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Abstract: We address the problem of localizing waste objects from a color image and an optional
depth image, which is a key perception component for robotic interaction with such objects.
Specifically, our method integrates the intensity and depth information at multiple levels of spatial
granularity. Firstly, a scene-level deep network produces an initial coarse segmentation, based on
which we select a few potential object regions to zoom in and perform fine segmentation. The results
of the above steps are further integrated into a densely connected conditional random field that
learns to respect the appearance, depth, and spatial affinities with pixel-level accuracy. In addition,
we create a new RGBD waste object segmentation dataset, MJU-Waste, that is made public to facilitate
future research in this area. The efficacy of our method is validated on both MJU-Waste and the Trash
Annotation in Context (TACO) dataset.

Keywords: waste object segmentation; RGBD segmentation; convolutional neural network; conditional
random field

1. Introduction

Waste objects are commonly found in both indoor and outdoor environments such as household,
office or road scenes. As such, it is important for a vision-based intelligent robot to localize and
interact with them. However, detecting and segmenting waste objects are much more challenging
than most other objects. For example, waste objects could either be incomplete or damaged, or both.
In many cases, their presence could only be inferred from scene-level contexts, e.g., via reasoning
about their contrast to the background and judging by their intended utilities. On the other hand,
one key challenge to accurately localizing waste objects is the extreme scale variation resulting from the
variable physical sizes and the dynamic perspectives, as shown in Figure 1. Due to the large number
of small objects, it is difficult even for most humans to accurately delineate waste object boundaries
without zooming in to see the appearance details clearly. For the human vision system, however,
attention can either be shifted to cover a wide area of the visual field, or narrowed to a tiny region as
when we scrutinize a small area for details (e.g., [1–4]). Presented with an image, we can immediately
recognize the meaning of the scene and the global structure, which allow us to easily spot objects
of interest. We can consequently attend to those object regions to perform fine-grained delineation.
Inspired by how the human vision system works, we solve the waste object segmentation problem in a
similar manner by integrating visual cues from multiple levels of spatial granularity.
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Figure 1. Example images from MJU-Waste and TACO [5] datasets and their zoomed-in object regions.
Detecting and localizing waste objects require both scene level and object level reasoning. See text
for details.

The general idea of exploiting objectness has long been proven effective for a wide range of
vision-based applications [6–9]. In particular, several works have already demonstrated that objectness
reasoning can positively impact semantic segmentation [10–13]. However, in this work we propose
a simple yet effective strategy for waste object proposal that neither require pretrained objectness
models nor additional object or part annotations. Our primary goal is to address the extreme scale
variation which is much less common in generic objects. In order to obtain accurate and coherent
segmentation results, our method performs joint inference at three levels. Firstly, we obtain a coarse
segmentation at the scene-level to capture the global context and to propose potential object regions.
We note that our simple object region proposal strategy captures the objectness priors reasonably well
in practice. This is followed by an object-level segmentation to recover fine structural details for each
object region proposal. In particular, adopting two separate models at the scene and object levels
respectively allows us to disentangle the learning of the global image contexts from the learning of
the fine object boundary details. Finally, we perform joint inference to integrate results from both the
scene and object levels, as well as making pixel-level refinements based on color, depth, and spatial
affinities. The main steps are summarized and illustrated in Figure 2. We obtain significantly superior
results with our method, greatly surpassing a number of strong semantic segmentation baselines.

Recent years witnessed a huge success of deep learning in a wide spectrum of vision-based
perception tasks [14–17]. In this work, we would also like to harness the powerful learning capabilities
of convolutional neural network (CNN) models to address the waste object segmentation problem.
Most state-of-the-art CNN-based segmentation models exploit the spatial-preserving properties of
fully convolutional networks [17] to directly learn feature representations that could translate into class
probability maps either at the scene level (i.e., semantic segmentation) or the object level (i.e., instance
segmentation). One of the key limitations when it comes to applying these general-purpose models
directly for waste object segmentation is that they are unable to handle the extreme object scale variation
due to the delicate contention between global semantics and accurate localization under a fixed feature
resolution, and the resulting segmentation can be inaccurate for the abundant small objects with
complex shape details. Based upon this observation, we propose to learn a multi-level model that
allows us to adaptively zoom into object regions to recover fine structural details, while retaining a



Sensors 2020, 20, 3816 3 of 22

scene-level model to capture the long-range context and to provide object proposals. Furthermore,
such a layered model can be jointly reasoned with pixel-level refinements under a unified Conditional
Random Field (CRF) [18] model.

…

Coherent final segmentation

Scene-level Parsing

Object-level Parsing

Coarse segmentation

…

Fine segmentation

Input image

Zoom-in view

Color Depth Spatial

Pixel-level Affinity Parsing

Object region proposals

Figure 2. Overview of the proposed method. Given an input image, we approach the waste object
segmentation problem at three levels: (i) scene-level parsing for an initial coarse segmentation,
(ii) object-level parsing to recover fine details for each object region proposal, and (iii) pixel-level
refinement based on color, depth, and spatial affinities. Together, joint inference at all these levels
produces coherent final segmentation results.

The main contributions of our work are three-fold. Firstly, we propose a deep-learning based waste
object segmentation framework that integrates scene-level and object-level reasoning. In particular,
our method does not require additional object-level annotations. By virtue of a simple object region
proposal method, we are able to learn separate scene-level and object-level segmentation models that
allow us to achieve accurate localization while preserving the strong global contextual semantics.
Secondly, we develop a strategy based on densely connected CRF [19] to perform joint inference at the
scene, object, and pixel levels to produce a highly accurate and coherent final segmentation. In addition
to the scene and object level parsing, our CRF model further refines the segmentation results with
appearance, depth, and spatial affinity pairwise terms. Importantly, this CRF model is also amenable
to a filtering-based efficient inference. Finally, we collected and annotated a new RGBD [20] dataset,
MJU-Waste, for waste object segmentation. We believe our dataset is the first public RGBD dataset
for this task. Furthermore, we evaluate our method on the TACO dataset [5], which is another public
waste object segmentation benchmark. To the best of our knowledge, our work is among the first in
the literature to address waste object segmentation on public datasets. Experiments on both datasets
verify that our method can be used as a general framework to improve the performance of a wide
range of deep models such as FCN [17], PSPNet [21], CCNet [22] and DeepLab [23].

We note that the focus of this work is to obtain accurate waste object boundary delineation.
Another closely related and also very challenging task is waste object detection and classification.
Ultimately, we would like to solve for waste instance segmentation with fine-grained class information.
However, existing datasets do not provide a large number of object classes with sufficient training data.
In addition, differentiating waste instances under a single class label is also challenging. For example,
the best Average Precision (AP) obtained in [5] are in the 20s for the TACO-1 classless litter detection
task where the goal is to detect and segment litter items with a single class label. Therefore, in this
paper we adopt a research methodology under which we gradually move toward richer models while
maintaining a high level of performance. In this regard, we formulate our problem as a two-class
(waste vs. background) semantic segmentation one. This allows us to obtain high quality segmentation
results as we demonstrate with our experiments.
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In the remainder of this paper, Section 2 briefly reviews the literature on waste object segmentation
and related tasks, as well as recent progress in semantic segmentation. We then describe details of
our method in Section 3. Afterwards, Section 4 presents findings from our experimental evaluation,
followed by closing remarks in Section 5.

2. Related Work

2.1. Waste Object Segmentation and Related Tasks

The ability to automatically detect, localize and classify waste objects is of wide interest in the
computer and robotic vision community. However, there are relatively limited works in the literature
that address the specific task of waste object segmentation. We believe this is partially due to the
poor availability of public waste segmentation datasets until very recently. Therefore, in this paper
we propose the MJU-Waste dataset with 2475 RGBD images each annotated with a pixelwise waste
object mask. To facilitate future research, we make our dataset publicly available. To the best of our
knowledge, this is the only public dataset of this kind in addition to the TACO dataset [5] of 1500
color images. Below we briefly review some recent works on waste object classification, detection and
segmentation which are closely related ours.

Yang and Thung [24] addressed the waste classification problem and compared the performance
of shallow and deep models. In their work, they collected the TrashNet dataset of 2500 images of
single pieces of waste. Based on their data, Bircanoğlu et al. [25] and Aral et al. [26] performed
detailed comparisons among various deep architectures. Additionally, Awe et al. [27] created a
synthetic dataset for waste object detection based on Faster RCNN [16]. Similarly, Chu et al. [28]
proposed a hybrid CNN approach for waste classification with a dataset of 5000 waste objects.
Vo et al. [29] created another dataset VN-trash with 5904 images for deep transfer learning. Furthermore,
Ramalingam et al. [30] presented a debris classification model for floor-cleaning robots with a cascade
CNN and an SVM. Yin et al. [31] proposed a lightweight CNN for food litter detection in table cleaning
tasks. Rad et al. [32] presented an approach similar to OverFeat [33] for litter object detection. Another
similar approach based on Faster RCNN [16] is presented by Wang and Zhang [34]. Contrary to the
above works, we address the waste object segmentation problem that requires accurate delineation of
object boundaries.

In terms of methods that involves a segmentation component, Bai et al. [35] designed a robot for
picking up garbage on the grass with a two-stage perception approach. Firstly, they used SegNet [36]
for ground segmentation to allow the robot to move toward waste objects. After a close-range
image is acquired, ResNet [14] is used for object classification. Here the segmentation module is
used for background modeling of the grassland only, hence no object segmentation is performed.
Deepa et al. [37] presented a garbage coverage segmentation method in water terrain based on color
transformation and K-means. In addition, Mittal et al. [38] proposed an approach based on the
Fully Convolutional Network (FCN) [17] for coarse garbage segmentation. Their method is based on
extracting image patches and combining their predictions, and therefore cannot capture the finer object
boundary details. Zeng et al. [39] proposed a multi-scale CNN based garbage detection method from
airborne hyperspectral data. In their method, a binary segmentation map is generated as the input to
selective search [7] for the purpose of obtaining bounding box-based region proposals. All these above
works do not address the specific task of waste object segmentation for robotic interaction.

Perhaps being the closest to our work, Zhang et al. [40] proposed an object segmentation method
for waste disposal lines based on RGBD sensors. Their method begins with background subtraction
on the 3D point cloud, and then attempts to find an optimal projection plane for subsequent object
segmentation. Another work [41] from the same group proposed a relabeling method for ambiguous
regions after the background is subtracted. Unlike their methods, we take a data-driven approach
to address the problem in a much more challenging scenario. Specifically, our method does not
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assume a particular background model and is able to segment waste objects in both hand-held and
in-the-wild scenarios.

Another work that is conceptually similar to ours is from Grard et al. [42]. They explored an
interesting interactive setting for object segmentation from a cluttered background. A user is asked to
click on an object to extract, and their model uses a dual-objective FCN trained on synthetic depth
images to produce the object mask. In our work, however, we aim at a more challenging scenario that
does not require human interaction.

2.2. Semantic Segmentation

The task of assigning a class label to every pixel in an image is a long-established fundamental
problem in computer vision [43–51]. Since the pioneering work of Long, Shelhamer and Darrell [17],
researchers proposed a large number of architectures and techniques to improve upon the FCN to
capture multi-scale context [52–58] or to improve results at object boundaries [59–66]. Other recent
works have explored encoder-decoder structures [36,67,68] and contextual dependencies based on
the self-attention mechanism [22,69–71]. For example, some of the recent influential works include
PSPNet [21] which proposed the pyramid pooling module to combine representations from multiple
scales and RefineNet [72] in which a multi-path refinement network is proposed for high-resolution
semantic segmentation. Furthermore, Gated SCNN [73] proposed a two-stream structure that explicitly
enhances shape prediction. We note that the performance of semantic segmentation algorithms
is clearly related to the backbone architecture being used. For example, the recently proposed
ResNeSt [15] model based on Split-Attention blocks provided large performance improvements
to a number of vision tasks including semantic segmentation.

We note that our work is similar to DeepLab [74] whose main contributions include the atrous
spatial pyramid pooling (ASPP) module to capture the multi-scale context and the use of dense
CRF [19] to improve results at object boundaries. In their follow up work [23,75], they improved
the ASPP module by adding image pooling and a decoder structure. Our method differs from the
DeepLab series in two important aspects. Firstly, our method is tailored to the task of waste object
segmentation and introduces layered deep models that perform scene-level parsing and object-level
parsing respectively. Secondly, the dense CRF model in our work integrates information from both the
scene and object level parsing results, as well as pixel-level affinities which can additionally encode
local geometric information via input depth images. In fact, we demonstrate through our experiments
that the proposed method is a general framework which can be applied in conjunction with DeepLab
and other strong semantic segmentation baselines such as PSPNet [21] and CCNet [22] to improve
their results by a clear margin on the waste object segmentation task.

There have been a few works that explored semantic segmentation with RGBD data [76–79].
For example, FuseNet [80] proposed a two-stream encoder that extracts features from both color and
depth images in an encoder-decoder type of network. Qi et al. [81] constructed a graph neural network
based on spatial affinities inferred from depth. Contrary to existing works, we use depth affinities as a
means to refining waste object segmentation results. Our use of depth information is flexible in that
the model can cope with situations where the depth modality is present or absent without re-training.

Lastly, there have been a few works that tackle objectness aware semantic segmentation [10,11].
Apart from addressing the problem in the novel waste object segmentation domain, our method uses a
simple yet effective strategy for object region proposal that does not require any additional object or
part annotations.

3. Our Approach

In this section, let us formally introduce the waste object segmentation problem and the proposed
approach. We begin with the definition of the problem and notations. Given an input color image
and optionally an additional depth image, our model outputs a pixelwise labeling map, as shown in
Figure 2. Mathematically, denote the input color image as I ∈ RH×W×3, the optional depth image as
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D ∈ RH×W , and the semantic label set as C = {1, 2, . . . , C}, where C is the number of classes. Our goal
is to produce a structured semantic labeling x ∈ CH×W . We note that in deep models, the labeling of x
at image coordinate (i, j), xij, is usually obtained via multi-class softmax scores on a spatial-preserving

convolutional feature map C ∈ RH×W×C, i.e., xij = argmax
k′

exp(Ci,j,k′ )

∑C
k=1 exp(Ci,j,k)

. In practice, it is common

that the convolutional feature map C is downsampled w.r.t. the original image resolution, but we can
always assume that the resolution can be restored with interpolation.

3.1. Layered Deep Models

In this work, we apply deep models at both the scene and the object levels. For this purpose, let us
define a number of image regions in which we obtain deeply trained feature representations. Firstly,
let R0 = {(i, j)i∈{1...H},j ∈{1...W}} be the set of all spatial coordinates on the image plane, or the entire
image region. This is the region in which we perform scene-level parsing (i.e., coarse segmentation).
In addition, we perform object-level parsing (i.e., fine segmentation) on a set of non-overlapping object
region proposals. We denote each of these additional regions asRl = {(i, j)i∈{1...Hl},j ∈{1...Wl}}, 1 ≤ l ≤ L.
Details on generating these regions are discussed in Section 3.3. We apply our coarse segmentation feature
embedding network Fc and the fine segmentation feature embedding network F f to the appropriate
image regions as follows:

C0 = Fc(R0 ⇒ I),

Cl = F f (Rl ⇒ I), 1 ≤ l ≤ L (1)

whereRl ⇒ I denotes cropping the regionRl from image I. Here C0 ∈ RH×W×C and Cl ∈ RHl×Wl×C,
and we note that these feature maps are upsampled where necessary. In addition, the spatial dimension
may be image and region specific for bothR0 andRl , which poses a practical problem for batch-based
training. To address this issue, during CNN training we resize all image regions so that they have a
common shorter side length, followed by randomly cropping a fixed-sized patch as part of the data
augmentation procedure. We refer the readers to Section 4.2 for details. In Figure 3, the processes
shown in blue and yellow illustrate the steps described in this section.

Fc

F f

φc(xij; I) φ f (xij; I) ψa,s,d(xij, xuv; I, D)

Φc(x; I) Φ f (x; I) Ψ(x; I, D)

R0 R1 R2

input image

joint inference

Figure 3. The graphical representation of our CRF. Fc and F f represent the feature embedding
functions for the coarse and the fine segmentation networks. Our model consists of the scene-level
unary term Φc(x; I), the object-level unary term Φ f (x; I), and the pixel-level pairwise term Ψ(x; I, D).

3.2. Coherent Segmentation with CRF

Given the layered deep models, we now introduce our graphical model for predicting coherent
waste object segmentation results. Specifically, the overall energy function of our CRF model consists
of three main components:

E(x, I, D) = Φc(x; I) + α ·Φ f (x; I) + Ψ(x; I, D) (2)
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where Φc(x; I) represents the scene-level coarse segmentation potentials, Φ f (x; I) denotes the
object-level fine segmentation potentials, and Ψ(x; I, D) is the pairwise potentials that respect the color,
depth, and spatial affinities in the input images. α is the weight for the relative importance among the
two unary terms. The graphical representation of our CRF model is shown in Figure 3. We describe
the details of these three terms below.

Scene-level unary term. The scene-level coarse segmentation unary term is given by Φc(x; I) =

∑(i,j)∈R0
φc(xij; I) = ∑(i,j)∈R0

− log(Pc(xij; I)) where Pc(xij; I) is a pixelwise softmax on the feature
map C0 as follows:

Pc(xij; I) =
exp(Ci,j,k′

0 )

∑C
k=1 exp(Ci,j,k

0 )
Jxij = k′K (3)

where J·K denotes the indicator function. This term produces a coarse segmentation map based on the
long-range contexts from the input image. Importantly, we use the output of this term to generate our
object region proposals, as discussed in Section 3.3.
Object-level unary term. The object-level fine segmentation unary term is given by Φ f (x; I) =

∑(i,j)∈R0
φ f (xij; I) where φ f (xij; I) is defined as:

φ f (xij; I) =

{
− log(Pf (xij, l; I)), if (i, j) ∈ Rl , 1 ≤ l ≤ L,

φc(xij; I), otherwise
(4)

The formulation above states that if a pixel location (i, j) belongs to one of the L object
region proposals, a negative log-probability obtained via fine segmentation is adopted. Otherwise,
the object-level unary term falls back to the scene-level unary potentials. Here the probability Pf (xij, l; I)
given by the fine segmentation model is obtained as follows:

Pf (xij, l; I) =
exp(C

T 1
l (i),T 2

l (j),k′

l )

∑C
k=1 exp(C

T 1
l (i),T 2

l (j),k
l )

Jxij = k′K (5)

where T 1
l (·) and T 2

l (·) are translation functions that map the image coordinates to that of the l-th
object proposal region, and Cl is the output feature embedding from the fine segmentation model for
the l-th object proposal region. We note that the object-level unary potentials typically recover more
fine details along object boundaries, as opposed to the scene-level unary potentials. In general, it would
become too computationally expensive to compute scene-level potentials at a comparable resolution
for the entire image. In most cases, computing the object-level unary term on less than 3 object region
proposals are sufficient, see Section 3.3 for details. Additionally, our object-level potentials are obtained
via a separate deep model that allows us to decouple the learning of long-range contexts from the
learning of fine structural details.
Pixel-level pairwise term. Although the object-level unary potentials provide finer segmentation
details, accurate boundary details could still be lost for some irregularly shaped waste objects.
This poses a practical challenge for detail-preserving global inference.

Following [19], we address this challenge by introducing a pairwise term that is a linear
combination of Gaussian kernels in a joint feature space that includes color, depth, and spatial
coordinates. This allows us to produce coherent object segmentation results that respect the appearance,
depth, and spatial affinities in the original image resolution. More importantly, this form of the pairwise
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term allows for efficient global inference [19]. Specifically, our pairwise term Ψ(x; I, D) includes an
appearance term ψa(xij, xuv; I), a spatial smoothing term ψs(xij, xuv) and a depth term ψd(xij, xuv; D):

Ψ(x; I, D) =∑
(i,j)∈R0
(u,v)∈R0

Jxij 6= xuvK
[
ψa(xij, xuv; I)

+ ψs(xij, xuv) + ψd(xij, xuv, D)
]

(6)

where Jxij 6= xuvK is the Potts label compatibility function. The appearance term and the smoothing
term follow [19] and take the following form:

ψa(xij, xuv; I) = w(a) exp
(
−
|pij − puv|2

2θ2
α

−
|Iij − Iuv|2

2θ2
β

)
(7)

ψs(xij, xuv) = w(s) exp
(
−
|pij − puv|2

2θ2
γ

)
(8)

where Iij and pij are the image appearance and position features at the pixel location (i, j). In addition,
when a input depth image D is available, we are able to enforce an additional pairwise term induced
by geometric affinities:

ψd(xij, xuv; D) = w(d) exp
(
−
|pij − puv|2

2θ2
δ

−
|Dij − Duv|2

2θ2
ε

)
(9)

where Dij is the depth reading at the pixel location (i, j). We note that in practice, any missing values in
D are filled in with a median filter [82] beforehand, see Section 4.1 for details. In addition, Equation (9)
can be conveniently added or removed depending on the depth data availability. We simply discard
Equation (9) when training models for the TACO dataset which only contains color images.

3.3. Generating Object Region Proposals

In this work, we follow a simple strategy to generate object region proposals Rl =

{(i, j)i∈{1...Hl},j ∈{1...Wl}}, 1 ≤ l ≤ L. In particular, the output from the scene-level coarse segmentation
model is a good indication of the waste object locations. See Figure 3 for an example. We begin
with extracting the connected components in the foreground class labelings of x ∈ CH×W from the
maximum a posterior (MAP) estimate of the scene-level unary term Φc(x; I). For each connected
component, a tight bounding box Rt

l is extracted. This is followed by extending Rt
l by 30% in four

directions (i.e., N,S,W,E), subject to the image boundary truncation. Finally, we merge overlapping
regions and remove those below or above certain size thresholds (details in Section 4.2) to obtain a
concise set of final object region proposalsRl , 1 ≤ l ≤ L. Example object region proposals obtained
using this procedure are shown in Figure 4, and we note that any similar implementation should also
work satisfactorily.

Most images from the MJU-Waste dataset contain only one hand-held waste object per image.
For DeepLabv3 with a ResNet-50 backbone, for example, only 2.4% of all images from MJU-Waste
produce 2 or more object proposals. For the TACO dataset, 24.0% of all images produce 2 or more
object proposals. However, only 8.1% and 0.6% of all images produce more than 3 and 5 object
proposals, respectively.



Sensors 2020, 20, 3816 9 of 22

Figure 4. Example object region proposals. The first two rows show the object region proposals
from the MJU-Waste dataset. The remaining two rows show the object region proposals from the
TACO dataset.

3.4. Model Inference

Following [19], we use the mean field approximation of the joint probability distribution P(x)
that computes a factorized distribution Q(x) which minimizes the KL-divergence [83,84] KL(Q||P).
For our model, this yields the following message passing-based iterative update equation:

Qij(xij = k) =
1

Zij
exp

{
− φc(xij)− α · φ f (xij)

− ∑
k′∈C

Jk, k′K ∑
uv 6=ij

[
ψa(xij, xuv) + ψs(xij, xuv) + ψd(xij, xuv)

]
Quv(k′)

}
(10)

where the input color image I and the depth image D are omitted for notation simplicity. In practice,
we use the efficient message passing algorithm proposed in [19]. The number of iterations is set to 10
in all experiments.

3.5. Model Learning

Let us now move on to discuss details pertaining to the learning of our model. Specifically,
we learn the parameters of our model by piecewise training. First, the coarse segmentation feature
embedding network Fc is trained with standard cross-entropy (CE) loss on the predicted coarse
segmentation. Based on the coarse segmentation for the training images, we extract object region
proposals with the method discussed in Section 3.3. This allows us to then train the fine segmentation
feature embedding network F f using the cropped object regions in a similar manner. Next, we learn
the weight and the kernel parameters of our CRF model. We initialize them to the default values used
in [19] and then use grid search to finetune their values on a held-out validation set. We note that our
model is not too sensitive to most of the parameters. On each dataset, we use fixed values of these
parameters for all CNN architectures. See Section 4.2 for details.

4. Experimental Evaluation

In this section, we compare the proposed method with state-of-the-art semantic segmentation
baselines. We focus on two challenging scenarios for waste object localization: the hand-held setting
(for applications such as service robot interactions or smart trash bins) and waste objects “in the wild”.
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In our experiments, we found that one of the common challenges for both scenarios is the extreme
scale variation causing standard segmentation algorithms to underperform. Our proposed method,
however, greatly improves the segmentation performance in these adverse scenarios. Specifically,
we evaluate our method on the following two datasets:

• MJU-Waste Dataset. In this work, we created a new benchmark for waste object segmentation.
The dataset is available from https://github.com/realwecan/mju-waste/. To the best of our
knowledge, MJU-Waste is the largest public benchmark available for waste object segmentation,
with 1485 images for training, 248 for validation and 742 for testing. For each color image,
we provide the co-registered depth image captured using an RGBD camera. We manually labeled
each of the image. More details about our dataset are presented in Section 4.1.

• TACO Dataset. The Trash Annotations in COntext (TACO) dataset [5] is another public benchmark
for waste object segmentation. Images are collected from mainly outdoor environments such as
woods, roads and beaches. The dataset is available from http://tacodataset.org/. Individual
images in this dataset are either under the CC BY 4.0 license or the ODBL (c) OpenLitterMap &
Contributors license. See http://tacodataset.org/ for details. The current version of the dataset
contains 1500 images, and a split with 1200 images for training, 150 for validation and 150
for testing is available from the authors. In all experiments that follow, we use this split from
the authors.

We summarize the key statistics of the two datasets in Table 1. Once again, we emphasize
that one of the key characteristics of waste objects is that the number of objects per class can be
highly imbalanced (e.g., in the case of TACO [5]). In order to obtain sufficient data to train a strong
segmentation algorithm, we use a single class label for all waste objects, and our problem is therefore
defined as a binary pixelwise prediction one (i.e., waste vs. background). For the quantitative
evaluation that follows, we report the performance of baseline methods and the proposed method by
four criteria: Intersection over Union (IoU) for the waste object class, mean IoU (mIoU), pixel Precision
(Prec) for the waste object class, and Mean pixel precision (Mean). Let TP, FP and FN denote the total
number of true positive, false positive and false negative pixels, respectively. The four criteria used are
defined as follows:

• Intersection over Union (IoU) for the c-th class is the intersection of the prediction and
ground-truth regions of the c-th class over the union of them, defined as:

IoUc =
TPc

TPc + FPc + FNc
(11)

• mean IoU (mIoU) is the average IoU of all C classes:

mIoU =
1
C

C

∑
c=1

TPc

TPc + FPc + FNc
(12)

• Pixel Precision (Prec) for the c-th class is the percentage of correctly classified pixels of all
predictions of the c-th class:

Precc =
TPc

TPc + FPc
(13)

• Mean pixel precision (Mean) is the average class-wise pixel precision:

Mean =
1
C

C

∑
c=1

TPc

TPc + FPc
(14)

https://github.com/realwecan/mju-waste/
http://tacodataset.org/
http://tacodataset.org/
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We note that the image labelings are typically dominated by the background class, therefore IoU
and Prec reported on the waste objects only are more sensitive than mIoU and Mean which consider
both waste objects and the background.

Table 1. Key statistics of the two datasets used in our experimental evaluation. Data splits are the
number of training + validation + test images. The image size varies in TACO so we report the average
image size here. Currently, MJU-Waste uses a single class label for all waste objects (in addition to the
background class). For TACO, there are 60 categories which belong to 28 super (top) categories.

Modalities Images Data Split Image Size Objects Per Image Classes

MJU-Waste RGBD 2475 1485 + 248 + 742 640 × 480 1.02 single
TACO RGB only 1500 1200 + 150 + 150 ≈3223 × 2825 3.19 60 (28)

4.1. The MJU-Waste Dataset

Before we move on to report our findings from the experiments, let us more formally introduce
the MJU-Waste dataset. We created this dataset by collecting waste items from a university campus,
bringing them back to a lab, and then take pictures of people holding waste items in their hands.
All images in the dataset are captured using a Microsoft Kinect RGBD camera [20]. The current version
of our dataset, MJU-Waste V1, contains 2475 co-registered RGB and depth image pairs. Specifically,
we randomly split the images into a training set, a validation set and a test set of 1485, 248 and
742 images, respectively.

Due to sensor limitations, the depth frames contain missing values at reflective surfaces, occlusion
boundaries, and distant regions. We use a median filter [82] to fill in the missing values in order to
obtain high quality depth images. Each image in MJU-Waste is annotated with a pixelwise mask
of waste objects. Example color frames, ground-truth annotations, and depth frames are shown in
Figure 5. In addition to semantic segmentation ground-truths, object instance masks are also available.

Color Ground-
truth

Raw
Depth

Depth
Processed Color Ground-

truth
Raw

Depth
Depth

Processed

Figure 5. Example color frames, ground-truth annotations, and depth frames from the MJU-Waste
dataset. Ground-truth masks are shown in blue. Missing values in the raw depth frames are shown in
white. These values are filled in with a median filter following [82].

4.2. Implementation Details

Here we report the key implementation details of our experiments, as follows:

• Segmentation networks Fc and F f . Following [21,74], we use the polynomial learning rate
policy with the initial learning rate set to 0.001 and the power factor set to 0.9. The total number
of iterations are set to 50 epochs on both datasets with a batch size of 4 images. In all experiments,
we use the ImageNet-pretrained backbones [85] and a standard SGD optimizer with momentum
and weight decay factors set to 0.9 and 0.0001, respectively. To avoid overfitting, standard data
augmentation techniques including random mirroring, resizing (with a resize factor between 0.5
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and 2), cropping and random Gaussian blur [21] are used. The base (and cropped) image sizes for
Fc and F f are set to 520(480) and 260(240) pixels during training, respectively.

• Object region proposals. To maintain a concise set of object region proposals, we empirically
set the minimum and maximum number of pixels Nmin and Nmax in an object region proposal.
For MJU-Waste, Nmin and Nmax are set to 900 and 40,000, respectively. For TACO, Nmin and Nmax

are set to 25,000 and 250,000, due to the larger image sizes. Object region proposals that are either
too small or too big will simply be discarded.

• CRF parameters. We initialize the CRF parameters with the default values in [19] and follow
a simple grid search strategy to find the optimal values of CRF parameters in each term.
For reference, the CRF parameters used in our experiments are listed in Table 2. We note that our
model is somewhat robust to the exact values of these parameters, and for each dataset we use
the same parameters for all segmentation models.

• Training details and codes. In this work, we use a publicly available implementation to train
the segmentation networks Fc and F f . The CNN training codes are available from: https://
github.com/Tramac/awesome-semantic-segmentation-pytorch/. We use the default training
settings unless otherwise specified earlier in this section. For CRF inference we use another public
implementation. The CRF inference codes are available from: https://github.com/lucasb-eyer/
pydensecrf/. The complete set of CRF parameters are summarized in Table 2.

Table 2. CRF parameters used in our experiments. Depth terms are not applicable to the TACO dataset.

α w(a) w(s) w(d) θα θβ θγ θδ θε

MJU-Waste 1 3 1 1 20 20 1 10 20
TACO 1 3 1 - 100 20 10 - -

4.3. Results on the MJU-Waste Dataset

The quantitative performance evaluation results we obtained on the test set of MJU-Waste are
summarized in Table 3. Methods using our proposed multi-level model have “ML” in their names.
For this dataset, we report the performance of the following baseline methods:

• FCN-8s [17]. FCN is a seminal work in CNN-based semantic segmentation. In particular, FCN
proposes to transform fully connected layers into convolutional layers that enables a classification
net to output a probabilistic heatmap of object layouts. In our experiments, we use the network
architecture as proposed in [17], which adopts a VGG16 [86] backbone. In terms of the skip
connections, we choose the FCN-8s variant as it retains more precise location information by
fusing features from the early pool3 and pool4 layers.

• PSPNet [21]. PSPNet proposes the pyramid pooling module for multi-scale context aggregation.
Specifically, we choose the ResNet-101 [14] backbone variant for a good tradeoff between model
complexity and performance. The pyramid pooling module concatenates the features from the
last layer of the conv4 block with the same features applied with 1 × 1, 2 × 2, 3 × 3 and 6 × 6
average pooling and upsampling to harvest multi-scale contexts.

• CCNet [22]. CCNet presents an attention-based context aggregation method for semantic
segmentation. We also choose the ResNet-101 backbone for this method. Therefore, the overall
architecture is similar to PSPNet except that we use the Recurrent Criss Cross Attention
(RCCA) module for context modeling. Specifically, given the conv4 features, the RCCA
module obtains a self-attention map to aggregate the context information in horizontal and
vertical directions. Similarly, the resultant features are concatenated with the conv4 features for
downstream segmentation.

• DeepLabv3 [23]. DeepLabv3 proposes the Atrous Spatial Pyramid Pooling (ASPP) module for
capturing the long-range contexts. Specifically, ASPP proposes the parallel dilated convolutions
with varying atrous rates to encode features from different sized receptive fields. The atrous rates

https://github.com/Tramac/awesome-semantic-segmentation-pytorch/
https://github.com/Tramac/awesome-semantic-segmentation-pytorch/
https://github.com/lucasb-eyer/pydensecrf/
https://github.com/lucasb-eyer/pydensecrf/
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used in our experiments are 12, 24 and 36. In addition, we experimented with both ResNet-50 and
ResNet-101 backbones on the MJU-Waste dataset to explore the performance impact of different
backbone architectures.

Table 3. Performance comparisons on the test set of MJU-Waste. For each method, we report the IoU
for waste objects (IoU), mean IoU (mIoU), pixel Precision for waste objects (Prec) and Mean pixel
precision (Mean). See Section 4.3 for details.

Dataset:
MJU-Waste (Test) Backbone IoU mIoU Prec Mean

Baseline Approaches

FCN-8s [17] VGG-16 75.28 87.35 85.95 92.83
PSPNet [21] ResNet-101 78.62 89.06 86.42 93.11
CCNet [22] ResNet-101 83.44 91.54 92.92 96.35
DeepLabv3 [23] ResNet-50 79.92 89.73 86.30 93.06
DeepLabv3 [23] ResNet-101 84.11 91.88 89.69 94.77

Proposed Multi-Level (ML) Model

FCN-8s-ML VGG-16 82.29 90.95 91.75 95.76
(+7.01) (+3.60) (+5.80) (+2.93)

PSPNet-ML ResNet-101 81.81 90.70 89.65 94.73
(+3.19) (+1.64) (+3.23) (+1.62)

CCNet-ML ResNet-101 86.63 93.17 96.05 97.92
(+3.19) (+1.63) (+3.13) (+1.57)

DeepLabv3-ML ResNet-50 84.35 92.00 91.73 95.78
(+4.43) (+2.27) (+5.43) (+2.72)

DeepLabv3-ML ResNet-101 87.84 93.79 94.43 97.14
(+3.73) (+1.91) (+4.74) (+2.37)

We refer interested readers to the public implementation discussed in Section 4.2 for the network
details of the above baselines. For each baseline method, we additionally implement our proposed
multi-level modules and then present a direct performance comparison in terms of IoU, mIoU, Prec and
Mean improvements. We show that our method provides a general framework under which a number
of strong semantic segmentation baselines could be further improved. For example, FCN-8s benefits the
most from a multi-level approach (i.e., +7.01 points of IoU improvement), partially due to the relatively
low baseline performance. Even for the best-performing baseline, DeepLabv3 with a ResNet-101
backbone, our multi-level model further improves its performance by +3.73 IoU points. We note
that such a large quantitative improvement can also be visually significant. In Figure 6, we present
qualitative comparisons between FCN-8s, DeepLabv3 and their multi-level counterparts. It is clear
that our approach helps to remove false positives in some non-object regions. More importantly, it is
evident that multi-level models more precisely follow object boundaries.

In Table 4, we additionally perform ablation studies on the validation set of MJU-Waste.
Specifically, we compare the performance of the following variants of our method:

• Baseline. DeepLabv3 baseline with a ResNet-50 backbone.
• Object only. The above baseline with additional object-level reasoning. This method is

implemented by retaining only the two unary terms of Equation (2). All pixel-level pairwise
terms are turned off. This will test if the object-level reasoning will contribute to the baseline
performance.

• Object and appearance. The baseline with object-level reasoning plus the appearance and the
spatial smoothing pairwise terms. The depth pairwise terms are turned off. This will test if the
additional pixel affinity information (without depth, however) is useful. It also verifies the efficacy
of the depth pairwise terms.

• Appearance and depth. The baseline with all pixel-level pairwise terms but without the
object-level unary term. This will test if an object-level fine segmentation network is necessary,
as well as the performance contribution of the pixel-level pairwise terms alone.
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• Full model. Our full model with all components proposed in Section 3.

Image Ground-truth FCN-8s FCN-8s-ML DeepLabv3 DeepLabv3-ML

Figure 6. Example segmentation results on the MJU-Waste test set. Input images and ground-truth
annotations are shown in the first two columns. Baseline methods are FCN-8s (VGG-16) and DeepLabv3
(ResNet-50). Our proposed methods (FCN-8s-ML and DeepLabv3-ML) more accurately recover object
boundaries. Best viewed electronically, zoomed in.

Table 4. Results from our ablation studies carried out on the validation set of MJU-Waste. The baseline
method is DeepLabv3 with a ResNet-50 backbone. We add different components proposed in Section 3
individually to test their performance impact. See Section 4.3 for details.

Dataset:
MJU-Waste (val) Object? Appearance? Depth? IoU mIoU Prec Mean

Baseline 7 7 7 80.86 90.24 87.49 93.67

+ components
3 7 7 81.43 90.53 88.06 93.96
3 3 7 85.44 92.58 91.79 95.83
7 3 3 83.45 91.57 91.84 95.83

Full model 3 3 3 86.07 92.90 92.77 96.32

Results are clear that the full model performs the best, producing superior performance by all
four criteria. This validates that the various components proposed in our method all positively impact
the final results.

In terms of the computational efficiency, we report a breakdown of the average per-image inference
time in Table 5. The baseline method corresponds to the scene-level inference only; additional object
and pixel level inference incurs extra computational costs. These runtime statistics are obtained with
an i9 desktop CPU and a single RTX 2080Ti GPU. Our full model with DeepLabv3 and ResNet-50 runs
at approximately 0.8 second per image. Specifically, the computational costs for object-level inference
are mainly a result from the object region proposals and the forward pass of the object region CNN.
The pixel-level inference time, on the other hand, is mostly the result from the iterative mean-field
approximation. It should be noted that the inference times reported here are obtained based on public
implementations as mentioned in Section 4.2, without any specific optimization.

More example results obtained on the test set of MJU-Waste with our full model are shown in
Figure 7. Although the images in MJU-Waste are captured indoors so that the illumination variations
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are less significant, there are large variations in the clothing colors and, in some cases, the color contrast
between the waste objects and the clothes is small. In addition, the orientation of the objects also
exhibits large variations. For example, the objects can be held with either one or both hands. During
the data collection, we simply ask the participants to hold objects however they like. Despite these
challenges, our model is able to reliably recover the fine boundary details in most cases.

Table 5. Average per-image inference time on MJU-Waste. The baseline method is DeepLabv3 with a
ResNet-50 backbone, which corresponds to the scene-level inference time. Additional object and pixel
level inference incurs extra computational costs. System specs: i9-9900KS CPU, 64GB DDR4 RAM,
RTX 2080Ti GPU. Test batch size set to 1 with FP32 precision. See Section 4.3 for details.

MJU-Waste (val) Scene-Level Object-Level Pixel-Level Total

inference time (ms) 52 352 398 802

Image Prediction Image Prediction Image Prediction

Figure 7. Segmentation results on MJU-Waste (test). Method is DeepLabv3-ML (ResNet-50).

4.4. Results on the TACO Dataset

We additionally evaluate the performance of our method on the TACO dataset. TACO contains
color images only, so we exclude Equation (9) for training and evaluating models on this dataset.
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This dataset presents a unique challenge for localizing waste objects “in-the-wild”. In general, TACO
is different to MJU-Waste in two important aspects. Firstly, multiple waste objects with extreme scale
variation are more common (see Figures 8 and 9 for examples). Secondly, unlike MJU-Waste the
backgrounds are diverse, such as in road, grassland and beach scenes. Quantitative results obtained on
the TACO test set are summarized in Table 6. Specifically, we compare our multi-level model against
two baselines: FCN-8s [17] and DeepLabv3 [23]. Again, in both cases our multi-level model is able to
improve the baseline performance by a clear margin. Qualitative comparisons of the segmentation
results are presented in Figure 8. It is clear that our multi-level method is able to more closely follow
object boundaries. More example segmentation results are presented in Figure 9. We note that the
changes in illumination and orientation are generally greater on TACO than on MJU-Waste, due to the
fact that there are many outdoor images. Particularly, in some beach images it is very challenging to
spot waste objects due to the poor illumination and the weak color contrast. Furthermore, object scale
and orientation vary greatly as a result of different camera perspectives. Again, our model is able to
detect and segment waste objects with high accuracy in most images, demonstrating the efficacy of the
proposed method.

Image Ground-truth FCN-8s FCN-8s-ML DeepLabv3 DeepLabv3-ML

Figure 8. Example segmentation results on the TACO test set. Input images and ground-truth
annotations are shown in the first two columns. Baseline methods are FCN-8s (VGG-16) and DeepLabv3
(ResNet-101). Our proposed methods (FCN-8s-ML and DeepLabv3-ML) more accurately recover object
boundaries. Best viewed electronically, zoomed in.
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Image Prediction Image Prediction Image Prediction

Figure 9. Segmentation results on TACO (test). Method is DeepLabv3-ML (ResNet-101).
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Table 6. Performance comparisons on the test set of TACO. For each method, we report the IoU for
waste objects (IoU), mean IoU (mIoU), pixel Precision for waste objects (Prec) and mean pixel precision
(Mean). See Section 4.4 for details.

Dataset:
TACO (Test) Backbone IoU mIoU Prec Mean

Baseline Approaches

FCN-8s [17] VGG-16 70.43 84.31 85.50 92.21
DeepLabv3 [23] ResNet-101 83.02 90.99 88.37 94.00

Proposed Multi-Level (ML) Model

FCN-8s-ML VGG-16 74.21 86.35 90.36 94.65
(+3.78) (+2.04) (+4.86) (+2.44)

DeepLabv3-ML ResNet-101 86.58 92.90 92.52 96.07
(+3.56) (+1.91) (+4.15) (+2.07)

5. Conclusions

We presented a multi-level approach to waste object localization. Specifically, our method
integrates the appearance and the depth information from three levels of spatial granularity: (1) A
scene-level segmentation network captures the long-range spatial contexts and produces an initial
coarse segmentation. (2) Based on the coarse segmentation, we select a few potential object regions
and then perform object-level segmentation. (3) The scene and object level results are then integrated
into a pixel-level fully connected conditional random field to produce a coherent final localization.
The superiority of our method is validated on two public datasets for waste object segmentation.
As part of our work, we collected the MJU-Waste dataset that is made publicly available to facilitate
future research in this area. We hope that our method could serve as a modest attempt to induce
further exploration into vision-based perception of waste objects in complex real-world scenarios. For
example, possible future work may explore the training of robust segmentation models that work on
multiple datasets with large object appearance and camera perspective variations.
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