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Abstract: The concentrations of nitrite and thiocyanate in saliva can be used as the biomarkers of
the progression of periodontitis disease and environmental tobacco smoke exposure, respectively.
Therefore, it is particularly necessary to detect these two indicators in saliva. Herein,
the three-dimensional single-layered paper-based microfluidic analytical devices (3D sl-µPADs)
were, for the first time, fabricated by the spraying technique for the colorimetric detection of nitrite
and thiocyanate at the same time. The conditions for 3D sl-µPADs fabrication were optimized in
order to well control the penetration depth of the lacquer in a paper substrate. Then, the developed
3D sl-µPADs were utilized to simultaneously detect nitrite and thiocyanate and the limits of detection
are 0.0096 and 0.074 mM, respectively. What is more, the µPADs exhibited good specificity, good
repeatability, and acceptable recoveries in artificial saliva. Therefore, the developed 3D sl-µPADs
show a great potential to determine nitrite and thiocyanate for the assessment of the human health.

Keywords: three-dimensional microfluidic devices; spraying; colorimetric analysis; nitrite;
thiocyanate

1. Introduction

Nitrite (NO2
−) widely exists in the environment, food, industry, and physiological systems, which

is recognized as a hazardous species [1,2]. Although nitrite intake from food plays an important
role in human physiology [3], high amount intake of nitrite is extremely harmful for human health
and induces severe health issues [4,5]. Moreover, the nitrate in food can be reduced to nitrite by
oral microorganisms [6]. Thiocyanate (SCN−) is a substance in nature, which is widely found in the
tissues and the secretion of the animals [7]. It is also an important chemical raw material in a lot of
industrial sectors, including printing, electroplating, pharmaceutical production, and photofinishing [8].
Furthermore, thiocyanate is a metabolite of hydrogen cyanide found in cigarette smoke [9]. A higher
concentration of thiocyanate in physiological fluids can bind to trivalent iron ion in cytochrome oxidase
in vivo, inhibiting the enzyme activity and causing hypoxia in human tissue and even obvious damage
to renal function. [10]. Both of the two anions (i.e., nitrite and thiocyanate) are normally present
in saliva, which are the useful biomarkers for periodontitis disease and tobacco smoke exposure,
respectively [11,12]. More importantly, people who often smoke are prone to suffering from oral
diseases [13]. Therefore, it is of great importance to simultaneously determine nitrite and thiocyanate
in saliva, especially for heavy smokers.

Up to now, many assay techniques have been reported for simultaneously detecting nitrite and
thiocyanate, such as capillary electrophoresis [14–16], ion chromatography [17,18], isotachophoresis [19],
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capillary chromatography [20], gas chromatography [21,22], and high-performance liquid
chromatography [23]. The above-mentioned techniques are sophisticated with a high sensitivity.
However, the limitations for their routine application include poor portability, the high cost,
the requirement of large reagent and sample volumes, and cumbersome sample treatment.

Alternatively, point-of-care testing (POCT) has been attracted great interest from researchers,
allowing for in-home determinations with the absence of the healthcare professionals [24]. Paper-based
microfluidic analytical devices (µPADs) combined with colorimetry make POCT practical in daily
life [25]. µPADs possess tremendous advantages including fast detection, low consumption of reagent,
good portability, and easy usage [26]. Bhakta et al. quantitatively detected the concentration of nitrite in
saliva in a non-invasive way to demonstrate the application value of the µPADs [11]. Pena-Pereira et al.
developed the cost-effective µPADs to determine thiocyanate in saliva with low detection limit of
0.06 mM [27]. All the µPADs reported for the detection of nitrite or thiocyanate were all based on
two-dimensional (2D) µPADs.

In recent years, three-dimensional (3D) µPADs, especially single-layered configurations, have
become a growing research field in µPADs. Compared to the 2D configuration, the fluid in 3D channels
can flow in both lateral and vertical directions, making it possible to manipulate complex fluid flow
and design complicated chips [28]. Most of the time, 3D µPADs are fabricated by the assemblly of
multilayers [29]. The fabrication process is tedious and requires precise stacking and alignment of
multiple sheets of paper to construct 3D channels, which hinders the large-scale development of 3D
µPADs. To avoid the alignment of paper/tape layers, 3D folding µPADs have been developed and a
clamping holder was utilized to firmly fix the multi-layered devices [30]. However, the huge challenges
in 3D µPADs manufacturing still exist in mass production in particular. To simplify the fabrication
process, 3D single-layered µPADs (3D sl-µPADs) have been reported. Geun Jeong et al. fabricated
3D sl-µPADs by wax printing on double sides and heating the printed patterns by a laminator [31].
Li et al. prepared three-dimensional microfluidic channels by a wax printer in a piece of filter paper [28].
Unquestionably, these studies have made a significant breakthrough in 3D sl-µPADs fabrication.
However, they defined the channels with wax, which cannot support the solutions such as surfactants
and organic solvents [32]. Therefore, there is still an urgent need to search for a new technology for
manufacturing 3D sl-µPADs with high chemical resistance. Furthermore, there have been no reports
using the 3D µPADs for the simultaneous detection of nitrite and thiocyanate in saliva so far.

Spraying-based technology has been developed for the fabrication 2D µPADs in recent years. With
a comparison to the conventional fabrication techniques, a spraying process displaced the printing
process to fabricate 2D µPADs, attracting wide interest of researchers. Nurak et al. constructed 2D
µPADs to detect nickel (II) ion by a spray-painting method. The analytical performance of Ni2+ assay is
very good, and the limit of detection is as low as 8.5 µM [33]. Cardoso et al. fabricated 2D µPADs by the
glue-spraying technique. The developed 2D µPADs were highly resistant to chemicals and successfully
applied to the colorimetric assays of eight analytes [32]. Our group used the spraying method to
deposit patterned adhesive tape in a piece of filter paper to fabricate 2D channels. The developed 2D
µPADs provided a simple and cost-effective platform for bioassays [34]. Although these studies have
had great breakthroughs in applying the spraying technique to the manufacture of 2D µPADs, there
are only a few studies to report the spraying method for fabricating 3D µPADs. Phillips group used
the wax-printing technique to make patterned paper and used the glue-spraying method for layers
alignment [35]. Their work greatly simplified the assembly steps but still used the wax printer to
pattern paper. More importantly, their work was focused on the multi-layered 3D µPADs fabrication.
Therefore, there is still a great challenge to apply the spraying method to construct 3D channels in a
single piece of filter paper.

In this work, a spraying patterning approach is presented for the fabrication of 3D sl-µPADs
relying on double-sided spraying of lacquer. Two important parameters for the fabrication process
were optimized: (1) spraying times (the times needed for pressing the spray nozzle), and (2)
drying conditions including temperature and time. Under the optimized fabrication conditions,
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3D channels were formed in a single piece of paper. The applicability of the fabricated 3D sl-µPADs
was demonstrated by simultaneously detecting nitrite and thiocyanate. The results show satisfactory
sensitivity, good specificity, good repeatability, and acceptable recoveries in artificial saliva toward
nitrite and thiocyanate detection.

2. Experimental

2.1. Reagents and Instruments

The qualitative filter paper (102#) with medium speed was bought from Hangzhou Fuyang Wood
Paper Co., Ltd. (Hangzhou, China) and used for 3D sl-µPADs fabrication. The porosity of the filter
paper was 15–20 µm and the ash content of the filter paper was less than 0.15%. The thickness of
the filter paper was measured to be 170 µm using a digital vernier caliper. The lacquer (400 mL/can,
yellow color) was purchased from Guangdong Haoshun ODIS Technology Co., Ltd. (Zhaoqing,
China). The principal component of the lacquer is resin and the lacquer has the advantages of high
water resistance and good adhesion. The spraying area is 2.5 m2 per can of lacquer. The desired
mask was designed using Auto CAD software and cut out from transparent polymethyl methacrylate
(PMMA) board with 1 mm in thickness by a local laser cutting shop in China. Black paper binder
clips (size 19 mm) were purchased from Deli Co., Ltd. (Ninghai, China) and used to fix the desired
mask on the filter paper. Sodium nitrite, potassium thiocyanate, sulphanilamide, N-(1-naphthyl)
ethylenediamine dihydrochloride (NED), ferric nitrate nonahydrate, citric acid monohydrate, boric
acid, sodium hydroxide, glacial acetic acid, phosphoric acid, sodium carboxymethylcellulose (SCMC)
were of analytical grade and purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Poly (acrylic acid) (M.W. ≈3000) was bought from Aladdin-Reagent Company (Shanghai, China).
Ultrapure water with electric resistivity of 18.2 MΩ cm was used throughout. The digital photos of the
developed assays were taken by a smartphone (MI 8 SE, Beijing Xiaomi Technologies Co., Ltd., Beijing,
China) in a foldable photo box. The photo box is equipped with 84 LED lamps and lampshade with
the size of 40 × 40 × 40 cm. The distance between the phone and the fabricated 3D sl-µPADs was 8 cm.
The digital Red (R), Green (G), and Blue (B) color analysis was done by ImageJ software provided by
National Institute of Health (Bethesda, MD, USA).

2.2. Solution Preparation

The NO2
− and SCN− standard stock solutions were made by the dissolvement of NaNO2 and

KSCN in ultrapure water, respectively. The Griess reagent for NO2
− detection was made up of 330 mM

citric acid, 50 mM sulfanilamide, and 10 mM NED. The Fe (III) reagent solution (600 mM) for SCN−

assay was made by the dissolvement of ferric nitrate in Britton–Robinson buffer (pH 7). For the
recovery test, the artificial saliva was used as the complex sample, consisting of the following in
ultrapure water: NaCl 0.4 g/L; KCl 0.4 g/L; CaCl2·2H2O 0.8 g/L; NaH2PO4 0.69 g/L; Na2S·9H2O 0.05 g/L;
SCMC 0.1 g/L [36,37].

2.3. 3D sl-µPADs Fabricated by a Two-Step Spraying Technique

The spraying prototyping process for fabricating the 3D sl-µPADs was illustrated and shown in
Figure 1. A sheet of filter paper was sandwiched between two PMMA boards with the same design
(Figure 1a). To fix the relative position between the filter paper and the PMMA boards, the four corners
of the PMMA boards were held with four binder clips (Figure 1b). In the first step of the spraying
process, the distance between the spray nozzle of the lacquer and the device is set as 20 cm. Then,
the spray nozzle of the lacquer was pressed for two times for each side of the filter paper (Figure 1c).
After 10 min at room temperature (RT) (Figure 1d), the chip was sandwiched between another two
PMMA boards with different designs (Figure 1e). In the second step, the spray nozzle of the lacquer on
the top surface is farther from the chip (25 cm) while on the bottom surface the distance between the
spray nozzle and the chip is 20 cm (Figure 1g). The spray nozzle of the lacquer was also pressed for
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two times for each side of the chip. Afterwards, the chip deposited with lacquer was put in a drying
chest at 100 ◦C for 2 h. Finally, excess materials were trimmed (Figure 1h) and the the finished layout
of the 3D sl-µPADs were provided (Figure 1i).Sensors 2020, 20, x 4 of 15 
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Figure 1. The diagram of the spraying prototyping technique for fabricating the three-dimensional
single-layered paper-based microfluidic analytical devices (3D sl-µPADs). (a) a sheet of filter paper and
two PMMA boards with the same design. (b) the paper and two PMMA boards were stacked together.
(c) the first spraying process. (d) the device was dried at room temperature for 10 min. (e) the filter
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together. (g) the second spraying process. (h) the excess materials were trimmed. (i) the finished layout
of the 3D sl-µPADs.

2.4. Simultaneous Colorimetric Detection of Nitrite and Thiocyanate

The detection principles for nitrite and thiocyanate assays are based on the classical Griess
diazo-coupling reaction and the coordination reaction between Fe (III) and thiocyanate, respectively [38–40].
Both the two reactions are fast and highly selective. At first, the µPAD was prepared by first adding 1.8 µL
of poly (acrylic acid) with a concentration of 0.7 g/L to all the assay reservoirs, waiting for 10 min for
drying at RT. After that, 1.8 µL of Griess reagent solution was pipetted to the left detection reservoir while
1.8 µL of the Fe (III) reagent solution was pipetted to the right detection reservoir. Both the reagents were
dried at RT for 10 min to form the final sensor. The simultaneous detection of both NO2

− and SCN− was
performed. The detection reservoirs on the left were used for nitrite assay and the detection reservoirs on
the right for thiocyanate detection. A total of 18 µL of the standard containing two anions was pipetted
into the central reservoir for introducing the sample. After a 15-min waiting period, the image of the
device was collected with a phone camera in the professional photography box. The color intensities
in the RGB mode were measured by the free software, ImageJ. The whole area of the assay zone was
selected, and the mean color value was calculated.

2.5. Recovery Test

For the recovery test, the fabrication process of the 3D sl-µPADs was the same as the experimental
steps referred to before. The artificial saliva sample was used as the complex sample to detect the
recoveries. The addition of SCMC in the artificial saliva was used to mimic human saliva viscosity [41].
The complex sample (18 µL) was spiked with known concentrations of both analytes and was pipetted
into the central reservoir afterwards. After waiting for 15 min, the picture of the 3D sl-µPADs was taken
by a phone. The color values in the assay zones were measured by the free image processing software.
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3. Results and Discussion

3.1. Conditions Optimization for Spraying Prototyping Process

Spraying technique is effective at penetrating the lacquer vertically through the cellulose pore
spaces and thereby forming a hydrophobic barrier [33]. Limited and controlled lacquer deposition
is extremely important for the fabrication of the 3D sl-µPADs by the spraying prototyping process.
To fabricate different patterns on each side of the filter paper, it is necessary to optimize the times for
pressing the spray nozzle of the lacquer. For the optimization of pressing times, the developed devices
were left at RT for 24 h and the food dye with red color (18 µL) was then added to the central reservoir
of the devices. In the first step spraying lacquer, the spray nozzle was pressed different numbers
of times. It is noted from Figure 2A that the hydrophobic barrier was not successfully formed after
pressing the spray nozzle once. Pressing three and four times results in the excess deposition of lacquer
in the filter paper, resulting in narrowing or blocking the hydrophilic channels. Therefore, two times
was chosen as the optimized number of times to press the nozzle to ensure the lacquer fully penetrates
into the whole depth of the filter paper. In the second step of the spraying process, when the nozzle
was pressed two times, the hydrophobic barriers were successfully formed on both the top and bottom
sides of the device as shown in Figure 2B. Therefore, two times was chosen for the optimized number
of times for the second spraying process. Under the optimized times for pressing the nozzle, the drying
temperature and time were also optimized. Several temperatures (RT, 30, 60, 80, and 100 ◦C) and
drying times (1 h, 2 h) were chosen for performing the experiment. The results are shown in Figure 3.
It is noted that the lacquer could not be fully dried at low temperature or without enough drying time,
resulting in the failure of the desired hydrophobic barrier formation. The optimized drying condition
is 100 ◦C for 2 h, under which the clear hydrophobic boundary was obtained.
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3.2. Characterization of the 3D sl-µPADs

In this work, the 3D sl-µPADs were generated by the spraying prototyping process. To investigate
the penetration degree of the lacquer at different regions, the solution containing red food dye (18 µL)
was added to the central well of the developed device. Then the solution filtered through the paper,
traveled through the filter paper along the channel route, and reached the side wells. Then the
fabricated 3D sl-µPADs were cut along the black dotted line after they were fully dried as shown
in Figure 4 and the intersection was observed by an optical microscope. It is clearly seen that the
paper in spot ‘A’ was un-patterned and the whole depth in spot ‘A’ was hydrophilic. In spot ‘B’,
the depth of the yellow lacquer occupied about two-thirds of the whole depth of the device. Therefore,
the top side in spot ‘B’ was hydrophobic while the bottom side in spot ‘B’ was hydrophilic. In spot
‘C’, the totally hydrophilic channel and the totally hydrophobic channel were converged together.
In addition, the boundary between hydrophobic area and hydrophilic area was very clear. Therefore,
it is practicable to control lacquer deposition by optimizing the spraying times and drying conditions.

Furthermore, the wettability behavior of the 3D sl-µPADs was studied. The photographs of water
droplet (4 µL) on both sides of the 3D sl-µPADs are shown in Figure 5A. The contact angles with water
were 112.77 ± 3.66◦ for the top surface and 116.21 ± 0.55◦ for the bottom surface, respectively. The result
indicates that the hydrophobic barriers were successfully constructed on both sides of the device
by the spraying prototyping process. To demonstrate how the fluid flows in the channel, the food
dye with red color (18 µL) was added to the central reservoir on the top surface of the 3D sl-µPADs.
The pictures of the 3D sl-µPADs were selected at different time as shown in Figure 5B. The food dye
flew through the channel on the bottom surface and then was seen in the left and right detection zones,
indicating the successful construction of different patterns on different sides of a single filter paper.
The time needed for the fluid flowing from sample introduction zone to both detection zones was
5 min. In addition, the materials cost US $0.0728 per 3D sl-µPAD. It is much lower than the costs of the
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3D uPADs fabricated by other groups [42–44]. All these results indicate that the spraying method for
fabricating 3D sl-µPADs could be an alternative to traditional techniques such as wax printing.
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are taken at different times after adding food dye (18 µL) to the central reservoir from the top surface of
the 3D sl-µPADs.

The barrier resistance is one of the important evaluation criteria for µPADs. The chemicals
including acid and alkaline solutions, organic solvents, surfactants, etc., were often used in the
analytical experiments. Therefore, the resistance of the lacquer barrier towards these chemicals was
examined in this work. The solutions used for resistance examination are listed as follows: ultrapure
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water, acidic solutions (150 mM sulphuric acid, 150 mM citric acid), alkaline solution (150 mM sodium
hydroxide), surfactants (5% (w/v) cetyltrimethylammonium bromide (CTAB)) and organic solvents
(50% (v/v) isopropanol). In order to visually demonstrate the barrier effectiveness, the distance-based
µPADs were used with a circular sample introduction zone (8 mm in diameter) and a straight channel
(2 mm in width × 25 mm in length) for the resistance experiment. The solution containing a red food
dye was pipetted into the sample introduction zone. After drying for 20 min, the optical micrographs
of the channels were recorded. The results are shown in Figure 6. There was no solution leakage
observed in all the micrographs recorded. The results indicate that the lacquer barrier could support
these solutions and exhibited a great compatibility with these solutions. Moreover, the results also
indicate that the barrier made by lacquer spraying is better than the wax barrier, because the wax
barrier is poorly resistant to the solution such as surfactants and organic solvents [32].
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3.3. The Feasibility Demonstration

The color values in the different color channels were measured for demonstrating the feasibility of
the 3D sl-µPADs for NO2

− and SCN− assays. The results for the individual assay and the multiplex
assay are shown in Figure 7. For nitrite assay, it is seen that the color values for the R, G, and B channels
were 114, 103, and 92 for the blank, 110, 67, and 69 for the individual assay of 1 mM nitrite, and 108, 69,
and 70 for 1 mM nitrite in multiplex assay, respectively. The absolute values of the color difference
between the blank and the standard for R, G, and B channels were 4, 36, and 23 for the individual assay
of nitrite, and 6, 34, and 22 for nitrite in multiplex assay, respectively. Therefore, the color values in the
G channel is most sensitive for nitrite assay and chosen as the response signal. For thiocyanate assay,
it is seen that the color values for the R, G, and B channels were 114, 110, and 75 for the blank, 118,
96, and 51 for the individual assay of 2 mM thiocyanate, and 111, 96, and 52 for 2 mM thiocyanate
in multiplex assay, respectively. The absolute values of the color difference between the blank and
the standard for R, G, and B channels were 4, 14, and 24 for the individual assay of thiocyanate, and
3, 14, and 23 for thiocyanate in multiplex assay, respectively. Therefore, the color values in the B
channel are most sensitive for thiocyanate assay and chosen as the response signal. Moreover, the color
intensities for both nitrite and thiocyanate in individual assay and multiplex assay were almost same.
The results indicate that nitrite and thiocyanate could be detected simultaneously and each of them
did not interfere with the other’s detection.
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3.4. Simultaneous Detection of Nitrite and Thiocyanate

The simultaneous detection of nitrite and thiocyanate by the 3D sl-µPADs was investigated.
The images of the detection zones after the addition of a series of standards are shown in Figure 8. It is
noted that the color in the detection zones becomes deeper with increasing nitrite and thiocyanate
concentrations from 0 to 5 mM and from 0 to 15 mM, respectively. The changes in color resulted in the
notable decreases in the Green channel intensity for nitrite assay (Figure 8A) and the Blue channel
intensity for thiocyanate assay (Figure 8B), respectively. Figure 8 shows that the linear ranges are
from 0.02 to 2 mM and from 0.25 to 5 mM for nitrite and thiocyanate, respectively. The corresponding
linear functions are Green channel intensity = − 26.3098Cnitrite + 97.6078 (R2 = 0.9963) and Blue
channel intensity = − 8.9016Cthiocyanate + 70.4588 (R2 = 0.9907) for nitrite and thiocyanate, respectively.
The limits of detection (LOD) calculated as the threefold noise level of the blank signal were 0.0096 and
0.074 mM for NO2

− detection and SCN− detection, respectively. The performance of the developed 3D
sl-µPADs was compared with other sensors reported in literature for nitrite and thiocyanate assays
as shown in Table 1. Most of the sensors for nitrite or thiocyanate assays mentioned in Table 1 are
based on the same reactions and the same analytical method used in this work. Although our 3D
sl-µPADs needed the longer time for reaction (15 min) and the bigger volume for sample introduction
(18 µL) than some work shown in Table 1, the linear ranges and the LODs obtained in this work were
comparable with those given by other sensors. Therefore, the fabricated 3D sl-µPADs provided an
analytical platform to quantitatively detect nitrite and thiocyanate at the levels normally found in
saliva [45–47]. Moreover, a heating step was added to study the possibility of the shorter testing time.
The standard containing the two analytes including nitrite (1.5 mM) and thiocyanate (3 mM) was
applied for this investigation. After adding the standard in the central well, the device was left in the
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oven at 50 ◦C for 3 min. For control, the device without heating treatment was used to detect the same
standard with a 15 min assay time. The color intensities were almost the same as those of the control
device (data not shown). This indicates that the heating treatment can speed the test duration up to 3
min without losing sensitivity.
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Table 1. A contrast of the assay performance between our 3D sl-µPADs and other sensors reported by
other groups in the determination of nitrite and thiocyanate.

Nitrite Assay

Sensing
Reagents Method Response

Time (min)
Volume

(µL)
Linear Range

(mM)
LOD
(mM) Refs.

Griess reagent Colorimetric 2 15 0.16 [48]
Griess reagent Colorimetric 0.087 [49]
Griess reagent Colorimetric 2 1.40 0.156–1.25 [50]
Griess reagent Colorimetric 10 5 0.0156–1 0.0148 [51]
Griess reagent Colorimetric 10 12 0.02–0.9 0.015 [36]
Griess reagent Colorimetric 15 18 0.02–2 0.0096 This work

Thiocyanate Assay

Sensing
Reagents Method Response

Time (min)
Volume

(µL)
Linear Range

(mM)
LOD
(mM) Refs.

Fe3+ Colorimetric 4 15 1–8 1.19 [52]
Fe3+ Colorimetric 10 2 0.025–20 0.06 [27]
Fe3+ Colorimetric 0.10–0.34 0.10 [53]
Fe3+ Colorimetric 100 2.55–25.48 0.20 [54]

Astra phloxine Spectrophotometic 50 0.05–0.50 0.02 [55]
Fe3+ Colorimetric 15 18 0.25–5 0.074 This work



Sensors 2020, 20, 4118 11 of 15

3.5. Specificity and Precision

The specificity of the developed 3D sl-µPADs was investigated by performing the control
experiments using other commonly ions as interferents (NH4

+, CH3COO−, I−, H2PO4
−, Cl−, SO4

2−,
Mg2+, Br−, NO3

−). Figure 9 shows the color intensity of the detection zones for the specificity
experiments. Compared to the blank, the standards containing nitrite and thiocyanate gave the obvious
decreases in the Green channel intensity and the Blue channel intensity, respectively. The response
signals caused by the mixture of the standards and the interferents are almost the same as those of
the standards, indicating the excellent specificity of the developed 3D sl-µPADs toward nitrite and
thiocyanate assay. To investigate the precision of this method, the intra-batch and the inter-batch
precisions were assessed by the relative standard deviations (RSD) at one concentration level for the
multiplex assay: 1 mM nitrite and 2 mM thiocyanate. The intra-batch precision was performed by
carrying out eight measurements and the RSD values were 4.5% and 3.9% for nitrite and thiocyanate,
respectively. The inter-batch precision was assessed by detecting the same concentration using eight
pieces of 3D sl-µPADs from eight different batches. The RSD values for the concentration level were
5.6% and 5.2% for nitrite and thiocyanate, respectively. All these results indicated that the developed
3D sl-µPADs provided a precise assay method for nitrite and thiocyanate detection.
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3.6. Recovery Test

The practicability of the fabricated 3D sl-µPADs was evaluated by carrying out the recovery test
using the artificial saliva as the real sample. The artificial saliva was spiked with the solutions with
known concentrations of nitrite and thiocyanate, and was then pipetted into the central reservoir.
The photos were acquired after 15 min of sample addition to allow full reaction between the analytes
and the reagents. The results of the recovery test in artificial saliva are listed in Table 2. The recoveries
for samples with 0.1, 0.5, and 1.5 mM nitrite added and 0.5, 2, and 3 mM thiocyanate added are 110%,
100%, and 95%, and 108%, 92%, and 104%, respectively. Furthermore, the RSD for recovery test was
found to be below 6%. Actually, the viscosity of the sample has a great influence on the fluidity of the
solution in the channel. SCMC in the artificial saliva was used to mimic the viscosity of the real saliva
sample. Different concentrations of SCMC solutions containing a red food dye were used to investigate
the solution fluidity in the channel. A total of 18 µL of the SCMC solution was added into the central
sample introduction well. After 5 min, the picture of the top surface of the 3D device was taken using a
smart phone. As shown in Figure 10, the results demonstrated that the solutions containing 0.1 g/L of
SCMC showed the good solution fluidity in the channel. Higher concentrations (larger than 0.25 g/L)
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of SCMC solutions were too viscous to move in the channel. The viscosity of the artificial saliva used
for recovery test is lower than 1.54 mPa·s while the viscosity of the real saliva sample ranges from 1 to
30 mPa·s [41,56]. Therefore, the fluidity of the actual saliva sample in the channel may be a limitation
in testing. The pretreatment such as dilution and freezing treatment may be needed before testing
since the saliva viscosity was found to decrease significantly after being frozen [57].

Table 2. Recovery test of nitrite and thiocyanate in artificial saliva.

Nitrite

Sample No. Added (mM) Found (mM) RSD (%) Recovery (%)

1 0.1 0.11 5.63 110
2 0.5 0.50 1.98 100
3 1.5 1.43 1.88 95

Thiocyanate

Sample No. Added (mM) Found (mM) RSD (%) Recovery (%)

1 0.5 0.54 2.71 108
2 2 1.83 2.30 92
3 3 3.13 2.84 104
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4. Conclusions

In conclusion, the spraying technique was, for the first time, applied for manufacturing
single-layered 3D µPADs. Under the optimized fabrication conditions, 3D channels were successfully
constructed in a single piece of filter paper and the hydrophobic boundary was very clear. Furthermore,
the developed 3D sl-µPADs were demonstrated for the determination of nitrite and thiocyanate at the
same time. The linear ranges are 0.02–2 mM and 0.25–5 mM and the LODs are 0.0096 and 0.074 mM
for nitrite and thiocyanate, respectively. Moreover, the 3D sl-µPADs exhibit good specificity, good
repeatability, and satisfactory recoveries in the artificial saliva. The analytical performance of the 3D
sl-µPADs is sufficient to detect nitrite and thiocyanate at the levels normally found in saliva, indicating
their potential applications in POCT. More importantly, through changing the designs of PMMA boards,
the 3D sl-µPADs could accommodate more complex channels and enable high-throughput detection.
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