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Abstract: Modern satellite and aerial imagery outcomes exhibit increasingly complex types of
ground objects with continuous developments and changes in land resources. Single remote-sensing
modality is not sufficient for the accurate and satisfactory extraction and classification of ground
objects. Hyperspectral imaging has been widely used in the classification of ground objects because
of its high resolution, multiple bands, and abundant spatial and spectral information. Moreover,
the airborne light detection and ranging (LiDAR) point-cloud data contains unique high-precision
three-dimensional (3D) spatial information, which can enrich ground object classifiers with height
features that hyperspectral images do not have. Therefore, the fusion of hyperspectral image data
with airborne LiDAR point-cloud data is an effective approach for ground object classification. In this
paper, the effectiveness of such a fusion scheme is investigated and confirmed on an observation area
in the middle parts of the Heihe River in China. By combining the characteristics of hyperspectral
compact airborne spectrographic imager (CASI) data and airborne LiDAR data, we extracted a variety
of features for data fusion and ground object classification. Firstly, we used the minimum noise
fraction transform to reduce the dimensionality of hyperspectral CASI images. Then, spatio-spectral
and textural features of these images were extracted based on the normalized vegetation index and
the gray-level co-occurrence matrices. Further, canopy height features were extracted from airborne
LiDAR data. Finally, a hierarchical fusion scheme was applied to the hyperspectral CASI and airborne
LiDAR features, and the fused features were used to train a residual network for high-accuracy ground
object classification. The experimental results showed that the overall classification accuracy was based
on the proposed hierarchical-fusion multiscale dilated residual network (M-DRN), which reached an
accuracy of 97.89%. This result was found to be 10.13% and 5.68% higher than those of the convolutional
neural network (CNN) and the dilated residual network (DRN), respectively. Spatio-spectral and
textural features of hyperspectral CASI images can complement the canopy height features of airborne
LiDAR data. These complementary features can provide richer and more accurate information than
individual features for ground object classification and can thus outperform features based on a single
remote-sensing modality.
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1. Introduction

With the continuous development of remote sensing technologies, higher quality satellite and aerial
images can be obtained. Such images show ground objects with better clarity and improved structural
details, thus representing an important data source for remote sensing applications. In particular,
hyperspectral image data has dozens or even hundreds of spectral bands, which can provide a wealth
of spectral information for remote-sensing applications, especially feature classification [1]. Moreover,
airborne light detection and ranging (LiDAR) measurements can quickly lead to three-dimensional
surface data, generate three-dimensional coordinates, create a digital surface model, and construct a
digital elevation model (DEM) in addition to other characteristic models [2]. Airborne LiDAR systems
show strong anti-interference, penetrability, and timeliness capabilities. Moreover, these systems
provide a new source of data for the analysis of ground features [3,4].

On the one hand, while hyperspectral imagery shows detailed spectral information, this type of
imagery has limitations when discriminating objects with similar spectral characteristics [5,6]. On the
other hand, although an airborne LiDAR system can obtain high-precision three-dimensional vertical
structure information, such a system cannot accurately classify ground objects due to the lack of
corresponding spectral information [7,8]. Hyperspectral data and airborne LiDAR data have been fused
in earlier methods to achieve complementary advantages and make up for the individual deficiencies of
each technique. This fusion approach led to significant contributions for feature extraction [9]. Chu et al.
integrated hyperspectral and LiDAR features using the minimum noise fraction (MNF) transform and
the principal component analysis (PCA). Furthermore, the integrated features were used to train a
support vector machine classifier for extracting land information in mountain areas [10]. The obtained
experimental results showed that multi-sensor data fusion method outperformed methods based on
hyperspectral images alone, with an overall accuracy (OA) ranging from 83% to 91%.

In 2018, Dalponte [11] proposed a prediction model of breast height diameters and single-tree
crown biomasses using hyperspectral and airborne LiDAR data. In this model, airborne LiDAR
data was used to estimate the height and diameter of a single crown, while hyperspectral data was
used to identify trees. The results showed that the proposed model had a high accuracy in each of
the two prediction tasks. In 2020, Jahan et al. [12] proposed a dual-stream feature fusion method
that integrated features from hyperspectral images and LiDAR data for land cover classification,
where inverse coefficients were used for feature extraction. The experimental results showed that this
method performed well with limited training samples. In this work, we combined features extracted
from airborne LiDAR data and hyperspectral compact airborne spectrographic imager (CASI) data [13].
For the hyperspectral CASI images, features of the normalized difference vegetation index (NDVI) and
the gray-level co-occurrence matrix (GLCM) were calculated [14,15]. These features were combined
with the canopy height model (CHM) of airborne LiDAR data to obtain the surface features of the
observed area [16,17].

In recent years, deep learning has emerged as a powerful methodology for feature extraction and
classification [18]. The advantages of deep learning in its various forms has also led to remarkable
classification performances by operating directly on hyperspectral input [19,20], which effectively solves
the problems of traditional supervised classification algorithms (such as Bayesian, Maximum Likelihood,
Parallelepiped Classification Method, etc.) depending on suitable samples and the enormous computing
problems of high dimensional hyperspectral imagery [21]. Notably, convolutional neural networks
(CNN) have achieved good classification results in hyperspectral terrain classification. Hu et al. [22]
employed a CNN model to classify hyperspectral features. In this model, CNN local connections,
weight sharing, and other enhancements were exploited. These enhancements resulted in significantly
reduced model parameters, lower training cost, and improved classification performance. Zhao et al.
proposed a multi-scale CNN architecture to extract spatially-relevant depth features for hyperspectral
image classification. This architecture led to significantly higher classification accuracy in comparison
to traditional methods, especially for urban areas [23]. However, the classification based on this
multi-scale architecture requires the selection of different feature extraction scales for different types of
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ground objects. Moreover, the two-dimensional CNN architecture can only extract separate spatial
and spectral image information and does not make full use of the joint spatio-spectral information of
hyperspectral images. Zhong et al. [24] designed an end-to-end residual network for hyperspectral
image classification. In this network, the original 3D data blocks were used as inputs while the residual
blocks were used to learn discriminative hyperspectral features. The results showed that this residual
network achieved high classification accuracies on images of agricultural, urban, and rural areas [25].
Though the combination of hyperspectral and airborne LiDAR data has rich and complex spectral,
textural, and elevation information, the employment of this information for feature selection and
extraction is quite challenging [26], as not all the measurements are significant and useful, and the
original feature space may not be the most effective space for representing the data [27]. Therefore, we
propose in this paper a hierarchical-fusion multiscale dilated residual network to classify ground objects
based on fused hyperspectral CASI and airborne LiDAR features. Particularly, the proposed network
effectively extracted rich multi-sensor fused features and fully exploited them for high-accuracy ground
object classification.

In this paper, the CASI aerial hyperspectral image and airborne LiDAR data of Zhangye agricultural
area in the middle reaches of the Heihe River in China were used as the research objects. We aimed
at fusing the CASI hyperspectral image and airborne LiDAR data, using residual neural network to
classify the ground object data and effectively improve the ground object classification accuracy, as well
as reduce the computational complexity.

2. Materials and Methods

2.1. Multi-Sensor Data Collection

The CASI hyperspectral remote-sensing image data was collected in the visible and near-infrared
ranges for the Heihe River eco-hydrological remote-sensing experiment (Hiwater). Geometric,
radiometric, and atmospheric correction operations were applied to the raw data. Then, the reflectance
of each land cover type was obtained using atmospheric data measurements with synchronous
reference to the ground. The CASI image had a spatial resolution of 1.0 m, 48 spectral bands, and a
spectral range between 0.38 and 1.05 um. Figure 1 shows a CASI (122642) flight strip image of the core
observation area in the middle reaches of the Heihe River.

Figure 1. Compact airborne spectrographic imager (CASI) (122642) flight strip image of the Heihe

River Basin.

For remote sensing of the eco-hydrological environment in the Heihe River area, an airborne
LiDAR experiment was carried out in this area. The flight altitude of the employed aircraft was 2700 m
and the laser wavelength of the employed ALS70 LiDAR sensor was 1064 nm. Multiple echoes were
recorded and the average point cloud density was 4 points per square meter. The airborne LiDAR
aerial data was subjected to several operations: parameter verification and correction, automatic
point-cloud filtering and classification, manual editing, as well as other operations. These operations
resulted in the generation of a digital surface model (DSM), a digital elevation model (DEM), and a
point-cloud density map. Subsequently, the DSM was directly subtracted from the DEM to obtain the
canopy height model (CHM) of the middle reaches of the Heihe River Basin. These models provide
surface elevation information of high spatial resolution (of the meter level) and high accuracy (20 cm).
The airborne LiDAR aerial CHM data is shown in Figure 2.
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Figure 2. Canopy height model (CHM) data of the Heihe River Basin based on the airborne light
detection and ranging (LiDAR) system.

The observed area had more than 10 kinds of land cover types, such as ‘corn’, ‘leek’, ‘cauliflower’,
‘pepper’, ‘potatoes’, and so on. Ground object classification was highly challenging because of this
high diversity of the crop types in the field and the imbalance of the land cover types. Figures 3 and 4
demonstrate the average spectral curves of the land cover types and the ground object types for the
same data collection period, respectively.
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Figure 3. Average spectral curves for different land cover types in the data collection period.
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(e) Cauliflower (f) Green bamboo shoots
Figure 4. Ground object types in the data collection period.

2.2. Image Registration and Dimensionality Reduction

The hyperspectral CASI data and the airborne LiDAR data were collected under different imaging
principles by different airborne sensors whose aircrafts fly at different orbits. These differences resulted
in disparities in the spatial attributes and coordinate-system inconsistencies among the two resulting
images. Image registration was applied before data fusion to account for these inconsistencies and to
align the images together.

Using the Image Registration Workflow toolbox in the ENVI software, 10 seed points were
manually selected for registration. The CHM point-cloud data map was selected as the reference Base
Image File, while the hyperspectral CASI image was selected as the Warp Image File to be registered.
The registration parameters selected through the Tie Point Generation panel are listed in Table 1.
The registration result is shown in Figure 5.

Table 1. Parameter settings for the ENVI Image Registration Workflow.

Parameter Setting
Matching algorithm Mutual information
Minimum tie-point matching threshold 0.01
Geometric model Fitting global transform
Reference-image registration band 1
Target-image registration band 20
Search window size 128 x 128
Match window size 61 x 61

[*
Figure 5. Hyperspectral CASI image after registration.

The minimum noise fraction (MNF) transform can reduce the effects of hardware devices (such as
sensors) and processing operations (such as image analysis of raw image data) on hyperspectral images,
so that most of the hyperspectral information is concentrated in a few bands and the computational
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cost is reduced [28,29]. The MNF transform is essentially composed of two PCA transforms in series.
The first PCA transform separates and readjusts the input image noise, minimizes the variance of the
readjusted noise, and reduces the inter-band correlation. In the second PCA transform, the bands are
arranged in a descending order in terms of the signal-to-noise ratio (SNR). Bands with lower SNR have
increased noise and less image information.

The computational steps of the MNF transform are as follows. Firstly, the raw hyperspectral
image is filtered to obtain a noise covariance matrix Cy, which is then diagonalized as

Dy = U'CyU (1)

where Dy is a diagonal matrix arranged in a descending order of the eigenvalues of Cy and U is an
orthogonal matrix composed of the corresponding eigenvectors. Based on Equation (1), PTCyP =1,
where P = UDy ~ 2, and I is an identity matrix. Let the hyperspectral data be X, where X can be
transformed into a new space by a Y = PX transformation. The noise in Y has unit variance and no
correlation between bands.

Secondly, we used the constructed matrix p to carry out a standard PCA transformation on the total
covariance matrix CD of X; so that the matrix after noise processing is Cp_s4; = PTCpP. Subsequently,
we have:

Dp_atj = V' Cp_aajV (2)

In Equation (2), V is an orthogonal matrix of eigenvectors and the MNF transform can thus be
obtained as Tyyr = PV. The composite image after the MNF transform is shown in Figure 6.

Figure 6. The composite image after the minimum noise fraction (MNF) transform.

2.3. Feature Extraction

2.3.1. Normalization of the Vegetation Index

Ground objects show distinctive morphological characteristics in the infrared and near infrared
bands. Specifically, the infrared band shows strong light absorption, while the near infrared band
exhibits strong light reflectivity and projection. Hence, variants of the vegetation index can be calculated
from these two bands. In fact, the normalized difference vegetation index (NDVI) is positively correlated
with vegetation coverage and is thus widely used in the classification of remote-sensing imagery to
reflect vegetation growth while effectively reducing the impact of topographic factors. Moreover,
the NDVI describes spectral vegetation characteristics, shows good stability, and is simple to calculate.
This index is mathematically given by:

NDVI = (DNnir — DNR)/(DNnr + DNR) 3)
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where DNyjr and DNy are the gray-level image intensity values of the near-infrared and red-light
bands, respectively. The NDVI range is [-1, 1]. On the one hand, negative NDVI values possibly
indicate ground occlusion by clouds or water resources. On the other hand, positive NDVI values
indicate that the ground is covered by vegetation, where larger NDVI values correspond to denser
vegetation. Otherwise, a zero NDVI value means that the ground may be covered by rocks. Although
the NDVI value can generally represent the ground vegetation coverage, the sensitivity of this index
for high-density vegetation is low. In addition, according to the wavelength range, the first wavelength
band is selected as the red band and the 32nd wavelength band is selected as the near-infrared band.
The NDVI map of the observed area is shown in Figure 7.

Figure 7. The normalized difference vegetation index (NDVI) map of the observed area.
2.3.2. Gray-Level Co-Occurrence Matrices

Texture reflects the grayscale distribution of pixels and their surrounding spatial neighbors in an
image. Indeed, surface characteristics of remote-sensing imagery can be well described using texture
features. One of the key families of texture descriptors is based on gray-level co-occurrence matrices
(GLCM). Such a matrix is defined over an image as the distribution of co-occurring grayscale or color
pixel values at a given offset and a given direction. The GLCM distribution characteristics are typically
summarized by second-order features, which can reflect the image clarity, regional contrast, grayscale
uniformity, granularity, and other texture information.

In this paper, six second-order GLCM features were computed, namely the contrast, dissimilarity,
homogeneity, entropy, correlation, and the angular second moment (ASM). The GLCM window size
was set to be 3 X 3 and the texture features of the hyperspectral image data were obtained, as shown in
Figure 8.

2.4. Ground Object Classification with Hierarchical-Fusion Multiscale Dilated Residual Networks

In this paper, the key spectral bands of the hyperspectral CASI image were identified and the
NDVI and GLCM image features were calculated. The hyperspectral features were fused with the
CHM airborne LiDAR data. The fused features contained spectral, spatial, textural, and canopy
height features from both data sources. Specifically, each fused feature vector had three MNF features,
one NDVI feature, six GLCM features, and one CHM feature.

For image classification, a residual network may have deep network layers in order to boost
classification performance. In general, different network layers can learn different features: a shallow
network layer extracts low-level image details, while a deep network layer can extract high-level
image information. In this work, we used a residual network to extract multi-sensor features of remote
sensing images, fused the extracted shallow and deep features, made full use of these features, and
obtained enhanced ground object classification performance for complex images [30].
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contrast dissimilarity homogeneity

energy correlation

Figure 8. Second-order gray-level co-occurrence matrix (GLCM) features of hyperspectral image data.

Figure 9 shows the architecture of the proposed hierarchical fusion residual network. This network
was divided into three modules whose outputs were OL, OM, and OH, respectively. These modules
have 16, 32, and 64 convolution kernels, respectively. Feature maps of different dimensions were
output to realize layer-by-layer feature extraction. In order to ensure dimensionality matching before
feature fusion, 64 convolutions were performed with 1 x 1 convolution kernels. Then, the outputs
of the three modules were added and fused. The fused features are mapped by rectified linear unit
(ReLU) activation functions and then global average pooling (GAP) were applied [31]. The final feature
vectors were generated by inputting the features to fully-connected layers. Finally, a fused feature
graph was converted into an output feature vector through the fully-connected network. The output
feature vectors were fed to a classifier for ground object classification.

Convolution layer

1x1x16 1x1x32 1x1x64
OL OM OH

ReLU
=000
A

Figure 9. A block diagram of the multi-layer hierarchical fusion residual network for ground
object classification.

3. Experiments and Analysis

3.1. Feature Fusion Experiments

In feature fusion experiments, 25 X 25 samples were extracted from the input images. The samples
were then divided into training and test sets with 70% and 30% of the samples, respectively. The learning
phase was carried out with a learning rate of 0.01, a learning momentum of 0.9, a weight delay of
0.0001, and a maximum number of iterations of 100. The numbers of the training and test samples for
various ground objects are listed in Table 2.
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Table 2. The numbers of the training and test samples for various ground objects.

No. Category Training/Testing Pixels Total Pixels
1 Corn 426495/182784 609279
2 Leek 17468/7487 24955
3 White poplar 75211/32233 107444
4 Cauliflower 50467/21628 72095
5 Pepper 107099/45900 152999
6 Potato 18309/7847 26156
7 Green bamboo shoot 3618/1550 5168
8 Watermelon 28318/12136 40454
9 Green bean 1830/785 2615
10 Building 172774/31189 203963

In order to assess the effectiveness of the fusion of the hyperspectral CASI data and the airborne
LiDAR data, five fusion methods of the respective features were designed, as shown in Table 3.

Table 3. Different feature fusion methods and numbers for ground object classification.

No. Fused Features Number
1 Single-Band PCA 1
2 MNEF 3
3 MNF + NDVI 4
4 MNF + NDVI + GLCM 10
5 MNF + NDVI + GLCM + CHM 11

The overall accuracy (OA) values obtained by different feature fusion methods are shown in
Figure 10. The results show that the OA value for classification with the MNF features was clearly better
than that with single-band PCA. This shows the effectiveness of the spectral features extracted from the
key spectral bands of the hyperspectral CASI image based on the MNF transform. The third feature
fusion method combined the MNF features with the spatio-spectral features of the hyperspectral CASI
image. The fourth feature combination augmented the third combination with textural features of
that hyperspectral image. The third and fourth combinations led to significantly improved OA values,
indicating that the NDVI and GLCM features can be highly distinctive in ground object classification.
The fourth feature combination was augmented by the CHM information to form the fifth feature
combination, which demonstrates that the CHM data can improve the discrimination of ground objects
with different heights. Therefore, the fused features can fully exploit the hyperspectral and LiDAR
data and obtain complementary information from these data sources for ground object classification.

100
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40
30
20
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=]

Figure 10. The overall ground object classification accuracy for different feature fusion methods.
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The experimental results have shown that classifiers based on a single source of remote sensing data
have clear limitations including relatively low accuracy, ambiguity in target interpretation, and limited
applicability. Data fusion can effectively exploit the complementary nature of the multi-band information
of hyperspectral CASI images and the canopy height information of airborne LiDAR data, reduce
the uncertainty of single-source classification methods, increase the applicability of remote sensing
systems, and improve the ground object classification accuracy.

3.2. Classification with Hierarchical-Fusion Residual Networks

The fused MNFE, NDVI, GLCM, and CHM features extracted from the hyperspectral CASI image
data and airborne LiDAR point-cloud data were used as input samples for classifier training and
testing. The proposed hierarchical fusion residual network was used for ground object classification.
The experiments were setup in the Caffe framework on a computer with a Linux operating system.
Figures 11 and 12 show accuracy and loss curves as functions of the number of iterations with a sample
block size of 25 x 25 and a network depth of 32. The accuracy clearly increased while the loss dropped
substantially. Both measures stabilized after 20 iterations.

model accuracy

100 1 — train

0.95 - test

090 1 {

(.85 1

0.80 1

gCcuracy

075 1

070 1

(.85 1

080 1

o 20 40 B0 80 100
epoch

Figure 11. Ground object classification accuracy versus the number of iterations for a hierarchical
fusion residual network with a sample size of 25 x 25 and a network depth of 32.

model loss

— train
12 test

0.0 1 .

] 20 40 &0 80 100
epoch

Figure 12. Ground object classification loss versus the number of iterations for a hierarchical fusion
residual network with a sample size of 25 x 25 and a network depth of 32.
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As shown in Figures 11 and 12, when the 20th training epoch was reached, the accuracy reaches
its maximum value, and then stabilized at about 98%. The loss function value also decreased to its
minimum value at the same time. The experimental results show that due to residual block training,
the input was directly transferred to the output, information integrity was protected, and performance
degradation was highly eliminated.

The ground object classification accuracy based on multi-scale dilated residual networks (M-DRN)
is shown in Table 4. Here, OA denotes the overall accuracy, AA denotes the average accuracy, and
Kappa denotes the index of agreement or association, which is called the Kappa coefficient. Clearly,
the user accuracy (UA) values of all objects can reach more than 97%. Moreover, the classification
performance was good for the green bamboo shoots and green beans with few samples, and for the
buildings with complex spectral characteristics. The overall accuracy (OA) and the Kappa coefficient
reached 97.89% and 0.976. These results demonstrate the effectiveness of fusing the output features of
different network levels with high stability.

Table 4. Ground object classification accuracy based on multi-scale dilated residual networks (M-DRN).

White Green Bamboo Green

Category  Corn Leek Poplar Cauliflower Pepper Potato Shoot Watermelon Bean Building
UA (%) 98.92 98.75 99.10 98.54 98.46 98.18 97.63 98.30 97.38 98.77
OA (%) 97.89 AA (%) 98.40 Kappa 0.976

The block size and the number of layers represent important network parameters. In fact, the sample
block size clearly affects the classification accuracy: if the sample block is too large, some details will be
ignored; if the sample block is too small, redundant information will be amplified and the classification
accuracy will be reduced. Increasing the network depth can improve the classification accuracy to some
extent. However, too many network layers may lead to over-fitting, gradient vanishing, or gradient
explosion. In this work, these two parameters were set through alternating iterative experiments.
In these experiments, the block size was varied between 17 X 17 and 31 x 31, while the network depth
was varied between 12 and 40.

Figure 13 exhibits the variation of the overall accuracy, the average accuracy, and the Kappa
coefficient with the increase in the sample block size with a network depth of 32. Obviously,
the classification accuracy initially increased, reached a maximum at 25 x 25, and then decreased with
the increase of the sample block size. Figure 13 also shows that the sample block size has a certain
impact on the classification accuracy in hierarchical fusion residual networks. The result shows that
appropriate block size selection as 25 X 25 was important for optimizing classification performance.

100;

99}

98+

Accuracy (%)
o

93+ i—*—OA —'—AA—°—Kappa“lOO}

907 1exds  2b@1 2323 2525 21x@7 2029 313
Sizes of the blocks

Figure 13. The influence of different block sizes on classification accuracy.
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Figure 14 shows the variation of the overall accuracy, the average accuracy, and the Kappa
coefficient with the increase in the network depth for a sample block size of 25 x 25. Clearly, with the
increase of network depth, the classification accuracy steadily increased, reached a maximum at a
network depth of 32, and then started to decline, and the trend of changing was consistent with
the three parameters. The M-DRN classification algorithm alleviated the problem of performance
degradation with increasing network depth. However, when the network depth was excessively high,
over-fitting occurred and the classification accuracy declined to a certain degree. Therefore, M-DRN
classifiers can improve the overall classification accuracy by deepening the network to a certain limit.

100‘r
99}
‘ 98.40
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©
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o |
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2 16 20 24 28 32 36 40

Network Depth

Figure 14. The influence of different network depths on classification accuracy.

3.3. Comparative Classification Experiments

In order to verify the superiority of the M-DRN classifier, this classifier was compared with the
SVM (Support Vector Machine), CNN, and DRN classifiers. The SVM classifier took as an input the
fused features of the hyperspectral CASI and airborne LiDAR data, using a radial-basis function (RBF)
kernel. The classification results of all classifiers are shown in Table 5.

Table 5. Performance metrics for ground object classification using the fused features and each of the
SVM, CNN, DRN, and M-DRN classifiers.

SVM CNN DRN M-DRN

OA (%) 80.32 87.76 92.21 97.89
AA (%) 80.76 87.97 92.53 98.40
Kappa 0.797 0.872 0.918 0.976

Table 5 shows that the OA value with CNN-based features of the fused image exceeds that of the
hand-crafted features and the SVM classifier by 7.44%. The DRN classifier alleviated the network depth
burden, extracted deeper features of the fused image, and clearly outperformed the CNN classifier.
Comparing the DRN and M-DRN classifiers, we see that the hierarchical fusion mechanism fused
complementary and related information of different convolution layer outputs, and learned distinctive
features for classification. For the M-DRN classifier, the OA, AA, and Kappa coefficient values exceeded
those of the DRN classifier by 5.68%, 5.87%, and 0.058, respectively. The small difference between
the OA value and AA value of each classifier also proves that the designed fusion feature had good
stability. These results show that the proposed M-DRN classifier has great potential for ground object
feature extraction and classification.

The training and testing times for different network architectures are shown in Figure 15.
The training times of the SVM and CNN classifiers with shallow layers were relatively small. Since the
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DRN classifier had a deeper network architecture, the training time increased. The M-DRN classifier
outperformed the DRN one at the cost of a small increase in the computation time. Thus, the M-DRN
algorithm remained feasible for practical purposes. While different network architectures can have
significantly different training times, they have little differences in terms of the testing time. The network
depth (and other several factors) can have noticeable effects on the training time.

3000 | - 30
@ @
& 2000 | 2 20 |
50 | 0
& 62
21000 | $ 10
; . H

0 0 .
SVM CNN DRN M-DRN SVM CNN DRN M-DRN

Figure 15. Operation time comparison for different network architectures.
4. Conclusions

In this paper, hyperspectral images were used to obtain distinctive spectral, spatial, and textural
features. Moreover, this work emphasizes the fusion of multi-sensor remote sensing features including
hyperspectral image features and the canopy height model features of airborne LiDAR data. The fusion
was carried out based on a pixel-level fusion algorithm. These fused features were used to train a
residual network for ground object classification.

The key spectral bands of the hyperspectral CASI image data were obtained by the minimum
noise fraction (MNF) transform. In addition, gray-level co-occurrence matrices and the normalized
difference vegetation index were used to extract textural and spatio-spectral features of hyperspectral
images. Then, these features were combined with the canopy height features of airborne LiDAR data
to form a multi-source feature set for pixel-level fusion. The SVM, CNN, DRN, and M-DRN algorithms
were used to classify the fused features. The experimental results show that the joint advantages of the
hyperspectral CASI and airborne LiDAR data were fully utilized by the proposed architecture, and
that the addition of different feature types can improve the classification accuracy for different ground
objects. Therefore, with limited time and computational resources, the most distinctive features should
be selected for different types of ground objects, in order to obtain the best classification performance.
Classification methods based on the hyperspectral CASI and airborne LiDAR data are becoming more
mature and shall be widely and extensively studied in future land-use information extraction schemes.

In addition, fused hyperspectral and airborne LiDAR features include spatial, spectral, textural,
canopy height, and other features. We proposed the use of these features to improve the ground
object classification accuracy. However, such an improvement comes at the cost of a large amount
of computations. Moreover, while neural network architectures are mainly used here for image
classification, whether such architectures are suitable for large size, pixel-level remote sensing image
classification needs additional investigations.
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