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Abstract: The Internet of Things (IoT) brings plenty of opportunities to enhance society’s activities,
from improving a factory’s production chain to facilitating people’s household tasks. However,
it has also brought new security breaches, compromising privacy and authenticity. IoT devices are
vulnerable to being accessed from the Internet; they lack sufficient resources to face cyber-attack
threats. Keeping a balance between access control and the devices’ resource consumption has
become one of the highest priorities of IoT research. In this paper, we evaluate an access control
architecture based on the IAACaaS (IoT application-Scoped Access Control as a Service) model with
the aim of protecting IoT devices that communicate using the Publish/Subscribe pattern. IAACaaS
is based on the OAuth 2.0 authorization framework, which externalizes the identity and access
control infrastructure of applications. In our evaluation, we implement the model using FIWARE
Generic Enablers and deploy them for a smart buildings use case with a wireless communication.
Then, we compare the performance of two different approaches in the data-sharing between sensors
and the Publish/Subscribe broker, using Constrained Application Protocol (CoAP) and Hypertext
Transfer Protocol (HTTP) protocols. We conclude that the integration of Publish/Subscribe IoT
deployments with IAACaaS adds an extra layer of security and access control without compromising
the system’s performance.

Keywords: IoT; security; identity management; access control; OAuth 2.0; CoAP; publish & subscribe;
IAACaaS

1. Introduction

For decades, the automotive industry used to design and build cars that could only carry their
own load and that of passengers disregarding their protection. We can establish an analogy of this
fact relating to the current state of IoT (Internet of Things) devices. IoT is in the process of reaching
a balance between hardware resources and security guarantee. In the meantime, some current security
technologies could be applied to IoT to enhance the “highway” and preserve the “passengers” safety.

1.1. Motivation

IoT involves connecting physical devices (that transfer and receive messages) to the Internet
without any human intervention. The large number of messages generated on IoT networks
implies a challenge to the design of dynamic, reliable and scalable architectures. Design patterns
as Publish/Subscribe are usually well integrated in IoT environments. This pattern brings a lot of
benefits for the development of IoT applications to enhance society’s activities but also presents new
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privacy and security vulnerabilities. IoT botnets, Denial-of-Service or Man-in-the-Middle are typical
IoT cyber-attacks that can be mitigated using proper access control mechanisms. IoT application
layer protocols should adopt this pattern but also implement access control solutions that should not
drastically affect the performance of IoT applications.

Introducing access control mechanisms in IoT devices involves several implications in terms of
resource consumption such as central processing unit (CPU), memory or battery lifetime. Certain
devices integrate their own authentication and authorization mechanisms; however, they consume
an extra amount of these resources and frequently present severe vulnerabilities. Other low-resource
devices rely on simple authentication mechanisms based on pre-configured credentials such as IDs,
API (Application Programming Interface) keys or username/password. These credentials are sent
(generally through a gateway), along with the device information, towards a data system in which
are validated. If attackers intercept these requests, they would get the credentials and would be able
to perform malicious requests [1]. In this context, IoT can benefit from the introduction of delegated
authentication and authorization mechanisms, which do not greatly increase the resource consumption
of the device and reduce stealing credentials risks. The OAuth 2.0 authorization framework [2] enables
applications to delegate the authorization process with a third party and without sharing passwords of
actors (users or machines). OAuth 2.0 defines several flows (grant types) to obtain a credential (token)
to be used when accessing the resources of applications. Although the specification is designed for
HTTP-based web applications, it could be adapted to be used in other scopes, such as IoT. In particular,
the Client Credentials Grant was designed for machine-to-machine communications, while the Device
Authorization Grant was designed for smart home devices such as Smart TVs.

The OAuth 2.0 protocol presents a very simple mechanism (scopes) for limiting access to resources.
This do not encompass most IoT scenarios, in which there are more complex data structures. Therefore,
it is essential to deploy a complementary access control architecture that not only enables checking
and validation of tokens but also creation and enforcement of fine-grained policies. In this case, an
XACML-based architecture is best positioned to perform this task, while it satisfies the scalability,
dynamicity and flexibility requirements of IoT environments [3].

Another key point deals with converging proper IoT communication protocols with access
control solutions. IoT protocols, such as MQTT (Message Queuing Telemetry Transport), enables
secure many-to-many communications and provides 3 QoS (Quality of Service) levels that allow
designing IoT applications taking into account the network reliability and the processing capacity.
However, it lacks strong authentication or authorization mechanisms and even limits the integration
of other existing ones. In particular, MQTT presents difficulties in integrating delegated access control
mechanisms such as OAuth [4,5]. On the other hand, CoAP seems to be one of the most propitious
protocols that can easily integrate these mechanisms, as we will analyze in further sections.

Finally, the increased use and diversity of IoT applications is accompanied by an increase
in difficulties to handle all data generated by sensors and to control the reactions triggered by the
actuators (such as valves, relays or pistons). Due to large number of domains to which it can be applied
and the particularities of each of them, defining an access control solution for IoT implies a challenge.
Following a well-defined architecture and a standard data model contributes to creating fine-grained
access control policies, which then enable the control of requests made by actors over the sensors and
the actuators. In this sense, the FIWARE platform (FIWARE: http://fiware.org/) provides a set of tools
(known as Generic Enablers) that enables the development of secure and smart solutions on scopes
such smart cities, smart industry or smart agrifood. The NGSI (Next Generation Service Interfaces)
standard, FIWARE’s flagship, provides management of context information and enables the definition
of a common data model for IoT applications.

1.2. Main Contributions

In this paper, we evaluate the integration of the IAACaaS (IoT application-Scoped Access Control
as a Service) access control model into a Publish/Subscribe architecture to protect communications
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from IoT devices. The resulting architecture allows the establishment of a secure channel to exchange
requests from IoT devices with a Publish/Subscribe broker and to externalize the authentication and
authorization processes out of them in order to target a reduction of hardware resource consumption
of these.

The IAACaaS model, proposed in previous works [6,7] and implemented through the FIWARE
open-source platform, is based on the OAuth 2.0 protocol and relies on an XACML (eXtensible
Access Control Markup Language) architecture to enable the administration of fine-grained policies.
As explained before, we use this model to secure communications between IoT devices and
a Publish/Subscribe broker. However, IoT devices usually present low battery life, protocol diversity
and security vulnerabilities. In these IoT scenarios is typical to use gateways, which act as bridges
between these devices and the brokers. These gateways ensure system interoperability and reduce
the number of IoT devices vulnerabilities. Consequently, they become the most susceptible target
to be attacked, thus we focus on securing communications between gateways and brokers using
the IAACaaS model. On the other hand, securing devices-to-gateways communications could be
ensured by deploying the devices in private networks and using lightweight encryption mechanisms.
The definition and appliance of fine-grained authorization policies are out of the scope of this paper,
but the work that we present enables the implementation of ABAC (Attribute-Based Access Control)
or UCON (USage COntrol) models [8]. To evaluate the IAACaaS model, we propose a performance
comparison of gateways running OAuth 2.0 over CoAP (Constrained Application Protocol) and HTTP
(Hypertext Transfer Protocol) protocols.

As explained above, the IAACaaS model was already presented by the authors of this paper.
This model has been adopted by the FIWARE Identity Manager Generic Enabler official reference.
Moreover, it has been implemented in Keyrock (Keyrock GE: https://fiware-idm.readthedocs.io),
the reference implementation of such Generic Enabler. This implementation has been widely adopted
by a lot of IoT and Industry 4.0 success stories among Europe. However, until now there is not any
performance and security evaluation of this model. In this paper, we present a case of study using
IAACaaS model Keyrock’s implementation and evaluate its performance in terms of security, reliability,
latency and CPU, memory and bandwidth consumption. This evaluation can serve as a reference for
developers that aim to deploy FIWARE-based sensor networks and therefore using IAACaaS-based
Keyrock Generic Enabler.

We use the FIWARE Orion Context Broker, which is the core component of the FIWARE platform
and implements the NGSI standard, along with the FIWARE IAACaaS implementation (based on
Identity Manager Keyrock and Wilma PEP-Proxy) to deploy the Publish/Subscribe architecture that
we evaluate in this paper. In particular, the Orion Context Broker is one of the nine CEF building blocks
(CEF Building Block: https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Context+Broker),
whose aim is to help to implement the most commonly needed digital capabilities among Europe.
In addition to this, FIWARE is integrated onto the International Data Spaces (International Data Spaces:
https://www.internationaldataspaces.org/) initiative whose purpose is to offer a common framework
for IIoT (Industrial IoT). In view of all this, FIWARE is becoming one of the most relevant frameworks
for the development of IoT applications.

The document is structured as follows. We review the literature on Section 2. Then, in Section 3
we describe the integration of the access control model with the Publish/Subscribe broker. Section 4
describes the technical details of our evaluation and in Section 5 we present its results. Finally, in
Section 6 we make a conclusion and explain some possible future lines of research.

2. Related Work

Security, and, consequently access control, is the major concern on IoT field [9]. It does not
exist a unique access control solution applicable to the wide range of IoT applications, but ABAC or
UCON paradigms are the most appropriated to satisfy the demanded IoT requirements [3]. IoT access
control solutions must support and implement these paradigms and must be consistent with the
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IoT’s own protocols and architectures. Standards as OAuth 2.0 [2] or XACML [10] combined with
these paradigms allow creation of a fine-grained access control model over IoT Publish/Subscribe
architectures [6–8]. Moreover, the International Data Spaces created an IIoT standard [11,12] in which
they define a vocabulary and data model—implemented with the NGSI FIWARE standard [13]—that
boost and eases the definition of fine-grained access control policies with ABAC or UCON [8,14].

Access control cannot be understood without ensuring confidentiality and integrity on data
transmission. A non-secured IoT Publish/Subscribe system faces several threats: malicious publishers
flooding the network with bogus data (Denial-of-Service attack), malicious publishers generating
fake data or malicious intermediaries conducting a Man-in-the-Middle attack [15,16]. Much of the
current literature on access control for IoT Publish/Subscribe systems pays particular attention
to alleviate these issues. Pesonen et al. propose [17] and validate [18] a device transmission
encryption at the attribute level rather than per event. The authors of [19] design three security
levels (for their MQTT-based architecture) that each participating entity applies depending on its
resources. The study [19] propose an access control model based on the OASIS (Organization for
the Advancement of Structured Information Standards) standard and the RBAC (Role-Based Access
Control) paradigm. Rizzardi et al. [20] made more comprehensive research which, in contrast to the
end-to-end communication of previous ones, deploys an XACML-based architecture in a gateway to
establish secure communication with a MQTT broker. This latter research is closer to a real constrained
scenario as long as devices and gateways are in a trusted network. The authors of [17,21] reduce
communication overhead in some cases, but their solutions would find many difficulties to adapt
to typical IoT dynamic and multi-domain environments [3]. In addition, the availability could be
compromised as they do not define mechanisms to customize the periodicity or the amount of data to
be published by devices [22].

With respect to IoT applications protocols and particularly CoAP, we found that some research
develops a Kerberos-based access control model [23,24]. However, these works mainly focus on
the users’ side where there are more resources to deploy strong authentication and authorization
mechanisms. In addition, Kerberos has a single-domain character that do not fit with a considerable
number of IoT applications.

Regarding OAuth integration on IoT applications, a considerable amount of literature has been
published on protocols like HTTP [25,26], MQTT [4,5,27] or CoAP [28,29]. Works reported by [26–28]
focus on OAuth which unlike OAuth 2.0, uses strong signing algorithms that may affect devices
performance. The authors of [4,5] points out that a pure Publish/Subscribe pattern (as MQTT) does
not support OAuth 2.0 because it was designed for HTTP. In their solution, they had to modify the
authorization protocol to fit it with the flows and specifications of MQTT. Navas et al. [29] uses the
lightweight COSE (CBOR Object Signing and Encryption) to protect the OAuth 2.0 tokens along with
the data to be transmitted through CoAP. Their approach could hinder the scalability because, and, in
contrast to DTLS solutions, the application initiates the handshake with devices so it must previously
register all devices’ address. The articles [25,27] shows a superficial scheme of how to integrate the
OAuth 2.0 protocol and lacks any implementation and validation.

In any OAuth 2.0 implementation is mandatory to ensure communication confidentiality. The IoT
applications protocols adopt different standards [30]; MQTT, AMQP o HTTP, as they mainly rely on
TCP, adopt TLS [31] while CoAP, as it mainly relies on UDP, adopts DTLS [32]. However, few CoAPs
implementations support DLTS [33] and usually lacks session resumption flow [33] which fairly
reduce latency and overhead of communications. Furthermore, the TLS/DTLS handshake to establish
secure communications and encrypting data transmission consume several resources that are not
supported in most of the constrained devices. Some works aim to solve this issue by using a gateway
for delegating the initial handshake [34,35] or for performing a unique handshake and maintain the
secured socket open [36]. The latter is feasible if it is deployed on trusted networks or if a lightweight
secure encryption is implemented between devices and gateways [17,21].
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In terms of performance of IoT application layer protocols, authors of [37] performs a comparison
between MQTT y CoAP. In particular, they compare the 3 QoS MQTT levels with the CON
(Confirmable) and NON (Non-Confirmable) CoAP request types. They state that MQTT should
be the preferable protocol for multicast communications. In terms of reliability, MQTT obtains better
results than CoAP, especially when the frequency of sending requests is high. This is because MQTT
is mainly based on TCP and has a sophisticated congestion control mechanism. However, when the
request frequency is low, this improvement is less noticeable. On the other hand, CoAP presents better
results in terms of bandwidth usage and round-trip time.

Finally, optimizing devices’ security is as important as ensuring that the access control model can
absorb and process all the requests performed by devices. Cloud computing allows scaling access
control deployments so that the overall performance of the system is not affected and compromised [38].
On the other hand, fog computing is used on the network’s edge to process some devices’ requests and
reduce communications’ latency, so it could be also used to implement an access control solution [39].
In the literature, we can even find security solutions specifically designed for fulfilling the requirements
of cloud-based IoT environments, where security is even more critical due to the distributed nature of
the devices and management components [40,41].

Publish/Subscribe-based IoT architectures requires lightweight or delegated security mechanisms
that should be in concordance to devices’ limitations and should prevent cyber-attacks. They should
integrate access control paradigms as ABAC or UCON, in conjunction with other standards as
OAuth 2.0 or XACML, which allows defining fine-grained policies over publishers and subscribers.
Authorization standards, as OAuth 2.0, implies robust secured communications so the ideal end-to-end
communications (between cloud or applications with devices) are not usually feasible in most
devices due to theirs constrained feature and it is needed to delegate the establishment of secure
communications with external nodes as gateways. On the other hand, CoAP presents a duality and can
adopt the Request/Response pattern or the Publish/Subscribe pattern [30], thus it/is able to integrate
the OAuth 2.0 easier than MQTT and, additionally, consumes fewer resources than HTTP as we will
demonstrate later. In view of all that has been mentioned so far, one may suppose that CoAP is one of
the most appropriated protocols to use and secure IoT applications.

3. Architecture and Implementation

In this section, we present an integration of the IAACaaS access control solution [6,7] within an
IoT-based architecture based on the Publish/Subscribe paradigm. There are increasingly more voices
that claim a “secure by design” methodology when developing IoT applications. In designing an IoT
architecture, we should take into account the security considerations from the beginning: securely store
credentials, securely communicate or minimize exposed attack surfaces. The proposed architecture
complies with these security key designs; it allows devices to securely communicate with data systems
and to minimize attacks while ensuring the scalability and dynamicity required on IoT applications.
In particular, the uni-directional approach design of IoT communications proposed fairly reduced
exposed attack surfaces. Due to this characteristic, the architecture is more appropriate for IoT domains
in which devices are usually managed centrally, as smart buildings or smart industry.

This paper focuses on evaluating the model from the devices’ side, but the model is also able to
control access by users, applications or other services. In this section, we describe some of the main
features of the model but more details about the workflows and the components of the IAACaaS model
can be found in the works mentioned above. This model guarantees the authenticity, confidentiality
and integrity of the IoT communications from a gateway to a Publish/Subscribe broker.

Essentially, the IAACaaS model aims to offload the computational load of the devices by
delegating the authorization process to a third party. The model relies on the OAuth 2.0 framework
to enable devices to securely request tokens which are used as a proof of authenticity. When the
device uploads or ask for data to a service, it includes the token in the request which is validated
and authorized through an XACML architecture, before redirecting the request to the service final
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endpoint. Another important point in which the model relies on to reduce computational load is that
devices must not listen for incoming requests. They are only able to periodically send requests either
for providing data (sensor) or to check if they should change their state (actuator). This uni-directional
approach design brings some benefits that we discuss in the results Section.

The asynchronous Publish/Subscribe pattern has been broadly adopted to implement IoT
applications for its capacity to scale. This pattern decouples message senders (publishers) from
receivers (subscribers) participating in the communication using an intermediate broker that stores
the generated messages. The publisher only concerns about sending the messages, while the broker
is responsible for delivering these messages to the proper subscribers. In this manner, subscribers
avoid getting stuck waiting for information. However, security is usually an issue as publishers
have no knowledge of who is receiving the messages and subscribers have no knowledge of who is
generating them. The IAACaaS model boosts and eases the integration of security mechanisms for
Publish/Subscribe-based applications.

The IAACaaS architecture are evaluating was originally designed based on the HTTP protocol.
However, for the purpose of this paper, we have developed modifications to integrate CoAP, so that
we can do a more complete analysis of the access control solution. CoAP is a lightweight protocol that
easily interfaces with HTTP, so it can integrate specific HTTP frameworks, such ass OAuth 2.0 with
slight modifications. Additionally, it presents a Request/Response-Publish/Subscribe pattern duality
which allows it to adapt to a wide range of scenarios. In our case, we use the Request/Response pattern
to request access credentials through OAuth 2.0. We use the Publish/Subscribe pattern to update
(publish) data through a secure channel including the previous obtained credentials. Other devices
could also securely subscribe to the published data.

In the architecture we evaluate, both the IAACaaS model and the Publish/Subscribe broker are
implemented using the GEs (Generic Enablers) provided by FIWARE, while the gateway is developed
using open-source tools. Figure 1 represents the resulting architecture and roughly describes the
interactions between the Generic Enablers and the gateway.

Figure 1. Architecture.

3.1. Components

We use the following FIWARE GEs to implement the proposed architecture: Identity Manager
Keyrock, Wilma PEP (Policy Enforcement Point) Proxy and Orion Context Broker. Keyrock and Wilma
have been fully developed and maintained by the authors of this manuscript. Both GEs mainly used
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the HTTP or HTTPs protocols but, for the purpose of this research, we have modified their source code
to support CoAPs (CoAP over DTLS) requests and to integrate OAuth 2.0 over CoAPs.

3.1.1. Orion Context Broker

The Orion Context Broker (Context Broker Orion: https://fiware-orion.readthedocs.io/) is an
HTTP Publish/Subscribe implementation—based on the NGSI standard—that enables management of
the entire lifecycle of context information including updates, queries, registrations and subscriptions.
As explained in Section 1, it has been recognized as a CEF Building Block, which is one step forward
on its path towards becoming a global standard for large scale contextual information management.
Orion allows defining a model of data (i.e., entity) to which publishers update values to be obtained
by subscribers. Orion uses the NoSQL MongoDB database to store these entities and the last
value recorded on them. In this architecture, it acts as an intermediary node between the devices
(that communicate with it through the gateway) and the applications, so that both of them are able to
update or request information from entities.

3.1.2. Identity Manager Keyrock

The Identity Manager Keyrock (IdM Keyrock: https://fiware-idm.readthedocs.io/) is an OAuth
2.0-based identity and access control software, which enables applications and services to delegate
authentication and authorization processes. It plays three main roles: IdP (Identity Provider), PAP
(Policy Administration Point) and PDP (Policy Decision Point). The two latter enable the creation
of access control policies and determine whether or not to authorize a request. For our study,
Keyrock also implements the OAuth 2.0 Client Credentials Grant, which enables token creation
for machine-to-machine communications without any user interaction.

Keyrock is an HTTP-based server built with Node.js (Node.js: https://nodejs.org/) and relies on
a SQL (Structured Query Language) database to provide persistence. Keyrock was modified to support
CoAP and DTLS using the node-coap and the node-dtls libraries, respectively.

3.1.3. Wilma PEP-Proxy

The Wilma PEP Proxy (PEP-Proxy Wilma: https://fiware-pep-proxy.readthedocs.io/) aims to
protect services by applying proxy functions based on the OAuth 2.0 protocol and enforcing requests.
It can check the identity of the OAuth 2.0 token with Keyrock and to check policies with a PDP. In our
case, for the sake of simplicity, Keyrock is also responsible for the PDP functions but FIWARE provides
the AuthZforce GE (PDP/PAP AuthZforce: https://authzforce-ce-fiware.readthedocs.io/en/latest/)
which also can play this role. It enables a more fine-grained definition of policies based on the XACML
language syntax. In our architecture, Wilma control access towards the Orion Context Broker and
provides a token cache function that avoids continuously validating tokens with Keyrock.

As well as Keyrock, Wilma is implemented using Node.js and uses the same libraries for CoAP
and DTLS support. In our use case, Wilma can act as an HTTP-to-HTTP proxy or as a Cross-Protocol
proxy between CoAPs and HTTPs (described in chapter 10 of CoAP’s RFC [42]). Regardless of whether
Wilma received CoAPs or HTTPs requests from the gateway, it uses the HTTPs protocol to validate
tokens with Keyrock and to redirect requests to Orion. In the case of Orion, it is mandatory as it only
supports HTTP/HTTPs, but in the case of Keyrock we decided to use HTTPs to ensure the reliability of
tokens validation. However, as future work, we will base the whole architecture in the CoAPs protocol
and test it on terms of latency and reliability.

https://fiware-orion.readthedocs.io/
https://fiware-idm.readthedocs.io/
https://nodejs.org/
https://fiware-pep-proxy.readthedocs.io/
https://authzforce-ce-fiware.readthedocs.io/en/latest/
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3.1.4. Gateway

The gateway acts as an intermediary node between devices and the Orion Context Broker. It adapts
device requests to the NGSI format before sending them to Orion through a secure channel. It requests
OAuth 2.0 access tokens from Keyrock, and such tokens are included in the requests sent to Orion.
In this paper, we focus on the OAuth 2.0 performance between the gateway and the access control
model, so how devices communicate with the gateway is out of the scope of the research. Form the
point of view of performance, in many IoT applications a wired installation is infeasible and devices
must be wireless, so they should use lightweight secure protocols to connect to the gateway that has
minimal impact on energy consumption. However, from the point of view of security and taking into
account that the security of a network depends on the security of the most vulnerable node, this issue
represents a very important concern. We can found in the literature several studies about the impact of
security in wired and wireless sensor networks in which this issue is achieved [43–46]. On the other
hand, the gateway is connected to the Internet and can send requests using the HTTPs or COAPs
protocols. If the gateway obtains a response that requires some action, it would notify the smart valve
using more lightweight IoT communications based on Zigbee, Bluetooth, etc.

The gateway source code is written in Node.js and relies on https, node-coap and node-dtls libraries
to provide either CoAPs and HTTPs requests. In particular, for the CoAPs case, the secured DTLS
socket used in the communication remains open similarly to [36].

3.2. Flows

We summarize the main flows in the architecture hereafter. A more extended description of
the request token and validation token flows can be found in the works mentioned above related
to IAACaaS.

• Request token. The gateway uses the OAuth 2.0 Client Credentials Grant to request an access
token to Keyrock through a secure channel. To perform that, the gateway is pre-configured with
the credentials of an application that must be previously registered in Keyrock. An OAuth client
represents that application in the authorization server provided by Keyrock. It owns two principal
credentials, an identifier and a secret. When Keyrock receives a request including these credentials,
it checks its validity and generates an access token. Then, the gateway stores the token which will
be used in the following flow.

• Update data. When the gateway receives a request from a device, it generates a new request
based on the NGSI format. It includes in the body of the request the information received and the
access token. The gateway sends the request towards Orion (previously filtered by Wilma). If it
receives an unauthorized response, it will request again a new token before performing again the
request. The gateway could include information of several devices in the same NGSI request to
optimize resources.

• Validate token. Wilma intercepts the request towards Orion and obtain the access token from it.
It sends this token to Keyrock to obtain its related information (IdP) and to check its validity (PDP).
If it is valid, Wilma stores the token in the cache, along with its expiration time, and redirects
the request to Orion. Otherwise it responds to the gateway with an unauthorized response.
When Wilma receives again a request with the same token, it follows the same process, but it first
checks in the cache if the token is still valid, avoiding the validation with Keyrock.

The presented architecture relies on CoAPs or HTTPs protocols to perform a point-to-point
encryption so that confidentiality of communications is preserved. Authentication and authorization
processes (based on OAuth 2.0 and the XACML architecture) allow controlling which actor is
performing a specific action and provide a comprehensive access control framework.
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4. Deployment and Use Case

We evaluate our FIWARE-based solution by developing a simple use case for smart buildings.
Public and large buildings, such as universities or ministries, usually use central heating systems to
regulate the temperature in different areas. These areas are composed of several rooms with several
radiators that can be manually managed by opening and closing a valve. There are thermostatic
radiator valves, which integrate temperature sensors, that saves considerable amounts of energy [47].
However, they heat the room despite if whether there are people inside or not. Connecting the valves
to the network allows control and monitoring of them remotely through an application and would
improve the saved-energy results. The application could be reused to control the heating system of all
public buildings of a city, so a cloud-based solution is deployed. At this point, we need to introduce an
access control model to secure the device side and the user side. We made an experiment focusing on
the device side, but the same access control model could be used to control users’ access to the smart
valves. If we do not introduce security mechanisms in this application, malicious machines could
update fake data to trigger non-desired openings of valves, or to perform a Denial-of-Service attack to
the application by sending millions of requests.

In this scenario, we measured the impact on performance by integrating OAuth 2.0 with HTTPs
and CoAPs protocol. We define 4 testing scenarios based on request types:

• CoAPs. The gateway sends publish requests to the broker using the CoAPs protocol. Wilma
intercepts these requests and generates new HTTPs requests including the payload from the
CoAPs ones. The new HTTPs requests are redirected to Orion where they are processed. Finally,
the Orion sends a successful response to Wilma that is redirected to the gateway.

• HTTPs. The gateway sends publish requests to the broker using the HTTPs protocol. Then,
the flow is the same than in the previous scenario.

• OAuth 2.0 over CoAPs. The gateway retrieves an OAuth 2.0 access token from Keyrock as
described in the previous section. Then, it sends publish requests to the broker using the CoAPs
protocol including the access token. Wilma intercepts these requests, extracts the access token
and validates it. If the access token has expired or if it is not valid, Wilma sends an unauthorized
response to the gateway. If the access token is valid, Wilma stores the token in the cache, generates
a new HTTPs request including the payload from the CoAPs one and continue the process as
described in the CoAPs scenario.

• OAuth 2.0 over HTTPs. The gateway sends publish requests to the broker using the HTTPs
protocol. Then, the flow is the same than in the previous scenario.

The two first scenarios (CoAPs and HTTPs) act as a “control group”. They allow us to observe
the resource consumption when using those protocols without OAuth 2.0 integration. Comparing
them with their homonyms after adding OAuth 2.0 we can isolate the impact of introducing this
authorization protocol. On the other hand, OAuth 2.0 was designed for HTTPs so, this in turn will act
as a “control group” for the CoAP cases to compare the two protocols.

In the following paragraphs we present the deployment we have designed for the use case on the
server-side and the gateway.

4.1. Server

We deployed all the server-side components (Orion, Keyrock and Wilma) for the experiment
on a cloud provider, so that we can get closer to a real use case. We use an instance of Google
Cloud (Google Cloud: https://cloud.google.com) infrastructure hosted in Europe-west1-b (Belgium).
Table 1 describes the main specifications of the instance. IoT applications benefit from cloud solutions,
as they can dynamically increase the number of instances to support an increment of the number
of devices and the number of requests that they generate. In our case, and for the purpose of the
experiment, the capabilities of instance that we have deployed are more than enough. Additionally,

https://cloud.google.com
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there is a growing trend to design applications based on microservices and to deploy them using
container-based virtualization solutions, such as Docker (Docker: https://www.docker.com) or
Kubernetes (Kubernetes: https://kubernetes.io). This approach saves the necessary resources, since it
allows scaling up of only those microservices that are overloaded. We use Docker (19.03.7 version) to
deploy all the components of the experiment infrastructure and Docker-compose (1.25.4 version) to
orchestrate the created containers.

Table 1. Cloud instance specifications.

CPU 4 virtual CPU
Memory 15 GB

Disk 30 GB SSD
Operating System Ubuntu Bionic 18.04

Figure 2 shows the Docker deployment to install the FIWARE GEs, Orion, Keyrock and Wilma.
Below we detail the configurations we have performed for the purpose of the experiment and for the
use case presented above.

Figure 2. Docker deployment of Generic Enablers.

We have deployed two Docker containers, one for Orion (Orion Docker image: https://hub.
docker.com/r/fiware/orion) (2.3.0 docker tag release) and one for Mongo (Mongo Docker Image:
https://hub.docker.com/_/mongo) (2.6 docker tag release). We have enabled HTTPs on the Orion
container to support secure connections. Regarding the proposed use case, we have created an entity
that represents one smart valve in a specific room. This entity periodically updates its data based
on requests received from the gateway. We have created that entity by sending an HTTPs request to
Orion Context Broker including the information for creating the temperature, valveRadiator, battery and
period fields.

https://www.docker.com
https://kubernetes.io
https://hub.docker.com/r/fiware/orion
https://hub.docker.com/r/fiware/orion
https://hub.docker.com/_/mongo
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We have deployed two Docker containers, one for Keyrock (Keyrock Docker image:
https://hub.docker.com/r/fiware/idm) (7.8.1 docker tag) and one for MySQL (MySQL Docker image:
https://hub.docker.com/_/mysql) (5.7 docker tag). We obtained the id and secret credentials of the
OAuth client by registering a smart valves application in Keyrock and, then, we included them in
the gateway’s code. The size of the OAuth 2.0 credentials is 36 bytes (both for id and secret) while
the size of an access token is 40 bytes. These OAuth 2.0 client credentials are usually included on the
authorization header (encoded to base 64) in every request for access tokens. However, the CoAP’s
headers do not support the size of the credentials, so we enabled Keyrock to obtain these credentials
from the body as described in the OAuth 2.0 reference. Therefore, Keyrock can grant tokens either by
CoAPs or by HTTPs.

We have deployed a Docker container for Wilma (Wilma Docker image: https://hub.docker.com/
r/fiware/pep-proxy) (7.8.1 docker tag). We configured the Keyrock and Orion endpoints and we
enabled the token cache functionality. We also took into account the following considerations:

• As we want to check the impact of introducing OAuth 2.0 in the flow, we must compare the same
scenario without granting and validating tokens. Wilma can be configured to avoid validating
tokens and just redirecting the request to the final endpoint.

• When we deploy the scenarios of CoAPs and HTTPs without OAuth 2.0, we configure Wilma to
redirect the incoming requests to the final endpoint without performing any token validation.

• When Wilma validates a token with Keyrock, it obtains the token expiration time. Wilma supports
a customizable token cache function that prevents checking every request with Keyrock. On this
cache, it stores the token and the expiration among other things. Whenever Wilma receives a
token it checks if it is stored in the cache and if it is valid. In case that the token has expired,
Wilma responses with an unauthorized code.

Storing great amounts of tokens in the PEP’s cache and IdM’s database can affect the overall
performance of the system. As docker-compose enables the creation and destruction of the test scenario
in an easy way, we made each test in a clean environment. However, in a real scenario, cache cleaning
or database management should be done without stopping the service.

4.2. Gateway

We deployed the gateway for the experiment on a Raspberry Pi 3 (Raspberry Pi: https://www.
raspberrypi.org/products/raspberry-pi-3-model-b-plus/) and we used its WiFi interface to send
requests to the cloud deployment. Table 2 shows the Raspberry capacities. These capacities far exceed
the capabilities of commercial gateways, so we limited them to better approximate to a real case. In a
production deployment, it should be estimated the number of nodes that the gateway would support
to avoid oversizing the hardware. For this purpose, it should be taken into account criteria such as:
the communication protocols used by the sensors, the number of requests per second made by each
of them or the size of the payload of the requests [48,49]. In the specific case of the deployment we
have made and the measures obtained (which will be presented in the next section) regarding CPU,
bandwidth and memory, we can estimate that the gateway would support in the order of dozens of
IoT devices.

Table 2. Raspberry specifications.

CPU 1 virtual CPU
Frequency 600 MHz
Memory 407 MB

Disk 16 GB
Operating System Raspbian Buster Lite 4.19

Wi-Fi 2.4 GHz 802.11 n WPA2 PSK

https://hub.docker.com/r/fiware/idm
https://hub.docker.com/_/mysql
https://hub.docker.com/r/fiware/pep-proxy
https://hub.docker.com/r/fiware/pep-proxy
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
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As we stated before, in this paper we focus on the OAuth 2.0 performance between the gateway
and the access control. In a production deployment, the gateway would adapt the valves-messages
to the NGSI format before publishing them using the HTTPs or COAPs protocols.

As OAuth 2.0 requires secure connections, either for CoAPs and HTTPs we use the RSA
algorithm for key exchange and authentication, along with the encryption 128-AES-CBC and SHA.
In a real scenario, a more efficient and secure key exchange and encryption algorithm should be used.
For instance, it would be more suitable to use elliptic curve Diffie-Hellman [50] for key exchange and
stronger hashing algorithm as SHA256 [51].

We also developed a python script (based on the psutil library) to monitor the execution of the
gateway’s code. This script periodically measures CPU, memory and bandwidth performance. Once a
test has been completed, all the measures are stored into a CSV (Comma-Separated Values) file. On the
other hand, we have included in the code of the gateway itself the necessary logic to measure the
latency of the requests.

5. Results and Analysis

For evaluating the presented scenario, we made an experiment consisting of periodic send
requests from the gateway to the deployment made in the cloud. We evaluated the scenario in terms of
CPU, bandwidth, memory, latency and reliability and in 4 scenarios explained in the previous section:
CoAPs, OAuth 2.0 over CoAPs, HTTPs and OAuth 2.0 over HTTPs. We have also considered the
following configuration:

• The duration of each test is 5 min.
• We modify the period of the requests for each of the scenarios. The period values are 0.1, 0.2, 0.5,

1 and 2 s.
• The size of the update requests payload is 232 bytes for OAuth 2.0 cases and 174 bytes for

non-OAuth 2.0 cases. The payload of the access token request to Keyrock is 143 bytes while the
response is 60 bytes.

• Wilma responses to the gateway with a 204 HTTP code (2.04 in CoAPs cases) if the entity has been
successfully modified in the context broker. Otherwise, Wilma responses with a 401 HTTP code
(4.01 in HTTPs cases) if the access token is no longer valid.

• The time a token could be stored in the Wilma token cache is higher than the expiration time.
Therefore, when Wilma receives a request with a token and it checks in the cache that this token
exists and has expired, it responds with an unauthorized code to the gateway.

• For the OAuth 2.0 cases, we set the token expiration time in 10 s. The gateway requests a new
access token to Keyrock each time the PEP-Proxy responds with an unauthorized code. As each
experiment lasts 5 min, it has been necessary to set such a low expiration time to appreciate
OAuth’s impact. However, in a real scenario, in which the gateway would have a continuous
operation over time, the token expiration time should be much greater, which would allow
enhancement of the IoT application’s performance. Establishing a higher token expiration time
does not pose a risk to token leakage and improves system performance. On the other hand, refresh
tokens or non-expiring access tokens could be used. Refresh tokens (with a longer expiration
time) can be used to obtain a new access token without performing again the authentication.
Non-expiring access tokens allow drastic reduction of the number of authentication requests but
it is necessary to provide a revoke mechanism [52].

For getting the experimental data, at the same time we execute these scenarios in the gateway,
we also run the python monitoring script described in the previous section. This script periodically
(every 0.2 s) takes the values of CPU and Memory along with the bandwidth sent and received.
When the execution is completed, the values are stored in a CSV file. This file is cleaned and processed
to perform an operation over the data obtained. On the other hand, we store in an array the latency of



Sensors 2020, 20, 4341 13 of 20

each requests as well as the response codes (HTTP or CoAP) of each them. A CSV file is generated
again for being then cleaned and processed to analyze the latency and the reliability of each scenario.

To determine and compare the performance of each of the 4 scenarios, it is necessary to know the
latent performance of the Raspberry itself. We measure the performance of the Raspberry with the
WiFi interface activated and when executing the python monitoring script. During a period of 5 min,
the Raspberry consumes an average of 3.84% of CPU and 21.64% of Memory while the bandwidth
consumption is negligible.

5.1. Bandwidth

We first investigated the impact on bandwidth consumption comparing a scenario in which the
gateway uses OAuth 2.0 with a scenario in which it does not. We measured the number of bytes sent
and received per second on the WiFi interface of the Raspberry. Figure 3a,b show the evolution of the
bandwidth’s means for each periodicity and for each request type. As expected, CoAPs consumes less
bandwidth than HTTPs especially when the periodicity increases, but the incidence of OAuth 2.0 on
the percentage of bandwidth is slightly higher in CoAPs. For instance, with a period of 0.1, OAuth 2.0
increases by 16% the bandwidth in CoAPs case, while in HTTPs case it increases by 6%. This occurs
because the overhead of a CoAPs request is smaller than the HTTPs one, so it is more notorious to
introduce an extra load on it. We can see that the OAuth 2.0 provides an extra access control layer
without supposing a considerable decrease on bandwidth performance.

(a) (b)

(c) (d)

Figure 3. Bandwith, CPU and Memory performance. (a) Mean of BW sent; (b) Mean of BW recv;
(c) Mean of CPU; (d) Mean of Memory.



Sensors 2020, 20, 4341 14 of 20

5.2. CPU

Regarding the impact of using of OAuth 2.0 in terms of CPU, we measured the overall performance
of the Raspberry, which includes the proper performance of the monitoring script. Figure 3c shows
the evolution of CPU performance’s means for each periodicity and for each request type. As the
previous case, CoAPs consumes fewer CPU resources than HTTPs, especially when the periodicity
increases. However, we can observe a different behavior when including OAuth 2.0 on each protocol.
In HTTPs cases, OAuth 2.0 supposes an increment on CPU performance as the request periodicity
decreases while in CoAPs cases, it causes an increment as the request periodicity decreases. We deduce
that using a stateless approach (as the HTTPs ones) suits better when the request density is low while
remaining the socket open (as the CoAPs ones) suits better when the request density is high. If the
gateway dynamically changes the approach based on the density of requests, the CPU performance
could be greatly improved including the one produced by OAuth 2.0 itself.

5.3. Memory

In terms of memory, we measured again the overall performance of the Raspberry, which includes
the proper performance of the monitoring script. The means of the memory values obtained have a
low variability, while some of them have different values than expected. This is due to external factors
of the execution that have affected slightly some of the measurements. To better appreciate the impact
on memory, we decided to use a bar graph—instead of a linear graph—to show the extreme values of
the density of requests. Figure 3d shows the particular cases for the 0.1 and 2 s periodicity and we
observe a similar behavior as the CPU performance. The HTTPs approach improves memory usage
when the density of request is low while the CoAPs one improves it when the density of request is
high. We observe that the HTTPs-0.1 case presents values contrary to those expected, being that the
non-OAuth 2.0 case uses more memory than the OAuth 2.0 case. This is due to the variability issue that
we have commented before. Regarding the rest of the cases shown, we can state that OAuth 2.0 slightly
increases memory consumption, but it is bearable. In future works, we will study the OAuth 2.0
memory impact when using a larger token size and different encryption algorithms. These actions may
affect the performance of the gateway, but they could improve the integrity of the communications
as well.

5.4. Latency

We also measured the end-to-end latency introduced by the OAuth 2.0 protocol. We estimated
latency as the time lapse between the gateway starts configuring the update request and the response
obtained from Wilma. For the OAuth 2.0 cases, the elapsed time for requesting a token to Keyrock is
added to the subsequent Wilma update request. Figure 4 shows a comparison between the use of 0.1
and 0.2 s for the period and for each type of request. We can see that there is an expected difference
of ∼150 ms between CoAPs and HTTPs. The OAuth 2.0 incidence for the HTTPs cases is almost
negligible, while in the CoAPs is slightly higher. Again, as in the case of the bandwidth, the lower
overhead of CoAPs explains this behavior. We can also see that the 0.2-period case of CoAPs has
a higher value (with a ∼25 ms) than the 0.1-period one. This can be also explained with the token
expiration issue. Wilma token cache allows considerable reduction of the latency of introducing OAuth
2.0. For instance, when the gateway sends a CoAPs request including a new token (i.e., when Wilma
needs to validate the token with Keyrock), it usually takes ∼700–800 ms, while including an old token
(stored in Wilma token cache) takes around ∼120–150 ms. We can conclude that the cache mechanism
reduces latency of the access control solution.
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Figure 4. Latency for 0.1 and 0.2 s period.

5.5. Reliability

We have made a reliability analysis of the answered requests in the OAuth 2.0 scenarios.
The results are shown in Table 3. As we can see, all update requests have been successfully responded
but, for the HTTPs case using 0.1 s and 0.2 s periods, we note that the gateway has received more
401 codes than the expected (since the token expires after 10 s and the duration of the test is 5 min,
it should be at most 30 responses with 401 code). We relate this behavior with the higher latency of
HTTPs. When using a low frequency, during the time frame in which the gateway receives the first
unauthorized response it continues sending requests. For the CoAPs case, this behavior is beginning
to be observed at 0.1 s periods. In this case, a solution could be that the gateway stores the token
expiration time when retrieving a token from Keyrock and checks this time before performing any
request. In addition, it must integrate synchronization mechanisms such as the NTP (Network Time
Protocol) [53] to get the same time as the cloud deployment. We do point out that in the future we will
do more intensive tests undo different conditions: by increasing number of requests, by increasing
congestion of network, by limiting the bandwidth, etc.

Table 3. Request comparison.

Name Total-Updates Status-204 Status-401

coaps-OA-0.1 s 2785 2750 33
coaps-OA-0.2 s 1412 1382 30
coaps-OA-0.5 s 572 545 27
coaps-OA-1 s 287 261 26
coaps-OA-2 s 144 120 24

https-OA-0.1 s 2791 2699 87
https-OA-0.2 s 1423 1364 58
https-OA-0.5 s 577 547 29
https-OA-1 s 284 258 26
https-OA-2 s 146 122 24

These measures have been taken without any network congestion. The authors of [37] emulate
a congestion scenario using NetEM (Network EMulation) in order to determine packet loss when
using CoAP and MQTT. They configure this software to randomly drop 20% of incoming packages.
They discovered that using CoAP under these circumstances supposed a packet loss of 35% when the
request frequency was 5 s. This is mainly due to UDP reliability. However, when the frequency of
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requests increased, the packet loss was significantly reduced. In view of this and in a real scenario,
the gateway we have deployed would have to decrease the requests frequency to avoid a possible
package loss.

5.6. Discussion

In this subsection, we summarize some of the disclosures of the experiment regarding OAuth 2.0.
Even though the gateway would support HTTPs and as OAuth 2.0 could run over CoAPs, using the
second one would allow the gateway to support a higher amount of smart radiator valves. Likewise,
the gateway should also change dynamically between a stateless CoAPs approach and remaining the
UDP socket opened, based on the density of the number of requests per second. This functionality
would not only enhance the OAuth 2.0 performance but also that of the whole system. Another
important point is about token time expiration, which should be carefully configured to ensure the
performance and the integrity of the application. The gateway may also handle this expiration time to
foresee when it should request a new access token, but this implies it must integrate a synchronization
protocol. Related to the two previous points, the Wilma token cache plays an important role as it
avoids an unnecessary repetitive validation of tokens when the request’s parameters and the token are
the same. Considering the above reasoning we can conclude that OAuth 2.0:

• Allows secure and easy identification of the specific entity performing an specific request.
• Do not require considerable additional hardware capacity to be executed on IoT environments.
• It boosts the integration of comprehensive access controls paradigms as ABAC or UCON.
• Do not interfere on the definition of a data model which is relevant to the implementation of the

mentioned paradigms.

Regarding this last point, using a data model to describe the attributes of the smart radiator
valve (NGSI), allows the creation of a digital twin stored in the cloud. A digital twin allows easy
interface with the IoT device and to monitor the state of the IoT device. In our experiment, the smart
radiator valve sends publish requests through the gateway to update its digital twin, but it can also
send requests to check if its digital twin has changed—due to users or algorithms actions—the valve
opening status and perform the action in question. Likewise, the smart radiator valve can update
information about the remaining battery life to its digital twin allowing for predictive maintenance.
On the other hand, the access control can be extended to enforce and validate policies with the aim of
limiting access to the devices attributes. Creating a digital twin of the device eases the definition and
application of fine-grained policies and, as the device is not awarding for requests, the risk of attacks
such as DoS is reduced. In addition, the digital twin must contemplate configuration attributes of the
device that can be changed, such as the periodicity or even the amount of data to be sent, so that users
(or even applications in an automatic way) are able to manage the device. The access control policies
should contemplate both the device’s data and the monitoring and configuration of the device.

The present study makes several noteworthy contributions to access control on IoT.
This combination of results provides some support for securing IoT applications. As we commented in
the related work, it does not exist a unique access control solution for IoT applications. The conclusions
drawn from the evaluation of the scenarios can be very useful on domains such as smart building,
smart home or smart industry. However, more research on latency or privacy needs to be taken to be
able to deploy the architecture presented in fields such as Smart Vehicles or Smart Health.

6. Conclusions and Future Work

The present study was designed to evaluate the effect of integrating the IAACaaS access control
model [6,7] on an IoT Publish/Subscribe scenario from the devices’ side. Devices or gateways usually
have more resources limitations than the user side or the cloud, so in this paper, we focus on evaluating
that is feasible to integrate the OAuth 2.0 protocol (the basis for the IAACaaS model) on IoT applications
without requiring an extra of system capabilities. Although the present study is based on a simple use
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case, the findings suggest that the OAuth 2.0 protocol adds an extra layer of access control without
compromising the performance of the system by itself. It is the establishment of secure connections
that most limits performance. As we stated in the Related Work Section, any access control solution
(as OAuth 2.0) must support secure communications, so further investigation and experimentation into
encryption or key exchange of devices and gateways is strongly recommended. It might be possible to
use a different approach as OSCORE (Object Security for Constrained RESTful Environments) [54]
which allows establishment of end-to-end secure communications. This standard could avoid the need
for introducing a gateway as it could considerably reduce resources consumption.

On the other hand, the study did not evaluate the creation and enforcement of policies so a natural
progression of this work is to analyze the impact of introducing ABAC or even UCON fine-grained
policies definition and evaluate again the performance of the whole system. The studied use case could
be extended to create ABAC policies through the access control model described in [6,7]. Since IoT is
growing exponentially, further research might investigate the scalability of the policies compliance in a
more complex scenario. Another research line could be introducing MAC tokens [55] (instead of Bearer
tokens) with the aim of avoiding the handshake proper of DTLS or HTTPs communications. Finally,
comparing the performance of an MQTT-based implementation with the experiments performed in
this research would be of interest for with a more complete evaluation of the scenario.
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