionary of dense CAD models to reconstruct an object’s
3D shape from a single image. Firstly, the orthogonal matching pursuit is employed to rapidly choose
the “closest” single CAD model in the dictionary to the projected image. Then, a novel graph embedding
based on local dense correspondence is used to refine the camera position and create a dense 3D model
of the object by fitting both landmarks and the silhouette. Kurenkov et al. [37] propose the DeformNet
framework, which generates a 3D shape reconstruction from a single image. This network takes an image
input, finds the nearest shape template from a 3D CAD database, and deforms the template to match the
query image. Moreover, a new differentiable layer is introduced for 3D data deformation, and this is used
in DeformNet to learn a model for 3D shape reconstruction.

2.3. Pose Estimation

The pose estimation of objects in the field of robotics has been a hot topic for a long time. We summarize
three types of approaches for pose estimation which are based on template, voting, and learning.
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The first one is template-based approaches. Based on the priori template, a template-based approach,
like LINEMOD [38], extracts the gradient information for matching and then estimates the object’s
pose. In the paper [39], a hierarchical fragment matching approach for 3D pose estimation is presented.
The Clustered Centerpoint Feature Histogram, as a descriptor, is used to compute the features of object
fragments. Then, the Extreme Learning Machine classifier is applied to identify the matched segments and
generate the estimated pose. In the paper [40], a template matching-based approach is proposed for the
6D pose estimation. This approach consists of three main components, PCOF-MOD (Multimodal PCOF),
balanced pose tree (BPT), and optimum memory rearrangement for a coarse-to-fine search. The PCOF-MOD
template is based on gradient orientation extracted from RGB images and describes the shape of object
contours. These templates are integrated into BPT to reduce the search space for the 2D position and 3D
pose simultaneously and make the pose estimation faster. The optimum memory rearrangement rearranges
the input features so that the different types of neighboring pixels are linearly aligned. The estimated
objects’ 6D poses by this approach on tabletop (Figure 4a) and bin-picking (Figure 4b) scenarios are as
shown in Figure 4.

Figure 4. Scenarios of objects’ 6D pose estimation [40]: (a) tabletop scenario, (b) bin-picking scenario.

The second one is the voting-based approach. This type of approach usually uses every local feature
to predict a pose and then finds the optimal result by voting. The classical approaches include the Hough
Forest approach [41–43] and the Point Pair Features approach [44,45]. Tejani et al. [42,43] proposed a
novel framework, Latent-Class Hough Forests, for 3D pose estimation in heavily cluttered and occluded
scenarios. The template matching feature, LINEMOD, is adapted into a scale-invariant patch descriptor
which is integrated into a regression forest using a novel template-based split function. Every tree in the
regression forest maps an image patch to a leaf that stores 6D pose votes. Drost et al. [44] realized the
recognition of freeform 3D objects in point clouds. Global model description is created based on oriented
point pair features, which consist of all model point pair features and represent a mapping from the point
pair feature space to the model. Pose recognition is performed locally using an efficient voting scheme on
a reduced two-dimensional search space. Following this research, Vidal et al. [45] proposed a variation of
the PPF method and won the SIXD challenge.

The last one is the learning-based approach. This approach needs a previous database to train
estimation models or networks and could deal with objects in depth images and objects in color images as
well. Based on the depth image, the random forest approach [46] could achieve the 6D pose estimation.
As shown in Figure 5, this approach consists of two parts: training and testing. In the training process,
depth images are taken as the inputs to train six trees and give the initial pose. In testing, based on the
initial pose and the depth image, the forest prediction is used to refine the object’s pose. As for objects in
RGB images, Georgakis et al. [47] proposed an approach for 3D pose estimation. This approach does not
need to mark the object’s pose in the training phase. Through the deep quadruplet CNN, the relationship
between RGB images and the rendering depth images of the CAD model is established, and then the
object’s pose is estimated via the RANSAC algorithm and PnP algorithm.
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2.4. Robotic Grasping

For geometric-uncertain objects, most physical properties could be seen as known and not considered
for robotic grasping in this section. The robotic parameters are more related to the geometric features of
the object, such as position, shape, and pose. The commonly used grasping approach could be described
as a direct configuration-based grasping approach that grasping control is related to in the structure of
the grasper.

According to different grasping requirements, varied structures of graspers are designed, such as the
sucker, the multi-fingered dexterous grasper, and the soft grasper, as shown in Figure 6. Due to having
more degrees of freedom and a better shape adaptability, the multi-fingered dexterous grasper and the soft
grasper are more powerful for different types of objects. The configuration of the multi-fingered dexterous
grasper and the soft grasper are also more challenging compared to other graspers.

Figure 6. Different structures of grasper: (a) sucker [48], (b) two-fingered grasper [49], (c) three-fingered
grasper [50], (d) four-fingered grasper [51], (e) five-fingered grasper [51], (f) soft grasper [48].

For the multi-fingered grasper, a framework including Multi-Dimensional Iterative Surface Fitting
(MDISF) and Grasp Trajectory Optimization (GTO) for grasp planning is proposed [52]. The MDISF is
used to search for the optimal contact region based on the position of the object. The hand configuration is
optimized by minimizing the collision and surface fitting error. The optimal trajectory to reach the highly
ranked grasping configuration is generated by GTO. The grasping configuration could also be generated
according to the curvature of objects. In the paper [53], Calli et al. propose an active visual grasping
algorithm for the hand-eye system. This algorithm models the object with the Elliptic Fourier Descriptors
and uses a visual servo rule to realize the grasping configuration with curvature measurements.
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Furthermore, to overcome the problem that the soft grasper is difficult to control accurately, an efficient
mathematical representation of soft fingers based on screw theory is proposed [54]. As shown in Figure 7,
this grasper is underactuated; tendon-driven; and consists of two flexible fingers, whose configuration
could be changed according to the object’s shape. The grasping state is detected through rolling soft
fingertips, and the grasping force and the grasper pose are changed by adjusting the control parameters [55].
However, there also exist some constraints—such as contact reachability, object restraint, force control,
etc.—for a specific manipulating task. As a result, Rosales et al. [56] present a kinematic formulation for
the grasping synthesis problem. This formulation could generate an optimal grasping configuration by
considering these constraints.

Figure 7. Object grasping with a soft grasper [54].

3. Physical-Uncertain Objects

For the process of object grasping, the robot is required to localize the object and find the feasible
grasping points at first. Next, the robot needs to grasp and manipulate the object regarding the desired
task. In industrial scenarios where heavy and light objects are usually manipulated alternately, it is not
reasonable to grasp the object only with geometric features. For instance, variable mass parts usually
require different grasping forces, otherwise it is easier for the grasp to be unsuccessful or destructive.
Similarly, in some service scenarios where the robot needs to deal with a set of deformable objects, this is
an unlikely task without the rigidity information of the object.

Furthermore, for a scenario with physical-uncertain objects, the grasping approach for
geometric-uncertain objects does not work anymore. Generally, the physical properties of the object
are identified firstly, and then the robotic grasping parameters are configured based on these properties.
In the process of object grasping, the physical parameters that are commonly concerned include mass,
rigidity, and texture. In this section, we review approaches used on physical-uncertain objects, such as
mass-uncertain objects, rigidity-uncertain objects, and texture-uncertain objects. There has been a lot of
research on these properties, and here we have collected and sorted it out.

3.1. Mass Estimation

The accurate estimation of an object’s mass is a big challenge for robots, as robots are unlikely to use
the commonly used method of static weighing to obtain the object’s mass. Usually, force/torque sensors or
tactile sensors are used to detect an object’s mass. For instance, Kubus et al. [57] used measurements of the
force and torque from a sensor on the wrist as well as measurements of angular velocity, linear, and angular
accelerations to estimate an object’s mass. Further, Petković et al. [58] designed an adaptive underactuated
compliant grasper with distributed compliance and built a prediction model for the mass estimation of
the object in relation to sensor stress. In addition to the one-dimensional grasping force, the mass of the
in-hand object could also be calculated based on the 3D force vector [59] from tactile sensors on fingertips.
Due to the limitation of the generalization ability of the estimation model, the detection accuracy is often
reduced when the new object’s mass is detected.
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Moreover, deep learning also has applications in the mass detection of objects. In the paper [60],
a Scalable Tactile Glove (STAG) covered with 548 tactile sensors is designed, as shown in Figure 8.
This STAG acquires the normal force recorded by each sensor and builds a tactile dataset. The mass
is estimated through a ResNet-18 architecture [61] based on the data from tactile sensors. This type of
approach has a strong dependence on datasets, and it usually needs to spend a lot of time to train the
learning network.

Figure 8. The Scalable Tactile Glove (STAG) as a platform to learn from the human grasp [60].

In addition, the visual approach is also used to detect the object’s mass. The principle of the
visual approach is establishing the relationships between the object’s visual information (object geometry,
RGB images, depth images, point clouds, etc.) and the object’s mass properties, and then calculating the
object’s mass based on the real-time data from visual sensors. The regression model, like the geometric
outline-mass model [62], the volume-mass model [63,64], etc., is a commonly used way to identify an
objects’ mass. The mass detection precision of this type of approach is not very high and mainly depends
on the accuracy of the mapping model and the reliability of the visual detection.

3.2. Rigidity Prediction

Rigidity is one of the most important properties of objects. An object with an uncertain rigidity is
difficult to manipulate successfully, as the object may be distorted by the grasping force. Most of the research
is directly aimed at rigid objects or deformable objects to give the corresponding grasp and manipulation
strategy. There is little research on objects’ rigidity detection for object grasping, which severely restricts
the autonomous task ability of the robot to grasp objects.

For a robot, it is hard to accurately obtain the rigidity parameter of the object before the robotic
grasping. The application of sensors in robotic manipulation still has many limitations. Comparatively,
it is feasible that the rigidity degree of an object is predicted to distinguish rigid objects and deformable
objects, and then the manipulation strategy is given according to the classification result. In the paper [65],
Zang et al. proposed a motion analysis-based approach for detecting an object’s rigidity. This approach
distinguishes rigid objects and nonrigid objects by coupling motion estimation and optic flow matching.
Moreover, tactile sensors are also used to classify objects. Drimus et al. [66,67] designed a flexible tactile
sensor for the classification of rigid objects and deformable objects. The flexible tactile-sensor array is used
to acquire the rigidity information of the object. The array of tactile information is denoted as a time series
of features and used as the input for the k-nearest neighbor classifier to classify the various rigid objects
and deformable objects. After the classification of the object is given, the manipulations could be carried
out according to varied grasping approaches for rigid objects and deformable objects.
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3.3. Texture Detection

Texture detection is an important part of object recognition and also plays an important role in robotic
grasping. As early as 1992, higher order statistics were applied to detect and classify random textures [68].
Satpathy et al. [69] introduced two classes of edge-texture features, which are the Discriminative Robust
Local Binary Pattern and Ternary Pattern. These edge-texture features make better recognition effects on
objects, particularly in light and dark backgrounds. Afterward, an online texture rendering model that
deals with low-texture and high-light objects is established [70]. The dynamic template in continuous
6DoFs pose space is created based on the texture rendering model. This dynamic template could be used
to handle the 3D object tracking problem and the partially occluded problem.

For a cluttered environment, the specific texture plays a significant role in separating the object
from the background. In the paper [71], a texture segmentation approach was proposed based on the
parametric active contour model. It calculates the gray-level co-occurrence matrix and co-occurrence
energy of the region inside and outside of the dynamic contour. The texture contour is determined
while the co-occurrence energy is in the maximum state. Moreover, texture recognition could also be
realized by the fusion of tactile and visual images. Luo et al. [72] proposed a novel fusion approach,
Deep Maximum Covariance Analysis (DMCA), to learn a joint latent space for sharing features via vision
and tactile sensing. The features of visual images and tactile data are learned by deep neural networks.
The maximum covariance analysis is used to pair the learned features. In the paper [73], the progress of
the texture representation in the past two decades is summarized, and the challenges for future research
are also discussed.

3.4. Robotic Grasping

Applications for the robotic grasping of rigid objects and deformable objects frequently exist in
industrial and service scenarios. Particularly, more applications of deformable objects in industrial and
service scenarios can be found in [74,75]. An object’s features, such as mass, rigidity, and texture, can help
the robot to set a feasible grasping force to grasp the object. This kind of approach is mainly used when
there is no special classification for the object. Normally, the object could be divided into rigid objects
and deformable objects according to the stiffness characteristics. For rigid objects, the human could teach
robots how to grasp objects and manipulate them or plan the robotic grasping based on tasks. As for
deformable objects, robotic grasping is more difficult to implement because of undesired deformation
during manipulation. The following are grasping approaches for rigid objects and deformable objects.

3.4.1. Robotic Grasping of Rigid Objects

As for rigid objects, learning from demonstration (LfD) is a popular approach for a robot to improve
its capability of object manipulation. This approach enables the robot to acquire new skills through
leveraging demonstrations offered by human operators [13,76]. As shown in Figure 9, the robotic grasping
configuration learned from human demonstrations and the object’s features are also taken into account.
The object’s sensing information and the priori features are combined to obtain the object’s database which
provides basic data for robotic configuration. Further, the robot observes the grasp and manipulation
of rigid objects by the human, and the kinematic parameters of the moving process are stored. Finally,
the robotic configuration database is built and guides the robot to finish the robotic grasping of the object.

The grasping strategy—such as grasping type, thumb placement, and direction, etc.—is extracted
from human demonstration and then integrated into the grasping planning procedure. It is crucial to
generate a feasible grasp concerning object features and manipulation tasks [77]. However, there will be
some mistakes, as the human operator gives an imperfect demonstration because of the unintentional
operator error in the kinesthetic teaching demonstration. To solve this problem, Mueller et al. [76] improved
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the LfD and proposed a novel algorithm, which is Concept Constrained Learning from Demonstration
(CC-LfD). The CC-LfD not only realizes the robust skill learning but also finishes the skilled repair that
incorporates the annotations of conceptually grounded constraints during live demonstrations of the LfD.
Furthermore, Welschehold et al. [78] proposed an RGB-D observation-based demonstration approach.
This approach prevents the requirement of accurate knowledge about the interactions between the robot
and the object, which also eliminates the unintentional operator error. In order to increase the robustness
of LfD, Van et al. [79] designed a GraspNet for object detection from merely a single demonstration.
The GraspNet is based on a convolutional neural network and can be rapidly fine-tuned for a new
demonstration. Based on data from previous demonstrations, the training time is decreased further.

Figure 9. Functional flowchart of object grasping by learning from demonstration (LfD).

In addition, the skill-based programming approach is an effective way to reduce the requirements
of operators and the difficulty of programming. This approach is divided into three layers, which are
the primitive layer, skill layer, and task layer [80]. The primitive level is to describe the capability of the
robotic system into simple and intuitive symbolic units, such as the movement of the manipulator and the
operation of the gripper. The skill layer consists of numerous skills that transform the world from an initial
state to a goal state based on the specified prior parameters, such as the perception skill of the external
environment for decision and the pick and place skill with provided objects and place poses. The task
layer is the topmost layer of the operational abstraction and combines the required skills to achieve the
objective. With skill-based programming, the robot is able to finish varied object manipulation, such as
grasping, picking, assembly, and so on [81,82]. Huang et al. [83] presented a robotic system with a library
of assembly skills. These skills are acquired by machine learning and can be reused for different furniture
sets. Herrero et al. [84] combined skill-based programming with a state machine and improved the skills
of interaction and communication with humans. The skill-based programming approach eases the robot
program generation and is helpful for the robot to grasp the object and complete the task, particularly in a
human–robot collaborative workspace.

Moreover, the task oriented-based grasping approach is another popular option. The robot is not
only required to grasp the object steadily but also to complete a specific task, such as handling, placing,
parts assembly, etc. To achieve this, two processes are followed in parallel, as shown in Figure 10. For one
thing, the functional meaning of the object part is reasoned, and the object is separated into several parts
based on their functional meaning. The features of each object part are detected and used to generate the
particular affordance for each part. For another, according to the robotic requirements of the special task,
the task could be decomposed into a serial of continuous subtasks. It could be seen as a manipulation policy
for the task-oriented network, and then the task-oriented network is established based on the learning
network. Finally, the task-oriented network guilds the robot to finish object grasping and task manipulation.

Lakani et al. [85] proposed an RGB-D part-based approach for task performance. The affordances
are detected and associated with parts of the object. As these affordances are related to the task, the task
could be executed directly on the object. Furthermore, several kinds of robotic tasks are tested, such as
grasping, pouring, scooping, cutting, striking, and placing. In addition, an object grasping system—Box
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Approximation, Decomposition, and Grasping (BADGr) [86]—is used to generate a stable grasp for a
hand-object pair. As shown in Figure 11a, the stable grasps are labeled and saved into the task-related
grasping database for training and testing. The affordance function is defined by basic grasping metrics
and extends the grasping quality metric to task-oriented grasps [87]. This task-based grasping matrix can
not only guild the grasping process, but also evaluate the grasping quality of task completion.

Figure 10. Functional flowchart of object grasping based on the task.

Figure 11. Examples of task oriented-based grasping approaches: (a) the schematic diagram for generating
a task-related grasp database [86], (b) Task-Oriented Grasping Network [88].

To establish a closer relationship between object grasping and task manipulation, Fang et al. [88]
built a Task-Oriented Grasping Network (TOG-Net) to jointly optimize the task-oriented grasp and the
manipulation policy. As shown in Figure 11b, the inputs of TOG-Net are two crops of depth images and
the sampled grasper depth. The task-agnostic grasp quality, conditioned task-oriented grasping quality,
and manipulation actions are predicted through TOG-Net. As the typical movement is associated with
a particular task, the previous sensor experiences could be used in the predictive model for subsequent
task execution [89]. The grasping capability could be enhanced through leveraging the semantic object
parts [90]. The pre-grasp configurations are reasoned with respect to the intended task. The object-task
affordances and object-task ontologies are employed to encode rules for generalizing over similar object
parts and object-task categories.

3.4.2. Robotic Grasping of Deformable Objects

Deformable objects also have many applications in industrial, domestic, and service scenarios.
The categories of deformable objects could be given based on their geometry. For instance,
Sanchez et al. [10] classified deformable objects in domestic and industrial applications into four main
categories, which are cloth-like objects, linear objects, planar objects, and volumetric objects. Moreover,
Saadat et al. [74] introduced the automatic manipulation of three categories of deformable objects in
industrial applications, including linear objects, sheet objects, and three-dimensional objects. As noted
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previously, deformable objects could roughly be categorized into three categories including linear objects,
planar objects, and 3D objects.

Linear objects: This type of object is often smart enough to withstand one-dimensional forces, such as
cables, springs, beams, and ropes. The robotic grasping of these objects is a major industrial problem.
In the case of robotic grasping with ropes, the two main desired robotic tasks are knotting and inserting.
The robot not only needs to control the object’s deformation but also needs to complete the given tasks.
Yamakawa et al. [91] studied the relationship between a knotting process and the individual skills of a
robot hand, and identified loop production, rope permutation, and rope pulling skills. In the following
research [92], they derived a model of the flexible rope and proposed a motion planning method. They were
able to change a rope into different shapes, such as a rectangular corner and a semi-circle. As for the
insertion task with ropes, Nakagaki et al. [93] observed the shape of the wire by the stereo vision and
applied a force acting on the flexible wire to control the wire’s shape to ensure that the deformed wire is
transformed to the straight one. Furthermore, Wang et al. [94] realized that the robot inserts a rope through
a series of holes with high robustness. However, these approaches have, so far, not been applied in real
situations as their test environments are simplified. The real-time performance of these approaches also
needs to be improved.

Planar objects: The feature of this type of object is that the geometry in one dimension is considerably
smaller than the other two. For instance, the thickness of the paper is negligible compared with its width
and height. Cards, foam sheets, and metal sheets are considered in this category. Most of the research
focuses on two types of object manipulation, including folding and picking up. In a series of studies,
such as Balkcom and Mason et al. [95], Elbrechter et al. [96], and Namiki et al. [97], the robot is able
to fold a paper using predefined folds, fiducial marker tracking, or the mass–spring–damper model.
Although these approaches could be extended to planar object folding, more flexible manipulations are
not easily performed. As for planar object grasping, the grasper needs to maintain real-time contact with
the object and adapt to the object’s deformation. Gopalakrishnan and Goldberg et al. [98,99] defined the
concept of deform closure, where the form closure of rigid object grasping is extended to deformable planar
objects. Furthermore, the deformable parts are modeled as linearly elastic polygons with a triangular finite
element mesh and given stiffness matrix. This research is based on the assumption that the elasticity is
linear and the gravity is negligible. The effect of these aspects needs to be studied in the future. More
analysis of grasping deformable planar objects could refer to the review [100].

3D objects: In its geometry, this type of object does not have extreme disparity in each dimension.
Objects such as plush toys, dough-like foods, bulk material, etc., belong to this category. This type
of object is more likely to produce unexpected deformation and usually requires more comprehensive
information to assist with robotic grasping. Jørgensen et al. [101] captured a point cloud of deformable
objects using a structured light scanner and used the pick and place strategy after analyzing the sensing
data. This approach could manipulate different pork cuts by suction cups rather than fixed grippers in
real-world trials. In addition, Delgado et al. [102,103] used tactile sensors to achieve the estimation of
deformability degree during the grasping process and the adaptation of deformable objects with different
elastic properties. They not only consider the deformation of the object but also take the object’s softness
into account. Later on, they proposed an adaptable control scheme with a tactile servo to handle the
manipulation tasks of deformable objects. In addition, the physically based model is also significant
for deformable object grasping. For instance, the Kelvin–Voigt model [104] that describes the contact
relationship between the grasper and the object could enable the grasper to lift the deformable object with
a minimum force. The finite-element model [105] could approximate the deformation of the object caused
by the grasper. Although these models work well in the simulation environment, their usability in real life
still needs to be further explored, because the real model is usually more complicated and the accurate
model is difficult to obtain.
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4. Unknown Objects

In this section, we review the approaches used on unknown objects of which some geometric and
physical features both are uncertain. This type of object often exists in unknown environments or multiple
object scenarios with occlusion. The first work for the robot is to search and localize the object, because the
object’s information is hardly determined, particularly in environments with multiple uncertain objects or
occlusion. The next work is for features—such as pose, shape, mass, rigidity, etc.—to be identified for the
robotic grasping. The approach used for geometric-uncertain objects and physical-uncertain objects could
also be applied to identify the geometric and physical information of unknown objects.

Moreover, the robotic grasping is usually complicated, as the parameters of the object have too much
uncertainty. These uncertainties severely limit the robot’s ability to manipulate the object. From the
perspective of applications and task requirements, the geometric and physical parameter identification of
unknown objects could be collectively referred to as feature identification without explicit classification.
Due to the uncertainty impact, typical grasping approaches—such as form-closure approaches and
force-closure approaches—are difficult to apply. The approach based on skill learning and transferring by
learning networks is more popular. In some way, the grasping experience of familiar objects improves the
grasping robustness of unknown objects.

4.1. Search and Localization

As for unknown objects, one of the most challenging problems for object grasping is how to obtain an
accurate position with regard to the robot. Generally, sensors—such as 2D cameras, 3D cameras,
depth sensors, and tactile sensors—are used for the search and localization of unknown objects.
Notwithstanding, the 2D camera does not acquire all the feature information of unknown objects,
especially objects with occlusion, and it works for the rough localization of the object. In contrast, the 3D
camera not only obtains the plane feature information of the object but also acquires the spatial position
information. As a result, the unknown object recognition by 3D cameras has become a research hotspot
in recent years [106]. Compared with passive sensors, such as cameras, lidars, etc., the tactile sensor
inspired by human touch acquires object feature information by active contact perception. The information
obtained by tactile sensors is the closest to the real features of the object.

According to the characteristics of varied sensors, approaches for the search and localization of
unknown objects are classified into three categories, which are image-based approaches, point cloud-based
approaches, and tactile perception-based approaches. The first approach is that the object is detected and
segmented from the 2D image, and the part registration of the object is generated with the viewpoint
identification. Based on Extremum Seeking Control [107], the active vision strategy is able to conduct
continuous optimization backed up with mechanisms to escape from local maxima. For the clutter
environment, as shown in Figure 12, the Partially Observable Markov Decision Process (POMDP) [108] is
used to solve the problem of object searching. In the clutter environment, the robot needs to move objects
around to acquire the information of the object, which reduces the perception uncertainty. The POMDP
provides a principled planning and decision-making framework for the robot to search and move the
object in a partially observable domain. In addition, the 3D point cloud data could be fused with images to
localize the 3D object. Xu et al. [109] proposed a dense PointFusion architecture, where the image data and
original point cloud data are independently processed by CNN and PointNet architecture. The 3D point
cloud data are used as spatial anchors to predict the hypothesis and reliability of multiple 3D boxes. As the
boundary box of the object is determined, the object’s position could be calculated. Notwithstanding that
the image and point cloud data can estimate the position of objects, there are still residual uncertainties,
especially when the important features of objects are obscured.
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Figure 12. Object searching in a cluttered environment [108].

The third approach is that the tactile perception combined with proprioception provides the highly
reliable localization information of objects. Hsiao et al. [110] presented a decision-theoretic approach to
solve the localization problem. The robotic actions are guided by tactile feedback to search the object and
localizes the object by selection among the parameterized set of trajectories. Vezzani et al. [111] introduced
an effective Bayesian-based algorithm named Memory Unscented Particle Filter. This algorithm recursively
solves the 6DoFs localizing problem in a timely way by the measurement of contact points. In addition,
an active exploration approach solely based on tactile information for the robot to explore unknown
workspaces is introduced in [112]. This active approach enables the robot to explore the whole workspace
and cluster all the data points to acquire the points that belong to the same object into one category.
Based on the category, a 3D minimum bounding box is calculated to represent the object. The geometric
features of the object, such as length, width, and height, are roughly estimated by calculating the Euclidean
distance, and then the coordinate of the object is calculated. Although this type of approach could obtain
more realistic information, the exploration efficiency is low, and the exploration accuracy is greatly affected
by the sensor resolution.

4.2. Feature Identification

After obtaining the object’s position, the robot needs to decide how to grasp the object. Although many
feature parameters of unknown objects are useful for the robotic grasping, the pose and shape of the
object are more important for the grasp. These parameters determined the initial motion configuration
of the robot to grasp the object. In addition, other properties concerned—such as color, mass, material,
and compactness—are also discussed in this section.

4.2.1. Pose Estimation

The pose estimation of unknown objects is more challenging than other objects because most
information on the object is uncertain. To solve this problem, Wang et al. [113] proposed a DenseFusion
architecture for 6D pose estimation based on RGB-D images, as shown in Figure 13a. This architecture
processes the RGB data and depth data and then extracts the pixel-wise features for pose estimation.
In addition, Tekin et al. [114] presented a single-shot approach for the pose prediction of objects in RGB
images. A CNN architecture predicts the 6D pose by the PnP algorithm and realizes the real-time processing
without requiring multiple periods or examining multiple hypotheses. For the problem of multi-object
pose estimation, Collet et al. [115] proposed a detection framework for multi-object pose estimation and
detection (MOPED). This framework addresses two main challenges, which are robust performance in
complex scenarios and low latency for real-time operation. The Iterative Clustering Estimation algorithm is
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used to estimate groups of features that belong to the same object. Through clustering, the object hypotheses
are searched within each of the groups. Then, the poses are estimated using Levenberg–Marquardt by
iterations to obtain the final poses from each cluster. The examples of pose recognition are shown in
Figure 13b.

Figure 13. Approaches for pose estimation: (a) the DenseFusion architecture [113], (b) recognition based on
the multi-object pose estimation and detection (MOPED) framework [115].

4.2.2. Shape Detection

In addition to the approaches mentioned in the shape detection of geometric objects, the approach
based on tactile perception is also a trend at present. In the research [116], the problem of shape
reconstruction from sparse tactile data is studied. The Information Gain Estimation Function combines
different goals as a criterion to quantify the cost-aware information gain during exploration. This approach
reconstructs the object’s shape by adding multi-oriented contacts based on criteria such as local information
maximization and exploration cost minimization. Based on tactile sensors, a fast estimation criterion [117]
is chosen for active contact selection, which not only considers the uncertainty of shape estimation but also
takes the travel cost of contact into account. In addition, the Monte Carlo tree searching approach [118]
is used to optimize the gesture sequence of the wrist and select the gesture to obtain the maximum
recognition possibility. The Gaussian Process Implicit Surface Model is used to learn the shape of objects
from tactile information and evaluate the estimation uncertainty. These approaches extend the research
field of unknown objects’ shapes, but the timeliness and accuracy of the detection results have not been
able to meet the standards required for practical applications.

4.2.3. Other Properties Identification

In addition to features, such as position, pose, shape, and texture, which are commonly used in object
recognition and robotic grasping, other features, such as color, material, compactness, mass, etc., need also
be further considered in the process of the recognition and grasp of unknown objects. The object color
is compact and computationally efficient, and particularly is effective for the recognition of occluded
objects [119]. Sande et al. [120] studied the invariance properties and distinctiveness of color descriptors.
The analytical invariance properties of color descriptors are explored by the taxonomy with respect to
photometric transformations. In addition, Škoviera et al. [121] built a bio-inspired intelligent network
named Hi-Erarchical Temporal Memory. This network recognizes the object in cluttered color images
based on the information of color, texture, and shape. In general, the mass of an object could be calculated
by Hooke’s law. However, the motion process of a manipulator is a multi-dimensional motion process,
and it is difficult to maintain the in-hand object to carry out the one-dimensional motion state during the
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object manipulation. Therefore, the mass information of the object is usually acquired by an indirective
estimated approach instead of calculating with force data directly. The mass estimation approach used for
physical-uncertain objects could be extended to unknown objects. In the field of robotic grasping, however,
not all properties are easily obtained because of the limitations of sensor technology. At present, there is no
very effective approach to detect the properties of material and compactness. Therefore, more studies on
sensor technologies and detection approaches to identify objects’ material and compactness need to be
performed in the future.

4.3. Robotic Grasping

For unknown objects, there is not enough feature information for robotic grasping. It is difficult to
precisely solve the parameters in the process of grasping. As a result, the robotic grasping of unknown
objects is hard to carry out by traditional approaches, such as form-closure approaches, force-closure
approaches, feedback control approaches, etc. When humans operate on unfamiliar objects, they usually
deal with them according to their experience of familiar objects. Similarly, a priori experience is also
significant for a robot. To generalize these experiences, many studies focus on using a learning algorithm to
train the previous data and adapting these a priori experiences to new unknown objects. In the paper [122],
a hierarchical controller based on active learning and reactive control is proposed for global perception and
local perception. The controller architecture is shown in Figure 14a. The upper level is used to select the
place for object grasping by a reinforcement learner. The lower level consists of an imitation learner and a
vision-based reactive controller, which is used to determine the appropriate grasping motions. In order to
improve the grasping quality, the grasping function is usually trained by CNN [123]. In the research [124],
the Baxter robot is used to establish datasets with more than 50 K data points through 700 h of experiments,
and then a CNN is trained to predict the grasp function. By smoothing the grasping function with the
pose uncertainty function, the robustness for unknown objects is improved.

Figure 14. A priori experience-based grasping approaches: (a) the hierarchical controller architecture [122],
(b) the active learning architecture [125].

In addition, Fu et al. [125] presented an active learning architecture for some accurate industrial
manipulation. This approach combines the high accuracy of geometry-driven grasping approaches and
the generalization ability of data-driven grasping approaches. As shown in Figure 14b, this process is
categorized into the pre-grasping state and the grasping state. In the pre-grasping state, the manipulator
actively moves until the object is perceived, and a trained CNN is used to estimate the motion. In the
grasping state, the manipulator executes an expected motion to finish the grasping task. Moreover,
Quillen et al. [126] proposed a deep reinforcement learning algorithm for grasping policy learning.
Off-policy learning enables the utilization of grasping data over a wide variety of objects and improves the
ability of generalization to new unknown objects. In order to reduce the cost of training data, an efficient
learning algorithm is proposed for robotic grasping [127]. The geometric consistency between the object
images and the task space is exploited. A relatively small, fully convolutional neural network is used to
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predict grasping parameters. The grasping success probability is predicted by a trained learning network
for the task space motion [128]. This trained network does not need camera calibration or the current
robotic pose. The grasping process is less dependent on the environment and the object—that is, it is more
robust with unstructured environments and unknown objects. Although the learning network improves
the grasping ability of unknown objects by training with a priori grasping data, the ability of this type of
approach to resist external disturbance is insufficient, especially for unknown moving objects and scenarios
with high requirements of manipulation accuracy.

Sensors such as cameras, depth sensors, and tactile sensors could be further used to obtain information
supplements for the robotic grasping status [129]. Features such as position, shape, pose, and other
physical properties provide criteria for the configuration of grasping parameters. For instance, the active
vision obtains the object’s contour curvature and updates the robotic pose to acquire the appropriate
configuration by maximizing the curvature value [53]. Moreover, the tactile feedback provides tactile
feedback for the robotic motion, while vision and other sensors are supplementary [130,131]. For unknown
objects with occlusion, the point cloud data could be used to realize the active recognition of objects and
then be applied for the semantic segmentation of objects [90,132]. The 3D deep CNN [133], as shown
in Figure 15, learns effective features from point clouds and classifies objects by classifier. The grasping
direction and wrist orientation are also predicted based on the shape and pose of the object. A typical
grasping approach [134] based on sensors and learning networks is shown in Figure 16. In this approach,
a touch localization model sequentially explores the workspace and uses a particle filter to aggregate
beliefs from multiple hits of unknown objects. The object’s location is estimated, and an initial grasp is
generated base on the position of the unknown object. An unsupervised auto-encoding scheme is used to
learn the representation of tactile signals. Then, the re-grasping model learns to progressively improve
grasps with tactile feedback. This network could estimate the grasp stability and predict the adjustment
for the next grasp. Although the tactile-based approach improves the perception accuracy of unknown
objects, this is at the cost of high resolution and high time consumption and is not suitable for occasions
with high real-time requirements.

Figure 15. Framework of point cloud processing [133].
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Figure 16. A grasping approach based on sensors and learning networks [134].

5. Discussion and Conclusions

In this paper, we review a series of approaches that focus on the feature sensing and robotic
grasping of objects with uncertain information. A categorization of uncertain objects based on the type
of uncertain information is defined, and uncertain objects are classified into three categories, which are
geometric-uncertain objects, physical-uncertain objects, and unknown objects. Based on this classification,
we summarize the corresponding approaches for each type of object to present a detailed overview of the
feature sensing and robotic grasping of objects with uncertain information. Tables 1–3 summarize all the
approaches discussed in this paper. Since there are differences between the robot platforms, the properties
of the object, and so on in these works, it is meaningless to declare which is better or worse. However,
some facts are discussed as follows.

Table 1. Feature sensing and robotic grasping for geometric-uncertain objects.

Sensing

Position detection 2D images [17,22], 3D images [23,24], Point clouds [18,25,26],
Spatial-temporal feature [27–30], Sensory-fusion feature [31]

Shape identification Learning-based [32], 2D boundary [33], 3D class model [34],
FCNs and CRFs [35], Dense CAD model [36], DeformNet [37]

Pose estimation

Template-based approaches (LINEMOD [38], Hierarchical
fragment matching [39], PCOF-MOD template [40]);
Voting-based approaches (Hough Forest [41–43], Point Pair
Features [44,45]); Learning-based approaches (Random Forest
[46], Deep quadruplet CNN [47])

Grasping Direct configuration-based grasping MDISF & GTO [52], Active vision [53], Underactuated
tendon-driven [54]

Geometric-uncertain objects: For robotic grasping, the object’s geometric information—such as
position, shape, pose, etc.—determines how the robot plans its path and grasps the object with a
feasible pose. The reviewed approaches of feature sensing and robotic grasping are presented Table 1.
The commonly used approach is to collect the object’s images and then detect the position, pose, and other
information of the object through the image processing algorithm [17]. The image-based approaches [22,24]
achieve the plane localization and space localization of the object, which are used in a variety of situations.
The learning networks [32] and CAD models [36,37] obtain the better identification of the shape of the object
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in large-scale photo collections. For the pose estimation of the object, approaches such as LINEMOD [38],
the PCOF-MOD template [40], Hough Forest [41–43], Point Pair Features [44,45] and Random Forest [46]
can predict the object’s pose quickly and robustly, even if there is partial occlusion. In addition, the point
cloud and tactile data are also used to detect the object’s geometric features. The point cloud-based
approach could realize the 3D reconstruction of the object, which enables the robot to find the spatial
grasping point of the object. The high-resolution tactile sensor [135] could obtain more real feature
information of the object, while the detection efficiency is not enough and not suitable for scenarios with a
high real-time requirement. In contrast, the image-based approach is more efficient and obtains a better
recognition effect.

Table 2. Feature sensing and robotic grasping for physical-uncertain objects.

Sensing

Mass estimation
Force and torque [57], 3D force vector [59], Deep learning and
STAG [60], Geometric outline-mass model [62], Volume-mass
model [63,64]

Rigidity prediction Motion analysis model [65], Flexible tactile-sensor array [66,67]

Texture detection Higher order statistics [68], Edge-texture feature [69], Texture
rendering model [70], Texture contour model [71], DMCA [72]

Grasping

Rigid objects
LfD(CC-LfD [76], RGB-D observation-based demonstration [78]);
Skill-based programming [80–84]; Task oriented-based grasping
(RGB-D part-based [85], BADGr [86], TOG-Net [88])

Deformable objects

Linear objects (Robotic individual skills [91], Flexible rope
model [92]); Planar objects (Predefined parameter [95], Fiducial
marker tracking [96], Mass–spring–damper model [97],
Extended deformable model [98,99]); 3D objects (Point clouds [101],
Tactile data [102,103], Kelvin–Voigt model [104], Finite-element
model [105])

Table 3. Feature sensing and robotic grasping for unknown objects.

Sensing

Search & localization

Image-based approaches (Extremum Seeking Control [107],
POMDP [108]); Point cloud-based approaches (PointFusion
architecture [109]); Tactile perception-based approaches
(Decision-theoretic approach [110], Bayesian-based approach [111],
Active exploration approach [112])

Pose estimation DenseFusion [113], CNN [114], MOPED [115]

Shape detection Information Gain Estimation [116], Monte Carlo tree [118]

Other properties identification

Color (Color descriptors [120], Hi-Erarchical Temporal
Memory [121]); Mass (Approaches used for physical-uncertain
objects could be extended to unknown objects); Material and
Compactness (Not a very effective approach)

Grasping Learning-based grasping
Hierarchical controller [122], Active learning [125], Deep
reinforcement learning [126], 3D deep CNN [133], Sensors and
learning networks-based approach [134]

In the existing applications, the geometric-uncertain object is usually uncomplicated or commonly
encountered. It is not a big challenge to grasp this type of object for a robot. Considering the different
requirements, varied structures of graspers are designed. The robot could grasp the object with a
feasible grasper structure and predefined parameters according to the specific scenario. The classical
approaches, such as form-closure grasp [7] and force-closure grasp [8], can work well for this type
of object. As noted previously, varied graspers are designed to adapt the robotic grasping, such as
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multi-fingered graspers [50,51] and soft graspers [48,54], which enhance the grasping capability for the
geometric-uncertain object.

Physical-uncertain objects: Compared with geometrical-uncertain objects, the feature sensing and
robotic grasping of physical-uncertain objects are more complex. As for the physical properties, such as
mass, rigidity, texture, and so on, it is more difficult to build an accurate sensing model due to the applied
limitation of specific sensors in robotic grasping. Due to the limitation of effective sensors, the robot is
unlikely to directly and accurately detect the object’s mass. Although force/torque sensors [57,59] and
tactile sensors [60] have been tried to detect the object’s mass, the detection accuracy depends more
on the mathematic model. In addition, approaches based on the geometric outline-mass model [62]
and volume-mass model [63,64] also offer new possibilities for mass detection. The rigidity is another
challenging property that remained to be detected. Tactile sensors [66,67] could be used to detect this
property; however, an unexpected change in the object’s geometric features or damage of the object should
be avoided. When it comes to texture detection, approaches are becoming more diverse. A tactile sensor
array could be used to detect the object’s texture, while the sensor array has high-resolution requirements.
In addition, the texture could also be sensed through image processing. As mentioned in [69,70], the texture
of objects in light and dark backgrounds or low-texture and high-light objects can be detected with high
resolution. The DMCA [72] learns visual images and tactile data through deep neural networks and
achieves cloth texture recognition. The texture detection only with visual perception is easily affected
by the image quality, especially the resolution, color difference, and distortion. Multi-sensor fusion can
effectively improve the accuracy and robustness of texture detection.

The mentioned physical properties play a major role in the robotic grasping of the object. For instance,
the robot needs to grasp the object with an appropriate grasping force so that the object is grasped tightly
without slippage and damage. The object’s mass and texture provide the reference for the selection of
grasping force. Furthermore, the object’s rigidity determines whether the object is a rigid object or a
deformable object. For rigid objects, the deformation of objects is negligible. The LfD approach [76,78]
could transfer the manipulation skill from human to robot, which enables a robot to manipulate objects with
more flexibility. Skill-based programming [80–84] eases the robot program generation and enables the robot
to complete varied object manipulation, such as grasping, picking, and assembly. This approach requires
mastering in advance what the robot can accomplish. Moreover, the task-oriented network [86,88] builds a
close relationship between object grasping and aimed tasks, which makes tasks easier to be completed by a
robot. When it comes to deformable objects, the deformation of objects must be taken into account in the
process of robotic grasping. Based on their geometry, deformable objects are classified into three categories,
which are linear objects, planar objects, and 3D objects. The robotic grasping and manipulating approach
for each type of deformable object are listed in Table 2. Most of the approaches are only applicable to
specific objects; the generalization ability is not enough. In addition, the nonlinear physical model of
deformation needs to be studied and the real-time performance also needs to be improved to adapt the
time requirements of the working situation.

Unknown objects: Since there are too many uncertainties about the geometric and physical features
of the object, this type of object is the most challenging for a robot to handle. In order to sense the object’s
feature, the first step is to search and localize the object. As showed in Table 3, the reviewed approaches
are classified into three categories, which are image-based approaches [107,108], point cloud-based
approaches [109], and tactile perception-based approaches [110–112]. The first two approaches are
relatively mature and could deal with the problem of multi-object search in a cluttered environment.
The POMDP [108], extremum seeking strategy [107], and learning networks [109] are usually used in these
approaches and the results are acceptable to a certain extent. However, these methods require a higher
quality of images and point clouds. When the important features of the object, such as texture and shape,
are obscured, the position accuracy may greatly decrease. In contrast, the tactile perception-based approach
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obtains the realistic position information of unknown objects through the sense of touch, as humans
do. The decision-theoretic approach [110] guides robotic actions by tactile feedback to search the object,
while the Bayesian-based approach [111] can solve the 6DoFs localization problem by the measurement
of contact points. Moreover, the active approach proposed in [112] enables the robot to explore the
whole workspace and calculates the 3D minimum bounding box of the object. However, the efficiency of
this approach is not enough, and it is difficult to establish an accurate analytical model to evaluate the
relationship between tactile data and object features.

As the object’s position is obtained, the robot needs to identify more features of the object to support
the robotic grasping. The approaches used for geometric-uncertain objects and physical-uncertain objects
could also be extended to unknown objects after the identification model is redesigned and optimized.
For example, the MOPED [115] based on the Iterative Clustering Estimation algorithm can complete
the multi-object pose estimation and detection. It addresses two main challenges, which are robust
performance in complex scenarios and low latency for real-time operation. In addition, any characteristic
of unknown objects is also valuable for object recognition. For instance, the unknown object’s color data
from color sensors are helpful for the recognition of the object’s shape and pose [119,121]. The material
is also significant for the identification of unknown objects; however, there is no highly effective way
to detect the category of material—such as metal, plastic, glass, etc.—in the robotic field. There are
two possible assumptions, which are Non-Destructive Testing Technology (NDTT) [136,137] and Ray
Transmission Imaging Technology (RTIT) [138–140] and may be used to classify the material. In general,
the NDTT is used for product defect detection; however, it may also be used for material detection.
For instance, ultrasonic testing is an NDTT and is able to detect metal, nonmetal, and composite materials.
The classification model needs to be further studied, and it identifies the type of material based on
ultrasonic signals. The RTIT is usually used in security check occasions, especially in airports, stations, etc.
The object’s shape and density information are easily obtained through the RTIT. Before identification,
a material matching database needs to be established firstly, and then the category of material is classified
based on the a priori knowledge of material categories.

Although some features of unknown objects could be acquired through feature sensing, there are still
errors between these features and real features. As a result, the robotic grasping approaches for familiar
objects are not applied to unknown objects, and even approaches for geometric-uncertain objects and
physical-uncertain objects are also hardly used in the robotic grasping of unknown objects. Inspired by
humans, the grasping experience of familiar objects is significant for the grasping process of unknown
objects. These experiences could improve the robustness of the grasping ability to uncertain properties.
Learning-based approaches, such as active learning [125], deep reinforcement learning [126], and 3D deep
CNN [133], play a significant role in experience transferring and are becoming a future trend to be more
investigated. However, the learning-based approach is usually time-consuming because of the training and
learning process based on a large database. As a result, it not suitable to deal with the sudden change in
objects at industrial lines. Additionally, it does not overcome the object’s uncertain features. When it comes
to the high-precision scenario, such as peg-in-hole assembly with small clearance, these uncertain features
may still have a converse impact on the accuracy of subsequent manipulation tasks. To solve this problem,
a feasible way is that multiple types of sensors are used to provide more abundant information about the
object. Especially with the development of sensor technology, the grasping approach based on learning
networks and multi-sensor fusion has attracted more attention. A typical approach is the sensors and
learning networks-based approach [134]. This type of approach is that the learning network generates an
initial grasping configuration and the additional sensor is used to provide feedback information to correct
the process of grasping. For instance, as the object is grasped based on the learning work, the grasper with
finger tactile sensors detects the grasping state in real time. Then, the robot timely adjusts the grasping
configuration according to the grasping state, which is helpful to improve the accuracy of the manipulation
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task. This way requires high real-time performance, which, in turn, imposes more requirements of the
robot’s hardware and the complexity of the algorithms.

Hopefully, this review will help researchers with the feature sensing and robotic grasping of objects
with uncertain information. Since there are many differences between the test platform and the feature type
of uncertain objects, it is impossible to choose an approach that has a good performance for all uncertain
objects. For the grasp and manipulation of uncertain objects, there are several interesting problems to be
more investigated in the future, including (a) the effective sensing approach for object’s unconventional
features, such as irregular shape and real-time deformation; (b) the precise correlation model between
object grasping and task manipulating; and (c) the real-time evaluation criteria for the degree of object
grasping and task completion.
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