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Abstract: A reference electrode is necessary for the working of ion-sensitive field-effect transistor
(ISFET)-type sensors in electrolyte solutions. The Ag/AgCl electrode is normally used as a reference
electrode. However, the Ag/AgCl reference electrode limits the advantages of the ISFET sensor. In this
work, we fabricated a two-channel graphene solution gate field-effect transistor (G-SGFET) to detect
pH without an Ag/AgCl reference electrode in the electrolyte solution. One channel is the sensing
channel for detecting the pH and the other channel is the reference channel that serves as the reference
electrode. The sensing channel was oxygenated, and the reference channel was fluorinated partially.
Both the channels were directly exposed to the electrolyte solution without sensing membranes
or passivation layers. The transfer characteristics of the two-channel G-SGFET showed ambipolar
field-effect transistor (FET) behavior (p-channel and n-channel), which is a typical characteristic curve
for the graphene ISFET, and the value of VDirac was shifted by 18.2 mV/pH in the positive direction
over the range of pH values from 4 to 10. The leakage current of the reference channel was 16.48 nA.
We detected the real-time pH value for the two-channel G-SGFET, which operated stably for 60 min
in the buffer solution.
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1. Introduction

Since the invention of the ion-sensitive field-effect transistor (ISFET) by Bergveld (1970), field-effect
transistor (FET)-based ion sensors have been widely studied for detecting many types of specific
ions [1]. The ion-sensitive field-effect transistor (ISFET) has advantages such as high sensitivity, rapid
response, high input impedance, low output impedance, miniaturization, and low cost. In the ISFET
sensing system, a durable reference electrode is required to set a precise and stable potential reference
to the ISFET measured solution [2–5]. Conventionally, the Ag/AgCl electrode has been used as the
reference electrode in the ISFET sensing system [6–9]. However, the Ag/AgCl reference electrode
limits the advantages of the ISFET, especially miniaturization and low cost. The Ag/AgCl reference
electrode is difficult to miniaturize to micrometer size, and its fabrication is incompatible with the
semiconductor technology used to manufacture ISFETs [10]. Some studies have reported methods
using solid-state reference electrodes or back gates to replace the Ag/AgCl reference electrode [10,11].
However, these methods are incompatible with semiconductor fabrication technology and have
reliability issues. Therefore, finding a robustly integrated reference electrode remains the most crucial
factor for FET-based pH sensors.
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Graphene, a single-atom layer with a two-dimensional (2D) hexagonal structure of carbon,
has high electrical conductivity, physical stability, and unique chemical characteristics [12–14].
Recently, large-area graphene sheets grown by the chemical vapor deposition (CVD) method were
transferred onto silicon wafer, glass, and polyethylene terephthalate (PET) [15]. Such graphene
sheets are commercialized and used in bioengineering to fabricate biosensors. Graphene-based
FET biosensors, which are highly sensitive and selective, were developed with the aim of detecting
biomolecules [16–18].

In this work, we fabricated a two-channel graphene solution gate field-effect transistor (G-SGFET)
to detect the pH of an electrolyte solution. We integrated two types of functionalized graphene channels
into one device to fabricate the two-channel G-SGFET. One graphene channel was the sensing channel
similar to ISFET (G-ISFET), and the other graphene channel was the reference channel substituting the
Ag/AgCl reference electrode. The structure of the two-channel G-SGFET was a two-dimensional (2D)
structure. The reference channel is directly exposed to the electrolyte solution without passivating
membranes, which are necessary for the silicon-based reference field-effect transistor (REFET), to set
up a precise and stable potential with respect to the sensing channel in the electrolyte solution.
The sensing channel of the two-channel G-SGFET detects the concentration of proton ([H+]). The pH
sensitivity, real-time detection, and long-term stability of the two-channel G-SGFET are evaluated by
current–voltage (I–V) measurements in the electrolyte solution. The two-channel G-SGFET overcomes
the limitations of the G-ISFET.

2. Materials and Methods

2.1. Fabrication of G-SGFET

Large-sized graphene sheets on PET substrate were purchased from MCK Tech Co. (Ansan, Korea).
The application of graphene sheets onto PET substrates has potential for use in bioscience owing to the
flexibility of the substrate. Gold (Au) was evaporated in a vacuum chamber (5.0 × 10−6 Torr) using
a thermal evaporator to form the drain and source electrodes on the graphene sheet. The thickness
of the gold electrode was 200 nm, and the gate channel was 5 mm in width and 500 µm in length.
To apply bias to the electrodes, conductive wires were bonded using silver paste on the drain and
source electrodes. Finally, the drain and source electrodes were covered with epoxy resin (HE 205 from
Malaysia) to protect the electrodes from the electrolyte. The transfer characteristics of the two-channel
G-SGFET were measured using two digital source meters (KEITHLEY 2400, Cleveland, OH, USA).
All electrical measurements were carried out at 28 ◦C and biased within the potential window of
graphene to prevent the redox reaction on the graphene gate channel. The drain–source voltage (VDS)
was fixed at 0.05 V and the gate–source voltage (VGS) was swept from 0.0 to 1.0 V. The sensitivity of
the pH was evaluated by the shift in the voltage of the Dirac point (∆VDirac) in the G-ISFET. Carmody
buffer solution (0.2 M boric acid, 0.05 M citric acid, and 0.1 M tri-sodium phosphate) was used as the
pH buffer solution, with the pH adjusted from 4 to 10. Ultrapure water (18.2 MΩ·cm) was used for the
preparation of all the solutions.

2.2. Functionalization of Graphene

The graphene sheet was functionalized by plasma treatment, employing a 50 kHz radio frequency
plasma source at 50 W using a plasma generator (CUTE, Femto Science Co. Ltd., Hwaseong-Si, Korea).
The plasma treatment was carried out at 28 ◦C (gas pressure fixed at 1 × 10−2 Torr) on the graphene
gate channel in an O2 gas environment to oxidize for 10 s or in a C3F8 gas environment to fluorinate for
20 min. The O2 and C3F8 gas flow rates were maintained at 20 and 10 sccm, respectively. Thereafter,
the fluorinated graphene gate channel was exposed to air at 28 ◦C and left to stabilize for 72 h.

A spatially resolved X-ray photoelectron spectroscope (XPS; Thermo Fisher, Waltham, MA, USA)
was used for determining the surface composition and bonding state of the functionalized graphene
sheets with a monochromatic Al Kα (1486.6 eV) X-ray source. The beam diameter was set to 400 µm,
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and survey scans using a resolution of 10 scans were performed on the graphene that was transferred
onto the SiO2/Si substrate. The properties of the functionalized graphene were characterized by
Raman spectroscopy (Renishaw, system1000, Gloucestershire, UK) using an argon-ion laser at an
excitation wavelength of 514 nm and a spot size of 1 µm. All Raman measurements were performed at
room temperature.

3. Results and Discussion

3.1. Surface Analysis of Graphene

The survey scans of XPS spectrum on the pristine, oxygenated and fluorinated graphene sheets
are shown in Figure 1a. The atomic ratio of oxygen atoms was increased to 24.07% on the oxygenated
graphene sheets, as compared to that of pristine graphene (21.42%), using plasma treatment for 10 s.
The main carbon C 1s from the oxygenated graphene was deconvoluted with four components that
denoted carbon atoms in four specific functional groups [19]. The four peaks were associated with
the graphitic peak (C-C/C=C), hydroxyl groups (C-OH), carbonyl groups (C=O), carboxyl groups
(O=C-OH) at 284.67, 286.6, 288.9 and 290.67 eV, respectively. A satellite of the graphitic peak (π-π) was
also found at 291.72 eV, as shown in Figure 1b. The main carbon C 1s from the pristine and fluorinated
graphene were shown in our previous work [20].
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Figure 1. XPS and Raman spectra of graphene. (a) Survey spectra of XPS on pristine, oxygenated and
fluorinated graphene; (b) deconvoluted C 1s peaks on partially oxygenated graphene; (c) deconvoluted
F 1s peaks on partially fluorinated graphene; (d) Raman spectra of pristine, oxygenated and
fluorinated graphene.

Fluorinated graphene has received attention in a variety of applications, including self-cleaning,
super-hydrophobic coatings and electrochemical electrodes, because fluorinated graphene has low
surface energy, high chemical stability and temperature stability [19,21,22]. The plasma treatment in
fluorine gas (SF6, CF4, C4F8, and C3F8) environment is considered a clean method for manufacturing
fluorinated graphene [19,22]. The fluorinated graphene has three types of bonding properties, such as
ionic, semi-ionic, and covalent C-F bonds depending on the plasma condition [23]. These bonding
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properties are characterized with XPS spectrum analysis. The deconvolution of F 1s peak defines the
three types of C-F bonds; ionic (684 eV), semi-ionic (686–687 eV), and covalent bond (689–691 eV) [23,24].
When the graphene sheet was functionalized with fluorine for 20 min, the atomic ratio of fluorine was
49.8% and the content of oxygen clearly decreased because the oxygen atoms were substituted by carbon
or fluorine, as shown in Figure 1b and Figure S1. The main fluorine F 1s from fluorinated graphene
was deconvoluted with three components that denoted fluorine atoms in three specific functional
groups [22]. The three peaks were associated with the ionic bond (2.8%) at 684.8 eV, semi-ionic bond
(93.8%) at 687.3 eV, and covalent bond (3.4%) at 689.4 eV, respectively, as shown in Figure 1c. As a result
of plasma treatment for 20 min in a C3F8 gas environment, the graphene sheet was functionalized with
three types of fluorine bonds, and the dominant type of fluorine bond was semi-ionic C-F bonding.
The ionic or semi-ionic C-F bonds on graphene sheet have conductivity like a metal or semiconductor,
respectively [22], and the covalent C-F bond on the graphene sheet is an insulator [24].

The Raman spectra of the pristine, oxygenated and fluorinated graphene sheets are shown in
Figure 1d. The G and 2D peaks of the pristine graphene sheet were centered at 1585 and 2700 cm−1,
respectively. The D peak caused by defects at 1358 cm−1 was observed. The area intensity ratio (IG/I2D)
of pristine was 0.4. The pristine graphene sheet was monolayer [25]. After fluorination using plasma
treatment, the G and 2D peaks shifted 1589 and 2709 cm−1. The IG/I2D was 0.46 and the intensity of the
D peak was slightly greater than that of the pristine graphene. However, the IG/I2D of oxygenated
graphene was 0.55 and the D peak was highly increased. After oxygenation, D’ peak appears at
~1620 cm−1, which originate from double-resonance processes at the K point in the presence of defects
intravalley phonon. The increased D peak of oxygenated graphene was partially etched and the defect
was increased by the plasma oxygenation process. The full width at half-maximum (FWHM) of the
2D peak of pristine and fluorinated graphene was ~36 cm−1, and after oxygenation this increased to
~41 cm−1. The hall measurement was conducted to evaluate the conductivity of the pristine, fluorinated
and oxygenated graphene sheets. The sheet resistance of the pristine and fluorinated graphene sheets
was 475 and 603 Ω/sq, respectively. The sheet resistance was increased by fluorination due to the
covalent C-F bond (3.4%), which was consistent with XPS and Raman spectra. The sheet resistance of
the oxygenated graphene sheet was 1.99 KΩ/sq. The high sheet resistance of oxygenated graphene was
due to the change in the carbon structure from an sp2-hybridized carbon structure to an sp3-hybridized
carbon structure by the oxygenation.

3.2. The pH Sensitivity in Each Functionalized G-ISFET

Although the two-channel G-SGFET was fabricated for pH sensing without a reference electrode,
each functionalized G-ISFET works like a conventional ISFET with an Ag/AgCl reference electrode.
As shown in Figure 2a, the pH sensitivity of each functionalized G-ISFET was evaluated. The G-ISFET
is characterized by the drain–source current (IDS), drain–source voltage (VDS), and gate–source voltage
(VGS) in the electrolyte solution. After the pH buffer exchange, the sensor was stabilized for 2 min
before the steady-state electrical measurements of the transfer characteristics were conducted. To obtain
the IDS–VDS characteristics of the oxygenated graphene channel, VDS was swept from 0.0 to 0.7 V
in a buffer solution of pH 8. IDS increased with respect to VGS at the n-channel region, as shown in
Figure 2b.

The strength of IDS in the oxygenated gate channel was low compared to the strength of IDS in the
pristine gate channel (not shown). The conductivity of the oxidized gate channel was decreased by
partial substitution from the sp2-hybridized carbon structure to the sp3-hybridized carbon structure
by oxygenation of the graphene sheet, and an amorphous carbon structure exists due to the collision
of oxygen ions on the oxidized gate channel surface after plasma treatment [26]. The sp3-hybridized
carbon structure on the graphene sheet is an insulator [27,28]. VDS was fixed at 0.05 V and VGS
was swept from 0.0 to 0.6 V to assess the IDS–VGS characteristics of the G-ISFET in the pH buffer
solution. The value of VGS at the lowest value of IDS is known as the Dirac point (VDirac), which is the
switching point between the hole and electron carriers [29]. The pH sensitivity of the G-ISFET was



Sensors 2020, 20, 4184 5 of 11

evaluated by the shift of VDirac in the pH buffer solution. The VDirac was shifted by 19.4 mV/pH in
the positive direction over the range of pH values from 4 to 10 in oxygenated G-ISFET, as shown in
Figure 2c. There are some defects on the oxygenated graphene surface and edge, which are induced
during oxygen plasma treatment. These defects, hydroxyl and carbonyl groups, can react with the
protons in the electrolyte solution (protonation or deprotonation), leading to pH sensitivity in the
oxygenated graphene. To confirm the reliability of the pH sensitivity in the oxygenated G-ISFET,
VGS was swept with forward and backward bias to assess the IDS–VGS characteristics of the G-ISFET
(Figure S2a,b). The VDirac was shifted depending on the pH value in the buffer solution, regardless
of the bias direction. However, hysteresis was shown along the VGS sweep direction (Figure S2c,d).
This is because the mobility of the ions in the solution is slow, so the ions do not move quickly along
the VGS sweep direction.
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Figure 2. Typical three-dimensional pH sensor using graphene field-effect transistor. (a) Schematic
illustration of G-ISFET with Ag/AgCl reference electrode. For oxygenated G-ISFET: (b) IDS–VDS transfer
characteristic with respect to VGS and (c) IDS–VGS transfer characteristic with respect to pH value.

The conductivity of the fluorine-functionalized graphene sheet with a semi-ionic bond is that
of a semiconductor [21]. To obtain the IDS–VDS characteristics of the fluorinated graphene channel
in a buffer solution of pH 8, VDS was swept from 0.0 to 0.7 V. The fluorinated gate channel of the
G-ISFET worked stably in the electrolyte solution and IDS increased depending on the value of VGS at
the n-channel region, as shown in Figure 3a. However, VDirac did not shift over the range of pH values
from 4 to 10 in the fluorinated G-ISFET, as shown in Figure 3b. The fluorinated G-ISFET was insensitive
to pH. The gate leakage current (IGS) of the fluorinated G-ISFET was 16.48 nA. The pH sensitivity
was shown with a different F/C ratio on the fluorinated graphene surface (Figure S3). We typically
conducted the IDS–VGS transfer characteristics of the fluorinated G-ISFET to assess the cation and anion
sensitivity by KCl concentration and to evaluate the interfacial potential according to the ionic strength
in Tris buffer solution. The fluorinated G-ISFET was insensitive to K+ and Cl− ions and worked stably
in Tris buffer solution regardless of ionic strength (Figure S4a,b). This fluorinated gate channel has the
potential to be used as a reference electrode in pH-sensing devices to probe electrostatic potential in
the electrolyte solution.

The real-time pH sensitivity of the oxygenated G-ISFET with Ag/AgCl reference electrode was
evaluated. VGS was continuously measured at fixed values of IDS and VDS on the IDS–VGS characteristics
with periodic injection of buffer solutions with different pH values every 2 min for 10 min. VDS was
maintained as constant, which was chosen so as to bias the device in strong inversion. The results of
real-time measurements on the oxygenated G-ISFET with buffer solutions of different pH values are
shown in Figure 4a. In the n-channel region, VGS increases in the high-pH buffer solution to maintain
IDS (40 µA) at a fixed value of VDS (0.05 V) on the oxygenated gate channel because the surface charge
on the oxygenated gate channel was negative, owing to deprotonation in the high-pH buffer solution.
On the other hand, the surface charge is positive owing to protonation in the low-pH buffer solution,
and VGS decreases to maintain IDS at the fixed value of VDS. The results of real-time measurements on
the fluorinated G-ISFET in different pH buffer solutions are shown in Figure 4b. VGS was continuously
measured at fixed values of IDS (150 µA) and VDS (0.05 V) in the IDS–VGS characteristics with periodic
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injection of buffer solutions with different pH values every 2 min for 10 min. The fluorinated G-ISFET
was insensitive to pH, which was in agreement with the static characteristics.
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Figure 4. Real-time detection of pH in electrolyte solution using (a) oxygenated G-ISFET and (b) fluorinated
G-ISFET. (c) Long-term stability of oxygenated G-ISFET in a buffer solution of pH 8.

We evaluated the long-term stability of oxygenated G-ISFET in a buffer solution of pH 8 in
real-time, similar to the drift characteristics of the ISFET. VGS was continuously measured to keep IDS
at 135 µA and VDS at 0.05 V in the IDS–VGS characteristics. VGS was continuously maintained at the
voltage of 159 ± 4.38 mV for 60 min, as shown in Figure 4c.

3.3. Two-Channel G-SGFET

We fabricated a two-channel G-SGFET, as shown in Figure 5a. One channel is the oxygenated
channel that serves as a sensing G-ISFET and the other channel is a fluorinated channel that serves
as an Ag/AgCl reference electrode. The fluorinated graphene electrode was placed close enough to
the sensing G-ISFET so that its fixed potential could control the operation of the G-ISFET. It should
be noted that both the sensing channel and fluorinated graphene reference electrode were in direct
contact with the electrolyte solution.

In the two-channel G-SGFET, VGS is the voltage between the fluorinated graphene reference
electrode and the source electrode of G-ISFET (VFS), which is the same as when an Ag/AgCl reference
electrode is used, as shown in Figure 3a. The IDS–VDS characteristics of the two-channel G-SGFET
in a buffer solution of pH 8 are shown in Figure 5b. VDS was swept from 0.0 to 0.7 V and IDS was
increased with respect to VGS (0.5, 0.6, and 0.7 V) in the n-channel region. To obtain the IDS–VGS
characteristics of the two-channel G-SGFET in the pH buffer solution, VDS was fixed at 0.05 V and VGS
was swept from 0.0 to 0.65 V. The transfer characteristics showed ambipolar graphene FET behavior
(p-channel and n-channel), which is a typical characteristic curve of the G-ISFET, and VDirac of the
two-channel G-SGFET was shifted by 18.2 mV/pH in the positive direction over the range of pH
values from 4 to 10, as shown in Figure 5c. The IDS–VDS characteristics of the two-channel G-SGFET
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in the pH buffer solution, VGS was fixed at 0.4 V and VDS was swept from 0.0 to 0.7 V, are shown
in Figure 5d. IDS depended on the pH value in the electrolyte solution. We fabricated 5 samples to
evaluate the reproducibility of pH sensitivity on the two-channel G-SGFET. The two-channel G-SGFET
was sensitive to pH regardless of the sample, as shown in Figure 5e. The average pH sensitivity of the
two-channel G-SGFET at pH 4–6 was 49.9 mV, at pH 6–8, the pH sensitivity was 33.5 mV, and at pH
8–10, the pH sensitivity was 28.8 mV. The pH sensitivity is high in the acidic region, which is similar to
the use of Ag/AgCl reference electrode on the oxygenated G-ISFET. The Dirac point of the two-channel
G-SGFET in the same pH solution varies from sample to sample because sensor samples are made
manually at the lab level.
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Figure 5. Two-dimensional pH sensor using graphene field-effect transistor. (a) Schematic illustration of
two-channel graphene solution gate field-effect transistor (G-SGFET) and sensor image. For two-channel
G-ISFET: (b) IDS–VDS transfer characteristic with respect to VGS and (c) IDS–VGS transfer characteristic
with respect to pH value (d) IDS–VDS transfer characteristic with respect to pH value. (e) The Dirac
point of the two-channel G-STGFET.

The voltage between the G-ISFET and the fluorinated graphene reference electrode was set
with respect to the sensing channel and the reference electrode interface. Considering VFS in the
fluorinated graphene reference electrode, the change in the surface charge in the sensing channel results
in the variation of the voltage between the sensing channel and the fluorinated graphene reference
electrode. The bulk potential of the solution is determined by VFS in the fluorinated graphene reference
electrode with electrostatic equilibrium and capacitive coupling. Therefore, the voltage between the
sensing channel and the fluorinated graphene reference electrode is the only parameter related to the
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concentration of protons ([H+]) in the electrolyte solution. The change in proton concentration in the
electrolyte solution leads to the variation of the surface charge by protonation or deprotonation on the
sensing channel and modulates the channel conductance of the oxygenated channel in the two-channel
G-SGFET. The variation of VDirac on the two-channel G-SGFET can be expressed as follows:

∆VDirac = (VpHO − VS) − (VpHF + VF − VS) (1)

where VpHO is the pH sensitivity of the oxygenated sensing channel, VS is the potential of the source
electrode, VpHF is the pH sensitivity of the fluorinated graphene reference electrode, and VF is the
potential of the fluorinated graphene reference electrode in the two-channel G-SGFET. The pH sensitivity
of the two-channel G-SGFET is determined by the differential response between the oxygenated sensing
channel (VpHO) and the fluorinated reference electrode (VpHF). The pH sensitivity of the two-channel
G-SGFET is lower than when the Ag/AgCl reference electrode is used because the fluorinated graphene
reference electrode has some defect, such as an sp3-hybridized carbon structure (3.4% covalent bond)
and an amorphous carbon structure. These defects are unstable in the electrolyte solution.

The real-time pH sensitivity of the two-channel G-SGFET was measured over the range of pH
values from 4 to 10. VGS was continuously measured at the fixed values of IDS (150 µA) and VDS
(0.05 V) on the IDS–VGS characteristic with periodic injection of buffer solutions with different pH
values every 2 min for 10 min. These conditions were the same as that when an Ag/AgCl reference
electrode was used. The real-time pH sensitivity and hysteresis of the two-channel G-SGFET with
different pH buffer solutions was shown in Figures 6a and S5a. In the n-channel region, VGS increased
in the high-pH buffer solution to maintain IDS at a fixed value of VDS in the two-channel G-SGFET
because the surface charge of the oxygenated gate channel became negative by deprotonation in the
high-pH buffer solution. On the other hand, the surface charge is positive by protonation in the low-pH
buffer solution and VGS decreases to maintain IDS at a fixed value of VDS. We evaluate the long-term
stability of the two-channel G-SGFET in the buffer solution of pH 8 in real-time. VGS was continuously
measured to keep IDS (130 µA) at a fixed value of VDS (0.05 V) in the IDS–VGS characteristics. VGS is
continuously maintained at the voltage of 183± 9.2 mV for 60 min, which is similar to using an Ag/AgCl
electrode, as shown in Figure 6b. However, the stability of two-channel G-SGFET was decreased after
1 h, as shown in Figure S5b. The stability of the two-channel G-SGFET is lowered after 1 h, but within
1 h, the pH sensitivity is stable. Therefore, it is expected to be fully utilized as a disposable pH sensor.
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Figure 6. (a) Real-time detection of pH in electrolyte solution using two-channel G-SGFET.
(b) The long-term stability of two-channel G-SGFET in a buffer solution of pH 8.

To achieve high pH sensitivity, it is critical for the sensing channel of the two-channel G-SGFET
to have an ideal Nernstian response while the reference electrode remains entirely insensitive to pH.
We adopted the partially oxygenated graphene electrode as a sensing channel with pH sensitivity
of 19.4 mV/pH, whereas the semi-ionic C-F bonding graphene electrode was chosen as a reference
electrode in the two-channel G-SGFET. When the plasma treatment time increased in the oxygen gas
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environment, the pH sensitivity of the two-channel G-SGFET increased as the number of binding sites
of [H+] increased on the oxygenated gate channel. However, the large degree of surface modification
using plasma treatment, the resistance of the oxygenated gate channel increased and the two-channel
G-SGFET unstably worked in electrolyte solution, because the surface of the graphene layer was etched
by oxygen plasma [29].

4. Conclusions

Oxygenated and fluorinated graphene were directly exposed to the electrolyte solution for sensing
pH and serving as the reference electrode in the two-channel G-SGFET, respectively. The transfer and
output characteristics of the two-channel G-SGFET in the electrolyte solution were the same as those
obtained when an Ag/AgCl reference electrode was used on the G-ISFET. The pH sensitivity in the
two-channel G-SGFET was determined by the differential response between the oxygenated graphene
sensing channel and the fluorinated reference electrode, which worked stably in the electrolyte solution.
The pH sensor of the two-channel G-SGFET has the potential to be applied as an implantable pH
sensor by utilizing the biocompatibility of graphene.

To work as a sensor in the electrolyte solution, the ISFET needs a stable reference electrode.
Generally, an Ag/AgCl electrode is used as a reference electrode in the sensing system. In this
work, we have proposed a new reference electrode that is compatible with semiconductor fabrication
technology because the reference electrode was fabricated using the same material as the sensing
channel using graphene electrode.

If the fluorinated graphene electrode can be used as the reference electrode by replacing the
Ag/AgCl reference electrode in the existing pH sensor system, the application range of the pH sensor
can be further expanded through the manufacture of a compact and disposable pH sensor.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/15/4184/s1,
Figure S1. (a) Deconvoluted C 1s peaks on pristine graphene and (b) partially fluorinated graphene. Figure S2.
IDS-VGS transfer characteristic of G-ISFET according to forward and backward gate bias (−0.1 to 0.4). (a) IDS-VGS
transfer characteristic with pH value with the forward and (b) backward gate bias. (c) IDS-VGS transfer characteristic
of G-ISFET with forward and backward bias at pH 6 and (d) pH 8. Figure S3. XPS spectra and IDS-VGS transfer
characteristic of fluorinated graphene due to increase plasma time. As the plasma time increased (5 min, 20 min),
the fluorine atomic ratio of fluorinated graphene was increased ((a) 28.7% and (c) 49.85%). However, the pH
sensitivity of fluorinated graphene was decreased ((b) 10.5 and (d) 1.28 mV/pH) according to the plasma time.
Figure S4. IDS-VGS transfer characteristic of fluorinated graphene (FG) due to the anion concentration and
ionic strength. (a) IDS-VGS transfer characteristic of fluorinated graphene due to different concentration of KCl
solution. (b) IDS-VGS transfer characteristic of fluorinated graphene due to different ionic concentration of
Tris-HCl solution. Figure S5. Real-time detection of pH in electrolyte solution using the two-channel G-SGFET.
(a) The hysteresis characteristics of the two-channel G-SGFET from pH 4–10–4. (b) The stability of the two-channel
G-SGFET in a buffer solution of pH 8 for 6 h (VDS = 0.05 V, IDS = 130 µA). Video S1: The video file is the actual
experimental environment.
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