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Abstract: High-quality 3D reconstruction results are very important in many application fields.
However, current texture generation methods based on point sampling and fusion often produce
blur. To solve this problem, we propose a new volumetric fusion strategy which can be embedded
in the current online and offline reconstruction framework as a basic module to achieve excellent
geometry and texture effects. The improvement comes from two aspects. Firstly, we establish an
adaptive weight field to evaluate and adjust the reliability of data from RGB-D images by using a
probabilistic and heuristic method. By using this adaptive weight field to guide the voxel fusion
process, we can effectively preserve the local texture structure of the mesh, avoid wrong texture
problems and suppress the influence of outlier noise on the geometric surface. Secondly, we use
a new texture fusion strategy that combines replacement, integration, and fixedness operations to
fuse and update voxel texture to reduce blur. Experimental results demonstrate that compared with
the classical KinectFusion, our approach can significantly improve the accuracy in geometry and
texture clarity, and can achieve equivalent texture reconstruction effects in real-time as the offline
reconstruction methods such as intrinsic3d, even better in relief scenes.
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1. Introduction

With the increasing importance of three-dimensional reconstruction technology in the fields of
automatic driving, virtual reality, robot positioning, and navigation, the reconstruction of high-quality
3D scenes using low-cost consumer-grade RGB-D sensors has become a hot issue and has been
widely studied.

The general framework for reconstructing static scenes consists of five parts: input RGB-D data
stream, image preprocessing, camera pose estimation, volumetric fusion and update, and surface mesh
extraction, as shown in the left image in Figure 1, among which the volumetric fusion step plays an
especially important role. Classical volumetric fusion strategy usually uses point-based sampling and
weighted average to calculate surface geometry and texture information. For the geometry, this method
works well because it is based on the assumption that the depth data noise obeys Gaussian distributions
with zero means. Therefore, through repeatedly sampling and integrating, the geometric noise can
be effectively reduced to get a smooth reconstruction surface. However, for textures, if the weighted
average fusion strategy is directly applied to texture fusion, it will lead to obvious blurring problems.
The main reason is that due to the existence of camera pose estimation errors, the pixel information
sampled from different RGB-D frames cannot match perfectly. The depth difference between these
mismatched pixels is usually small, which will only affect the geometric fusion result slightly, but its
color difference can be obvious, especially for texture-rich scenes where the colors on neighborhoods
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usually change sharply. By averaging the colors on such pixels to get the texture will inevitably lead to
texture blur.
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Figure 1. The comparison in the overall framework between the classical voxel fusion method and 

our approach. On the left side of the figure is a general reconstruction framework using classical 

fusion methods. On the right of the figure is our new fusion strategy that can be used as a basic 

module and directly applied to various volumetric construction frameworks. 
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Figure 1. The comparison in the overall framework between the classical voxel fusion method and our
approach. On the left side of the figure is a general reconstruction framework using classical fusion
methods. On the right of the figure is our new fusion strategy that can be used as a basic module and
directly applied to various volumetric construction frameworks.

Generally speaking, classical voxel fusion methods have two shortcomings: (1) the weighted
averaging methods are not suitable for texture fusion since they tend to destroy the texture structure
and cause color blur. (2) Current data quality evaluation models are mostly concerned with depth
information while ignoring the RGB information that however is crucial to the visual appearance.

Current research methods on improving the texture quality of the reconstruction results can be
divided into two types.

The first type is attempts to adopt high-quality data for fusion. View-dependent [1,2] or various
uncertainties based [3] probability models have been established to evaluate the confidence of the
depth data to guide voxel fusion. But these kinds of methods do not consider the error that the color
images may introduce. On the other hand, some algorithms have been designed to recover clear and
high-quality data from blurred RGB frames [4] to reduce input errors. Although this kind of method
considers the clarity of color images, it still cannot solve the problem of wrong textures in the edge area
of the scene. More importantly, even though these methods can obtain relatively high-quality data,
they usually use classical point-based sampling and weighted average methods without distinguishing
texture fusion from geometry fusion, which inevitably leads to texture blur.

The second type is to use a joint optimization method to refine and correct the texture of
low-quality reconstruction results that are obtained by using classic reconstruction frameworks such
as KinectFusion. For example, a joint optimization method combines texture and geometry with the
camera poses and lighting illuminations are designed to generate high clarity texture results [5]. Such
a method requires a good initial reconstruction result and has a heavy computing burden and is hard
to run in real-time.

To effectively reduce texture blur and generate a high-quality texture, we design a new volumetric
fusion strategy from two aspects: (1) evaluate and select high-quality data for fusion and (2) design a
texture fusion method that can preserve texture structure. As shown in the right side of Figure 1, we use
a probabilistic and heuristic method to build an adaptive weight field, which can effectively evaluate
and adjust the reliability of RGB-D data to guide voxel fusion by considering the consistency of texture
structure features, the risk of wrong texture and the outlier noise of depth map. Then, we introduce
a new texture fusion strategy that combines replacement, integration, and fixedness operations to
generate texture results with accurate texture structure, thus texture blur can be effectively alleviated.

Extensive qualitative and quantitative experiments and comparative analysis show that our
method can remarkably improve the accuracy of geometric and texture reconstruction compared with
classical weighted average fusion methods, and can achieve no less or even better results than the
state-of-art off-line reconstruction methods. As demonstrated in Figure 2.
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Figure 2. Texture reconstruction results of the Gate dataset. Our method (a,d) can achieve better 
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Figure 2. Texture reconstruction results of the Gate dataset. Our method (a,d) can achieve better results
than the classical weighted average fusion method [6] (b,e) and the off-line Intrinsic3d reconstruction
method [5] (c,f) in texture clarity.

Overall, our technical contributes are as follows:

1. A new texture fusion strategy combining replacement, integration, and fixedness operations is
proposed. It can effectively preserve texture structure information to generate accurate texture
results with high clarity.

2. An adaptive weight field is established effectively by using the combination of probability and
heuristics, which can evaluate and adjust the reliability of RGB-D data. This adaptive weight
together with a refined camera pose estimation method are used to guide the voxel fusion process
to avoid texture blur, wrong texture, and rough surface.

3. Our method can be easily embedded in the current online and offline reconstruction framework
as a basic module, and can effectively improve the accuracy of reconstruction results.

The rest of the paper is organized as follows. After reviewing the related works in Section 2,
the overall method is overviewed in Section 3. The strategies of geometry fusion and texture fusion
are proposed in Section 4. To support high-quality fusion, the data reliability of each RGB-D frame
is evaluated as an adaptive weight field in Section 5. A refined camera pose estimation method is
established to reduce the mismatch between adjacent RGB frames in Section 6. Experimental results
are presented in Section 7. The whole paper is concluded in Section 8.

2. Related Work

2.1. Weighted Averaging Volumetric Fusion

Weighted averaging volumetric fusion has become a basic component of many online [6–9] and
offline [10–12] RGB-D reconstruction frameworks due to its easy calculation and high parallelism.
KinectFusion [6] is the first real-time volumetric fusion method based on truncated signed distance
function [13], which has achieved impressive results, making the volumetric fusion method widely
recognized and studied. Subsequently, combining this fusion method with a deformation graph [14],
different methods such as DynamicFusion [15], Fusion4D [16], KillingFusion [7], and SobolevFusion [17]
realize the real-time reconstruction of the dynamic scene, which greatly expands the application scope
of this kind of method. Doublefusion [18] effectively improves the robustness of dynamic reconstruction
by introducing SMPL [19] body model as a priori to constrain the motion range. To improve the
accuracy of reconstruction results, Zollhöfer et al. [20] proposed a fusion optimization strategy by
changing the level of voxel size from coarse to fine to preserve geometric details. To solve the memory
consumption problem of volumetric fusion in large scenarios, Niesner et al. [21] proposed a voxel
hashing method to store voxel by using hash functions and fuse voxels information when necessary,
which effectively reduces the required memory. Li et al. [22] introduced the octree voxel structure
to represent surface details at different scales and used point and line features to improve the pose
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estimation results. The above works are all based on weighted averaging fusion. They can be well
used in geometry reconstruction, but are not suitable for texture reconstruction because it will destroy
the texture structure of the scene and tend to generate blur texture results.

2.2. Data Evaluation Model of RGB-D Images

Data evaluation model of RGB-D Images has been widely studied to effectively reduce the noise
on the RGB-D images acquired from commercial times-of-flight (ToF) sensors such as the Microsoft
Kinect v2, Intel RealSense, or Google Tango. The noise of this kind of sensor comes from many factors,
such as distances, viewpoint angles, scene materials, ambient lighting, normal vectors of scene surfaces,
etc. Different models have been developed to describe the noise distribution [23–25]. For example,
to evaluate the noise distribution of depth images output by a ToF camera, Reynolds et al. [26] used
the random forest algorithm to establish a confidence map of depth images that is trained based on
the data collected by a lidar. Jordt et.al [27] used a polynomial interpolation Gaussian distribution
based on the gradient to describe the noise of RGB-D images. Cao et al. [3] established a Gaussian
probability model considering the measurement uncertainty and surface sampling uncertainty to
describe the impact of noise. Jenke et al. [28] established a probabilistic mixture model consisted of
truncated Gaussian distribution and uniform distribution to describe the noise using smooth and
dense priors. Lefloch [29] used Mahalanobis distance to measure the anisotropic noise in the depth
map, which effectively improved the accuracy of geometric results. The above noise models mainly
suppress the noise in the depth map, so they improve the geometric accuracy well. However, they
can not directly be used for color images. For the color images, although some clarity evaluation
methods [30] have been proposed, the existing data evaluation model cannot effectively avoid the
occurrence of texture blur and wrong texture problems.

2.3. Texture Accuracy Improvement Method

Texture reconstruction based point sampling and fusion are mainly used in real-time RGB-D
reconstruction, and its accuracy improvement methods are mainly divided into two categories. The first
selects high-reliability data for volumetric fusion [31], the second generates high-quality models by
correcting low-quality construction results through optimization methods [32–34]. For the former,
Klose et al. [4] proposed a scene-space-based sampling and filtering method, which can obtain a clearer
color image by fixing blurred raw data from video streams, then improve the reconstructed texture
accuracy. Cao et al. [3] proposed a surfel-based cloud fusion strategy using uncertainty modeling,
and selected high confidence point data for fusion. For the latter, Maier et al. [5] proposed a joint
optimization algorithm that combines geometry, texture, camera postures, camera model, and ambient
illumination to obtain high-quality results by correcting a rough model reconstructed by KinectFusion.
Furthermore, Guo et al. [35] proposed an optimization method that combines geometry, texture,
illumination, and non-rigid deformation fields to achieve dynamic scene reconstruction with a good
texture effect. However, on the whole, these data-based approaches rely heavily on data evaluation
models and will inevitably produce blur problems. These optimization-based methods require good
initial models, high computational cost, and complicated programming design, which makes them
low portable and unsuitable for real-time applications.

3. Framework Overview

In our pipeline, geometry reconstruction and texture reconstruction are separated, and different
update strategies are used to effectively save the texture structure of the reconstructed mesh to reduce
the problem of texture blur. Consequently, high clarity texture can be generated, as illustrated in
Figure 3. In this figure, there are three modules, the left and the right are the input and output that are
consistent with the classical fusion method. In the input module, we propose a joint two-step camera
pose optimization method that is helpful to improve the accuracy of reconstruction results. The middle
is our new volumetric fusion strategy which consists of two parts:
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(1) The adaptive weight fields describe the reliability of depth data and RGB data, respectively,
to clearly distinguish the high-reliability data from input data by considering the consistency of
texture structure features, the risk of wrong texture, and the outlier noise of depth map.

(2) In the fusion update part, a new texture fusion strategy combining replacement, integration,
and fixedness is proposed to effectively reduce texture blur by considering the characteristics of
texture structure.
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Figure 3. The specific pipelines for our new volumetric fusion strategy. We use the same input and
output as the classical volumetric fusion method, and use different fusion strategies for geometric
fusion and texture fusion respectively. For texture fusion strategy, we first establish an adaptive weight
field to evaluate the confidence of the data and then use different operations to update the texture.

When inputting the real-time frame, camera pose, and the result of previous fusion, our method
firstly calculates the adaptive weight field of depth data and RGB data, respectively. Then, we fuse and
update the geometry and texture of voxels with the calculated adaptive weight field.

The main purpose of building the adaptive weight field is to solve the problem of texture blur,
wrong texture, and the influence of depth outlier noise on the geometric surface by evaluating and
adjusting the reliability of RGB-D data. By establishing the photometric consistency weight field,
we can successfully evaluate the local consistency of texture features between frames in the image
domain, to provide highly reliable texture data for texture fusion and maintain the accurate texture
structure of the global mesh. The edge error weight field is established to evaluate the high-risk areas
where error textures are prone to occur. By adjusting the reliability of these areas, the problem of
wrong textures can be effectively avoided. The edge noise weight field describes the characteristics of
outlier noise in the edge region of the depth map. By adjusting its reliability in this weight field, the
influence of these noises on the geometric surface can be effectively suppressed. By establishing these
weight fields, we can provide high-reliability data for the voxel updating process and achieve accurate
geometry and texture results.

In the voxel update process, we fusing the depth data and RGB data with different strategies.
For the depth data fusion, since the weighted averaging method is suitable for geometry fusion, we
use a similar method as the classical fusion approach. But we add a truncation term of low-confidence
weights (CW) to discard the low-quality data from fusion, thus more precise surface reconstruction
results can be obtained. For texture fusion, we propose a new volumetric fusion strategy that combines
data operations of replacement, integration, and fixedness to fuse and update voxel textures. Its
main idea is to introduce replacement and fixedness operations to retain texture structure information.
The principal purpose of preserving integration operation is to make the structural texture edge change
as smooth as possible and avoid the seam problem. By judging the variation of the confidence of the
adaptive weight field estimation along with frames, we update the texture of voxel accordingly with
the above three operations to preserve texture structure and reduce texture blur.

As camera pose is crucial to generate high clarity texture, we accurately estimate it with a two-steps
optimization. We firstly use frame to a frame iterative closest points (ICP) method to estimate the
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initial camera pose, and based on this initial pose to establish the adaptive weight field which flags the
reliability of RGB-D data; Secondly, we refine the camera pose by adopting the high-reliability texture
data for ICP. The refined camera pose is reversely used to improve the quality of reconstructed texture.

4. New Volumetric Geometry and Texture Fusion Strategy

4.1. Geometry Fusion Strategy

We follow the classical fusion method to update the geometry with the alteration that the truncation
function ϕd(·) and the fusion weight is calculated from the adaptive weight field rather than simply
setting it to 1 or setting by viewpoint-dependence. This method ensures that the image information
can be treated differently based on its reliability in the fusion process especially for the processing of
outlier noise. So the geometric fusion strategy can be written as

Di+1(x) =
Wi(x)Di(x) + ϕd

(
wDAWF

i+1 (x)
)
di+1(x)

Wi(x) + ϕd
(
wDAWF

i+1 (x)
) (1)

Wi+1(x) = Wi(x) + wDAWF
i+1 (x) (2)

where wDAWF
i+1 (x) is the weight value of voxel corresponding to the depth adaptation weight field

of the current frame. di+1(x) is the signed distance function value on the voxel center calculated in
the current frames. Di(x) and Di+1(x) are the signed distance function values on the voxel center
calculated from the previous ith frames and the current frame. Wi(x) and Wi+1(x) are the fusion CW
calculated by previous ith frames and the current frame. ϕd(·) is a low CW truncation function that
discards information with low confidence.

ϕd(x) =

x x > 0.2

0 else
(3)

4.2. Texture Fusion Strategy

To effectively preserve the texture structure of the scene and reduce texture blur, we propose a
new texture fusion strategy combining replacement, integration, and fixedness operations to obtain a
clearer texture.

Our core ideas are as follows: when the reliability of the current frame sampling information is
much higher than that of the previous fusion results, the previous result will be replaced by the data of
the current frame. On the contrary, the fixedness operation is used to retain the high-quality fusion
results of the previous frame. When the current frame is similar to the previous result in reliability,
the data in the current frame will be integrated into the previous result.

As shown in Figure 4, where “A”, “B”, and “C” represent three types of voxels that undergo
different weight updating processes when the camera view changes with time. The voxel state in this
figure represents the updating period from the beginning to the end of voxel “A”, “B”, and “C” over
time. The up arrow indicates the start time, and the down arrow indicates the end time. The frame
weight wlive in the lower part of this figure stands for the confidence weight change of the frame data
corresponding to voxel at different times. Figure 4a–c show the position of “A”, “B”, and “C” voxels,
and the different confidence weight of the frame data at different times. The light blue represents the
high-reliability data area in the frame. On the contrary, the dark blue represents the low-reliability
data area in the frame.

Specifically, in this figure, “A” represents voxels that undergo a complete updating period and
their confidence weights of frames change from low to high and then to low again with time, which
means it will exist in the whole operation of replacement, integration, and fixedness. “B” represents
voxels that undergo the updating process with the only low weight of frames, which means that it only
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uses the integration operation to keep the texture continuity because of a lack of reliable data. “C”
represents voxels that undergo the updating process from high to low weight change after the voxels
are initialized, which means it will experience integration and fixedness operations.

Figure 4. Our texture fusion strategy combines replacement, integration, and fixedness operation based
on the updated weight of real-time frames. (a–c) represent the position of scene voxels “A”, “B”, and “C
”at different times and the estimated weight state of corresponding real-time frames, respectively.
(d) represents the different state processes that the scene voxels may experience. The arrows represent
the beginning and the end of voxel updates.

Since the fusion process of “A” includes “B” and “C”, we take “A” as an example to illustrate
our method in detail. For a full updating period of a single voxel, firstly, the texture weight of the
voxel is initialized to 0. When the real-time frame’s weight is low, the voxel texture is integrated to
keep the continuous, as shown in Figure 4a. When the real-time frame’s weight changes from low to
high, the voxel texture is replaced directly by the real-time frame’s texture, and the voxel weight is
updated at the same time, this step is performed when voxel “A” is at the boundary of the dark blue
and bright blue areas in Figure 4a. When the real-time frame’s weight is maintained at a high level,
the texture and weight of the voxels are integrated again. At this time, because the texture has high
reliability, we can be assumed that its color difference is very small and there is no blur problem caused
by integration operation, as shown in Figure 4b. When the real-time frame’s weight changes from high
to low, we fixed the texture and weight of the voxels, to ensure that the high-confidence information
is no longer affected by the data stream with low-reliability information, and obtain high-precision
reconstruction results, this step as shown in Figure 4c.

The pseudocode of our new texture fusion strategy is detailed in Algorithm 1. Where wlive and
wpre are texture weights corresponding to voxels of real-time frames and previous frames. clive and
cpre are RGB values corresponding to the real-time frames and the voxels of previous frames. wupdate

and cupdate are texture weights and RGB values updated based on fusion strategy. In this pseudocode,
lines 3–4 represent low weight integration operation, lines 6–7 represent fixedness operation, lines
13–14 represent the replacement operation, and lines 16–17 represent high weight integration operation.
By computing the confidence of adaptive weighted field estimation with camera motion, we constantly
update voxels to preserve the texture structure of the high-confidence region and the continuity of the
low-confidence region to ensure that the reconstructed scene has a clearer texture result.

We add the replacement operation mainly considering that the high-weight information in the
image domain is very close to the real texture structure, but the texture of the mesh usually contains
errors. Instead of using weighted averaging to correct texture errors gradually, it is better to use
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replacement operation to discard worse date and use more reliable information to obtain higher clarity
texture results. At the same time, it can also retain its texture structure. We further introduce fixedness
operation to maintain the results of high-weight information fusion, which make it no longer affected
by low-weight information containing wrong textures.

We still retain the integration operation mainly considering that for the counterparts between the
real-time frame and previous frame fusion result with high-reliability, the probability of mismatching
is very low, so we fuse high-quality data to approximate the true value. For the counterparts with
low-reliability, the information errors between them are very large, if we replace or fix them into the
fusion result, it tends to cause local discontinuity, so we keep the integration operation to smooth
the results.

Algorithm 1 Texture Fusion Strategy

Input: wlive, wpre,clive, cpre

Output: wupdate, cupdata

1: if wlive is low then
2: if wpre is low then
3: cupdata = clive

·wlive+cpre
·wpre

wlive+wpre

4: wupdate = wlive+wpre

2
5: else
6: cupdata = cpre

7: wupdate = wpre

8: end if
9: end if
10:
11: if wlive is high then
12: if wpre is low then
13: cupdata = clive

14: wupdate = wlive

15: else
16: cupdata = clive

·wlive+cpre
·wpre

wlive+wpre

17: wupdate = wlive+wpre

2
18: end if
19: end if

By controlling the range of high weight in the adaptive weight field, we can minimize the number
of voxels whose reconstruction period is complete in the low update weight stage, such as the voxels
undergoing the “B” process. So almost all voxels can experience replacement operations to obtain
high-quality information, and finally, the blurring problem can be greatly reduced or even ignored.

5. Adaptive Weight Field of RGB-D Image

Our adaptive weight field of RGB-D images follows two basic principles. The first is to effectively
model some factors affecting geometric and texture results, such as texture structure, wrong texture,
and edge outlier noise. The second is to distinguish high-reliability data by increasing the weight
difference based on data reliability assessment. Combined with the above two principles, the adaptive
weight field is established.

To satisfy the first principles, we propose a method combining probability and heuristics to model
various factors and evaluate the reliability of the data.

To achieve the second principle, we introduce some kernels into the quantization of weight. These
kernels will not affect the validity of the reliability estimation results but will increase the distinction
between low-reliability data and high-reliability data, thereby reducing the impact of low-reliability
data on the subsequent fusion process.
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5.1. Color Adaptive Weight Field

We build an adaptive weight field of color image mainly to solve the problem of texture blur and
wrong texture. For the former, we evaluate the quality of texture features consistency in the image
domain to ensure that the mesh maintains a consistent texture structure. For the latter, we mainly
suppress the reliability of error-prone areas to avoid the generation of the wrong texture. Besides, we
need to effectively adjust the update range of data, so our color weight field can be represented as

Fc(u, v) = Wc
photo ·W

c
occl ·W

c
view (4)

where Wc
photo is photometric consistency weight field used to evaluate the reliability of local texture

features, Wc
occl is edge error weight field used to mark areas prone to errors and suppress its effects,

Wc
view is color viewpoint dependent weight field used to control the range of texture updates.

5.1.1. Photometric Consistency Weight Field

The current real-time reconstruction method usually does not consider how to keep the texture
structure characteristics of the mesh, but it’s quite important to avoid texture blur. So we build the
photometric consistency weight field to preserve the mesh texture structure in the fusion process.
The main method is to ensure that the texture provided to the global model for updating should have
high structure consistency and data reliability. The consistency and reliability in the image domain can
be obtained by evaluating the texture feature difference between the real-time frame and the previous
frame. It should be emphasized that texture features are different from texture colors. The former
describes the texture structure of local neighborhood pixels, while the latter only describes the color of
a single pixel.

If the difference of texture feature between frames in some regions is very small, such texture
is assigned with high reliability and consistency weight in texture fusion. On the contrary, if the
difference between frames in some regions is large, the related texture data should be excluded in the
texture fusion. The poor consistency of texture features may occur on surfaces with large geometric
gradients. Based on the above idea, we design a photometric consistency weight field to evaluate the
consistency of the local texture feature of the real-time frame.

Although many features can be used to describe the local texture structure, such as SIFT, SURF,
and ORB, etc, these features are generally sparse and can’t effectively evaluate the dense local texture
features through the whole image. Therefore, we propose a new texture feature to describe the local
texture structure.

With the inspiration of the Laplacian coordinate that can well describe the local geometric feature,
we introduce the Laplacian texture coordinates to describe the local texture features in the image
domain. Our Laplacian texture coordinates are defined by photometric values, which can ensure
the invariance of texture rotation and translation, and facilitate the calculation of the weight field.
To obtain more accurate texture features, different from directly using Euclidean distance to evaluate
the difference between adjacent points in geometry, we consider that the change of color in RGB space
is usually anisotropic, so we use Mahalanobis distance to calculate the difference between textures.
Our Laplacian texture coordinates can be written as

δi = ci −
ρi j∑m

j=0 ρi j
c j (5)

where δi is the Laplacian texture coordinate on pixel i, ci and c j are the photometric values corresponding
to pixel i and its neighborhood pixel j. m represents the number of neighbor pixels at pixel i, which can
be 4 or 8. Generally, an 8-neighborhood calculation can be used for rich texture, and 4-neighborhood
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can be selected for faster calculation speed. ρi j describes the color difference between pixel i and pixel
j, which can be calculated by Mahalanobis distance and is written as

ρi j =

√√√(
ri − r j

)T
−1∑
ri

(
ri − r j

)
(6)

where ri and r j are RGB color at pixel i and pixel j.
∑
−1
ri

is the inverse of the covariance matrix about ri.
To evaluate the consistency of texture features, we first calculate the dense texture feature map

for the real-time frame and the previous frame respectively. Then we calculate the texture feature
difference between them based on the estimated camera pose and projection model and establish the
photometric consistency weight field. This weight field can be calculated by

Wc
photo =

1.0 ‖δl
− δp
‖ <= tphoto

1.0/eλ‖δ
l
−δp
‖ other

(7)

where δl and δp represent the corresponding texture features between the real-time frame and the
previous frame. tphoto is a constant threshold value used to control the reliability calculation of texture
features and is set to 0.1. λ is another constant used to control the decay rate of reliability and is set to 1.

5.1.2. Edge Error Weight Field

Texture errors mainly occur in the edge area of the scene, especially when there is an occlusion
structure. As shown in Figure 5a, this is mainly because the texture at the edge usually changes
dramatically, and the texture on both sides of the edge is very easy to mix and produce the wrong
texture results. When there are large errors in camera pose evaluation, this problem will become
very obvious. However, in addition to using off-line optimization to correct these wrong textures,
the current method does not have a good strategy to avoid such a problem. For this reason, we establish
an edge error weight field to suppress the reliability of error-prone areas.Sensors 2020, 20, 4330 11 of 23 
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Figure 5. Description of edge error weight field modeling. (a) shows the problem of the wrong texture
in the edge area of the scene, (b) shows that the high-risk area can be marked and the data reliability of
these areas can be adjusted to avoid the wrong texture.

The core idea is to select the edge of the scene, evaluate its influence range, and then set its weight
to 0. Through these operations, the edge area can no longer affect the high-quality texture that has been
fused previously, thus avoiding the occurrence of the wrong texture. Because the scene information
collected by RGB-D is highly redundant, the texture of these regions can be obtained by fusing the
high-reliability data from other viewpoints without being affected by the edge.

We first extract all edges of the scene according to the angle between the viewpoint and the normal
vector of the mesh surface. To determine its influence range, we perform a morphological expansion
operation on these edges to obtain boundary areas, which is the high-risk region be shown in Figure 5b,
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and we need to ensure that these areas are not affected by the edge. Finally, the edge error weight field
is calculated.

Wc
occl = 1.0− E

(
M

(
1.0− a cos

(
lview · n
|lview| · |n|

)
180

toccl ·π

))
(8)

where toccl is the truncation angle constant is used to extract edges, usually set 70◦. E(·) is the expansion
operation for the image to cover the influence range. M(·) is a distinguishing function to mark the
high-risk region of the edge and can be written as

M(x) =

1.0 x > 0.9

0 else
(9)

According to the definition of M(·), if a pixel is in the influence range, its weight is set to 0,
otherwise, it is set to 1. A weight of 0 means that the texture information in the influence range has a
high risk of error, so we do not use its data to update the mesh texture.

5.1.3. Viewpoint Dependence Weight Field

Viewpoint-dependent uncertainty is a widely accepted and effective description of noise
distribution in the depth map. However, in the color image, we use viewpoint dependence mainly to
evaluate the texture quality of the surface and control the range of texture update. These two points
can be realized by adjusting the model parameters by establishing the view-dependent weight field.

We first calculate the viewpoint dependent uncertainty uview.

uview = min(a cos
(

lview · n
|lview||n|

)
·

180
tview ·π

, 1.0) (10)

where lview is the viewing direction, n is the normal computed from the input depth map, td
view is an

angle constant about normalization.
Then we calculate the color view-dependent weight field by

Wc
view = ϕc

view

(
1.0− uview

)
(11)

where ϕc
view(·) is truncation kernel functions to increase the difference between reliability and

non-reliability and defined as

ϕc
view(x) =

x x > tc
threshold

0.1 · x x ≤ tc
threshold

(12)

where tc
threshold is a truncation constant as high confidence.

We use low coefficients to reduce the weight instead of setting it to zero directly, mainly to keep
the low-weight data continuous when texture fusion.

Here we use this kernel function mainly considering that the texture fusion process is more
sensitive to the difference between high-quality data and low-quality data of RGB image, and the
greater difference is conducive to better texture reconstruction effect.

When the texture data is on a relatively smooth surface and the angle between the normal vector
of the surface and the opposite direction of the viewpoint is small, we can think that the texture is better
and its reliability is higher. So, based on the above model, we can find that by adjusting parameter
tview, we can effectively control the reliability of the texture data and its range. The larger tview setting,
the higher the reliability, but its range will be reduced. Conversely, the smaller tview setting, the lower
the reliability, but its range will be increased.
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5.2. Depth Adaptive Weight Field

For the geometric fusion error, we mainly consider the influence of noise in the foreground edge
area of the depth map. Because of these areas usually contain a large number of outliers and large-scale
noise caused by environmental illumination, measurement methods, and other factors, they cannot be
accurately described by the existing models. More importantly, this noise will destroy the reconstructed
surface, reduce the surface quality, and slow down the convergence speed. Therefore, it is necessary to
model to suppress the noise influence in the edge area.

Edge Noise Weight Field

The current methods usually use bilateral filtering to deal with the noise in the foreground edge
region, but this method cannot effectively remove large-scale outliers, which often lead to obvious
geometric fusion errors. Therefore, we establish a heuristic and probability edge noise model, which can
effectively remove outliers and evaluate the noise distribution in these areas.

The core idea is to remove these outliers by heuristic method firstly, and then use the probability
method to evaluate the reliability of the information at the edge.

We use depth truncation and region growth to obtain the foreground of the target scene in the
depth image. Then heuristically, we divide the foreground pixels into three categories: outer point,
edge region point, and interior point. Outer points refer to the pixels in an image that are not related to
the target scene. Edge region points mainly refer to points extending along the edge of the scene to
the interior, and they form a strip area. Their noise distribution can be approximated by a Gaussian
probability model. The interior points refer to the points in the interesting region.

We calculate the Manhattan distance dedge from each edge pixel to the nearest interior point.
Finally, we use the following formula to calculate the edge weight field of depth image

Wd
edge = Gauss

(
ρedge

)
(13)

where Gauss(·) is a Gaussian blur operation to fit the noise which conforms to the Gaussian distribution
at the edge, ρedge is the initial edge weight field which has almost eliminated the influence of outliers in
the scene by a heuristic method and is defined as

ρedge =


0 outer

dedge/tedge edge

1 inner

(14)

where tedge is the influence width of the scene edge region. It means the strip region extending tedge
pixels to the edge of the foreground.

6. Refined Camera Pose Evaluation

Considering that our reconstruction results have high-quality texture, we propose a two-step
refined camera pose estimation strategy combining our adaptive weight field, fused geometry, and
texture information. Firstly, we use a frame to frame ICP to obtain the initial relative pose between the
real-time frame and the previous frame. Secondly, we refine the projection matrix T by registering
the real-time frame to the previous reconstruction of global mesh. This registration is achieved by
minimizing an energy function which consists of two terms: the geometric vertex error term and the
photometric consistency error term and is written as

E =
∑

(pd,pm)∈P

wd(pd − T−1pm)
2
+

∑
(cd,cm)∈C

wt(cd − cm)
2

(15)
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where pm is the vertex of the model, pd is the projection vertex of real-time depth frame D corresponding
to pm and satisfies pd = π−1(D(π(T−1pm))). P describes this projection correspondence. cm is the
photometric value of the mesh vertex pm, cd is the photometric value of the corresponding mesh vertex
pm projected on the RGB image I and satisfies cd = I(π(T−1pm)).

Different from the general frame to model ICP methods using 1.0 as the weight of error term and
does not consider the texture information, we use the dynamically changing weight wd and wt and
introduce the photometric consistency as another effective constraint. wd and wt are fused geometry
and texture weights corresponding to model vertices calculated from our adaptive weight field and
are varies in the different places. According to this changing weight mechanism, our pose refinement
method can use more reliable geometric and texture information to adjust the pose and improve the
accuracy of the reconstruction result.

The energy function in the form of least square can be effectively solved by a GPU style
Gauss–Newton iteration. The refined pose results are stored and used for the updating of the mesh.

We use a two-step pose estimation mainly to improve the robustness of frame to model registration
because with the increase of time, the relative pose between the real-time frame and global model will
increase, and the estimated pose error will be larger, which will lead to easy tracking failure, especially
for incomplete surfaces. So we use the frame to frame estimation results to provide a better initial pose
and further improve the robustness of frame to model pose estimation process.

7. Results

We have designed three experiments to verify the effectiveness of the new fusion strategy, adaptive
weight field, and two-step refined pose estimation, respectively. Firstly, we compared our method with
the current mainstream online and offline methods in qualitative and quantitative ways to illustrate the
effectiveness of our method. Secondly, we have illustrated the effectiveness of the adaptive weight field
in improving texture quality by establishing a real reference experimental platform [36]. Finally, we use
real scene datasets to compare the cumulative pose errors from four different pose estimation strategies
to shows the effectiveness of our two-step pose estimation method.

In the first experiment, we embedded the new volumetric fusion method into the framework of
KinectFusion, and compared the public RGB-D dataset [20] and generated datasets with the online
KinectFusion [6] and the off-line Intrinsic3d [5] to evaluate the effectiveness of our method qualitatively
and quantitatively. The RGB-D data are obtained by using a ToF sensor. Our assessment is implemented
on a platform with an Intel Core i7-8700K CPU with 3.70GHz and 16GB RAM.

We set tedge = 15 in (14), tc
threshold = 0.7 in (12) and tview = 70◦ in (10) according to experience.

The experimental results show that these parameter settings can robustly reconstruct a variety of scenes,
including relief or complex rotator, with good reconstruction accuracy. Firstly, we use the literature
method [30] to select keyframes from the dataset to add the noise to enhance the effect comparison,
and then select 1.0 mm voxel size for RGB-D reconstruction.

7.1. Qualitative Analysis

The public RGB-D dataset we use is shown in Table 1. In the KinectFusion, we use a viewpoint
dependence weight calculation method [5] defined as

wKF =
m
3
φ

(
1.0− a cos

(
lview · n
|lview||n|

))
+

m
3
φ

(
2
|d|
dtr

)
+ m · norm(pz) (16)

where m is a fusion constant equal to 10, d is the truncated signed distance function (TSDF) value
corresponding to voxels, dtr is the truncation distance of voxels equal to 5.0 mm, pz is the depth of a
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pixel calculated in camera coordinates. norm(·) is a function to normalizing the depth value pz. φ(·) is
a robust kernel function and defined as

φ(x) =
1.0

(1.0 + 2 · x)3 (17)

Table 1. The RGB-D dataset for evaluation.

Dataset
Resolution

Frames Keyframes
Depth Color

Gate [5] 640 × 480 1296 × 968 1213 61
Hieroglyphics [5] 640 × 480 1296 × 968 919 46
Tomb Statuary [5] 640 × 480 1296 × 968 523 27

Lion [5] 640 × 480 1296 × 968 514 26
Bricks [5] 640 × 480 1296 × 968 773 39
Lucy [20] 640 × 480 640 × 480 99 99

Augustus [20] 640 × 480 1280 × 1024 73 73
Socrates [20] 1139 × 1709 1139 × 1709 33 33

This weight calculation method effectively considers the uncertainty of viewpoint angle, distance,
and TSDF and is the representative fusion weight calculation of the classical voxel method. However,
this weight calculation method mainly aims at depth map, and does not deal with the possible texture
blur and wrong texture problems of the color image, and also does not consider the outlier noise at the
edge of the depth map. This means that they may only get poor texture results.

Experimental comparisons are given in Figures 1 and 6, Figures 7 and 8.

Figure 6. The reconstruction results of the Hieroglyphics dataset. Our results (a,c) are better in geometry
and texture than the classical weighted average fusion method [6] (b,d), and can reach the level of
offline optimization of intrinsic3d reconstruction framework [5] (e).

By comparing Figure 1, Figure 6, and Figure 7, it can be found that our method can effectively
keep the local texture structure information of the reconstructed mesh, and solve the problem of texture
blur robustly. Higher clarity texture effects can be obtained compared to the offline methods based
on joint optimization, such as Intrinsic3d [5]. On the one hand, this excellent texture clarity comes
from the adaptive weight field to ensure that the texture data used in the texture fusion process has
high reliability and features consistency. On the other hand, it comes from the new texture fusion
strategy that combines replacement, integration, and fixedness operation can effectively preserve
texture structure features in the texture update process. The effectiveness of clarity and fidelity are
illustrated in the Supplementary Materials in detail.
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Figure 8. The reconstruction results of the August dataset. Comparing with the classical weighted
average fusion method [6] (b,d), our results (a,c) can deal with the details of geometry.

By comparing the results of geometric reconstruction in Figure 8, it can be found that our method
can better suppress the noise of the depth map, and obtain a more complete and smooth surface than
the online KinectFusion [6] method. This is mainly because we consider edge noise to effectively
reduce the influence of edge outliers on the surface fusion results, thus accelerating the surface
convergence process.

7.2. Quantitative Analysis

To show that our method can effectively suppress the influence of noise, we use the Sokrates
model [20] to generate true RGB-D data and true camera pose, and then add 0.1 mm, 0.5 mm,
and 1.0 mm Gauss noise to RGB-D image respectively, and add slight perturbations to camera pose to
obtain the synthetic RGB-D data. With these data, we quantitatively compare the geometric accuracy
and texture accuracy of the reconstruction results between KinectFusion and our approach by using
both 1.0 mm-sized voxels and 2.0 mm-sized voxels.

We use the Square Sum Error (SSE) and Mean Square Error (MSE) of the geometric position and
texture color between the reconstruction model and the standard model to evaluate the accuracy of the
reconstruction results. The results are shown in Figure 9, and Tables 2 and 3.
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Table 2. Quantitative analysis results of geometric reconstruction accuracy at different noise levels. 

Experimental Condition 
Our_SSE KF_SSE Our_MSE (10−3) KF_MSE (10−3) 
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Figure 9. Quantitative analysis of geometry (a) and texture (b) based on our method and traditional
weighted average fusion method [6].

Table 2. Quantitative analysis results of geometric reconstruction accuracy at different noise levels.

Experimental Condition
Our_SSE KF_SSE Our_MSE

(10−3) KF_MSE (10−3)
Grid Resolution Gauss Noise

1 mm

No 52.676 58.217 0.0088 0.0098
0.1 mm 56.331 63.176 0.0094 0.0106
0.5 mm 104.676 175.080 0.0175 0.0293
1.0 mm 636.720 845.570 0.1067 0.1417

2 mm

No 15.362 19.894 0.0052 0.0068
0.1 mm 16.128 20.761 0.0055 0.0071
0.5 mm 34.371 44.485 0.0117 0.0151
1.0 mm 104.083 132.770 0.0354 0.0452

Table 3. Quantitative analysis results of texture reconstruction accuracy at different noise levels.

Experimental Condition
Our_SSE KF_SSE Our_MSE

(10−3) KF_MSE (10−3)
Grid Resolution Gauss Noise

1 mm

No 8510 13087 1.4258 2.1927
0.1 mm 9113 13849 1.5269 2.3204
0.5 mm 14998 19593 2.5129 3.2828
1.0 mm 25687 29272 4.3038 4.9045

2 mm

No 2692 4076 0.9165 1.3877
0.1 mm 2777 4196 0.9455 1.4286
0.5 mm 3855 5281 1.3125 1.7980
1.0 mm 5566 6747 1.8950 2.2971

As shown in Figure 9, we can find that our method can significantly reduce geometric and
texture errors compared with the KinectFusion method, especially in the region with large surface
fluctuations. The obvious improvement mainly benefits from the depth edge noise weight field avoids
the interference of outlier noise on the surface, and our two-step refined pose estimation results avoid
the surface discontinuity or the jittery effect caused by pose error.
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As far as the accuracy of the geometric reconstruction is concerned, as shown in Table 2,
with the increase of noise level, our method can improve the accuracy by 15–25% comparing with the
KinectFusion fusion method under the condition of 1.0 mm voxel size and 22% under the condition of
2.0 mm voxel size.

From the texture accuracy comparison, as shown in Table 3, it can be drawn that our method can
steadily improve the accuracy by about 20% under the condition of 1.0 mm sized voxel or 2.0 mm
sized voxel to the classical fusion method under different noise levels.

7.3. Adaptive Weight Field

In the second experiment, we use a robotic mannequin [36] and custom-made clothing to build
a reference experimental platform for real scene reconstruction effect comparison to illustrate the
effectiveness of our adaptive weight field. This experimental platform is shown in Figure 10.
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Figure 10. A real reference experimental platform. (a) we use a robotic mannequin developed in our
lab [36]; (b) the clothing on the robotic mannequin will be reconstructed to test the adaptive weight field.

The custom-made clothing contains many different colored and disc-shaped textures, as shown in
Figure 10b, which are used to effectively evaluate the structural consistency of the reconstruction results.
We put the customized clothing on the robotic mannequin, keep a distance of about 1.0 m, and hold the
Kinect V2 depth camera to rotate around the robot for one circle to obtain the corresponding RGB-D
dataset. To show the improvement effect of the adaptive weight field more clearly, we only use a
frame to frame ICP to estimate the camera’s pose, which means that there will be large error factors in
geometry and texture updating. Such errors can be greatly reduced by adopting the adaptive weight
field as follows.

We design two kinds of reconstruction frameworks, one of which only uses the new fusion strategy
(FS), the other uses the combination of adaptive weight field (AWF) and new fusion strategy (FS).
During the experiment, we used the same parameters as the first experiment but set the resolution of
the voxel grid to 4 mm. We study the influence of color adaptive weight field on texture reconstruction
and depth adaptive weight field on geometry reconstruction. The results are shown in Figures 11
and 12.

Figure 11 illustrates the effectiveness of the color adaptive weight field. By comparing Figure 11e,d,
it can be found that by using the edge error weight field, the problem of wrongly mixing the texture
from two sides of the edge can be avoided. The comparison between Figure 11f,h shows that the
proposed photometric consistency weight field can effectively preserve the local texture structure
features, making the reconstructed texture results accurate. Figure 11b,c prove that our color adaptive
weight field can significantly improve the quality of texture results and obtain more accurate and
realistic texture effects.
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Figure 11. The validation of the color adaptive weight field, (a) is the used robotic mannequin and
customized clothing; (b,d,f) are the results obtained by using the new fusion strategy (FS) and the
adaptive weight field (AWF); (c,e,g) are the results obtained only by using the new fusion strategy (FS).
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Figure 12. The validation of the depth adaptive weight field, (a) is the used robotic mannequin and
customized clothing; (b,d,f) are the results obtained by using the new fusion strategy (FS) and the
adaptive weight field (AWF); (c,e,g) are the results obtained only by using the new fusion strategy (FS).

Figure 12 is a comparative experiment to illustrate the improvement of depth adaptive weight
field on geometric surface reconstruction. By comparing the reconstructed surface quality obtained by
different methods shown in Figure 12d–g, it can be demonstrated that using the edge noise weight field
can successfully suppress the interference of edge outliers on the reconstruction process, accelerate the
convergence speed of the surface. A smoother and more accurate geometric result can be obtained.

7.4. Two-Step Refined Pose Estimation

To illustrate the effectiveness of our two-step pose estimation method, we compared the
accumulated pose error from the frame to frame ICP method (FF-ICP), the frame to model ICP
method (FM-ICP), our two-step pose estimation method without adaptive weight (TSN-ICP) and
two-step pose estimation method with adaptive weight (TSW-ICP) using the real scene RGB-D dataset
collected based on our experimental platform. The difference between TSN-ICP and TSW-ICP is that
the former uses the same weight for each data item, while the latter uses different weights for each
data item, and these weights are based on the adaptive weight field.

Based on our experimental platform, using the same scene and data acquisition method as the
second experiment, we collected an RGB-D dataset containing 479 frames and uniformly sampled
and selected 50 frames as keyframes to test the pose accumulative error of different pose estimation
methods. We use the off-line global optimization method to get the pose of our dataset to approximate
the true value to calculate the pose error, such as the method proposed by Zhou [12]. Therefore,
we carried out comparative experiments for four different ICP methods, and the results are shown in
Figure 13.
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Figure 13. The result of accumulated pose error from frame to frame ICP method (FF-ICP), the frame
to model ICP method (FM-ICP), two-step pose estimation method without adaptive weight (TSN-ICP)
and two-step pose estimation method with adaptive weight (TSW-ICP). The results show that TSW-ICP
can effectively improve the accuracy of pose estimation.

By comparing the changing trend of accumulated pose error in Figure 13, it can be found that
there will be obvious drift problems in the frame to frame ICP method (FF-ICP) because the pose error
between each frame is accumulating. For the frame to model ICP method (FM-ICP), the estimated
error is small at the beginning, but with the increase of the relative pose between the real-time frame
and the model with time, the convergence of pose estimation becomes more difficult, which leads
to the increasing of the estimated error, and it is prone to track failure. Compared with the FF-ICP
method and the FM-ICP method, our two-step pose estimation method can significantly reduce the
accumulated pose error, and the TSW-ICP methods with the adaptive weight field can further improve
the pose accuracy.

Although the calculated cost of two-step optimization is slightly higher than that of one-step
FF-ICP and FM-ICP, the calculated cost proportion of camera pose estimation is relatively small in the
whole reconstruction process. Therefore, to significantly improve the accuracy of reconstructed results,
this cost is acceptable compared with the offline pose optimization method.

7.5. Limitations

Although our new texture fusion method and adaptive weight field can effectively preserve
texture structure, avoid the wrong texture, and suppress outlier noise, there are still some problems that
limit the application of our method. The lighting illumination factor is not considered in the adaptive
weighting field. Therefore, currently, our method cannot robustly deal with scenes with obvious
illumination changes. Considering the lighting illumination usually requires physical-based rendering,
it requires a large computational cost and makes it hard to run in real-time. In the future, the simplified
spherical harmonic illumination model may be used to obtain some degree of illumination evaluation
and effect improvement. For a similar reason, our method is mainly applied to reconstruct the scene
with Lambert material, which may cause a large error in reconstructing a scene with specular reflective
materials. In our method, texture discontinuity may occur when there is a large error in the camera
pose evaluation. However, our TSW-ICP method can obtain good enough camera poses without
obvious discontinuity.

8. Conclusions

We have proposed an adaptive weight field in image space to effectively evaluate the reliability
of RGB-D data to preserve texture structure, avoid wrong texture, and suppress outlier noise. Based
on our adaptive weight field, a new texture fusion strategy using the combination of replacement,
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integration, and fixedness has been designed. Because this method can effectively preserve the local
texture structure information of the global mesh, it can achieve an excellent texture clarity compared
with the online KinectFusion and offline method based on joint optimization, such as Intrinsic3d.
In addition, a two-step pose estimation method considering geometry and texture information is also
proposed to refine the estimated pose, which can further improve the quality of reconstruction results
and avoid the discontinuity of texture.

More importantly, our method can be easily embedded into various online and offline
reconstruction frameworks as a basic module, and can significantly improve the reconstruction
quality, especially for texture.

Further work is required to explore an efficient environmental illumination assessment model,
which can robustly solve the impact of illumination on our algorithm and reconstruct a wider range
of scenes and may be achieved by introducing a simplified spherical harmonic illumination model.
On the other hand, we plan to extend the current method to the reconstruction of non-rigid scenes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/15/4330/s1.
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