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Abstract: Newly installed renewable power capacity has been increasing incredibly in recent years.
For example, in 2018, 181 GW were installed worldwide. In this scenario, in which photovoltaic (PV)
energy plays a leading role, it is essential for main players involved in PV plants to be able to identify
the failure modes in PV modules in order to reduce investment risk, to focus their maintenance efforts
on preventing those failures and to improve longevity and performance of PV plants. Among the
different systems for defects detection, conventional infrared thermography (IRT) is the fastest and
least expensive technique. It can be applied in illumination and in dark conditions, both indoor and
outdoor. These two methods can provide complementary results for the same kind of defects, which
is analyzed and characterized in this research. Novel investigation in PV systems propose the use of a
power inverter with bidirectional power flow capability for PV plants maintenance, which extremely
facilitates the electroluminescence (EL) inspections, as well as the outdoor IRT in the fourth quadrant.

Keywords: infrared thermography; characterization of photovoltaic defects; bidirectional inverter

1. Introduction

Renewable energies are nowadays a completely mainstream element in the global electricity mix.
Combined with energy efficiency, renewables are playing a decisive role in decreasing emissions in the
energy sector and in end-use sectors. Renewable electricity has expanded, due to both transferable
and safe technologies and practical policy frameworks. With 181 GW added, the newly connected
renewable power capacity set new records worldwide in 2018, raising the total by more than 8%
relative to 2017, leaded by solar photovoltaic (PV), with 100 GW of new solar PV capacity installed in
2018, adding a total fixed PV solar capacity of 505 GW [1,2]. In this scenario in which PV energy plays
a leading role, failure recognition systems in photovoltaic plants are important to all actors involved in
them. [3]. Ensuring the reliability of photovoltaic plants, as well as their durability, has been essential
in recent decades. This is important to know the origin of the failures, as well as their traceability [4].

It is widely known that the cost of purchasing PV solar modules has drastically fallen in recent
decades, and especially in recent years [5–7], which makes the idea of installing PV solar plants
even more attractive. Almost all the efforts of the PV exploitation are focusing on carrying out
inspections of their plants (maintenance) that allow them to maintain their efficiency (operation),
with the clear objective of obtaining high productivity levels. Therefore, the idea of advanced operation
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and maintenance (O & M) is very attractive for the PV exploitation sector, since it will guarantee certain
levels of efficiency in their PV plants [8,9].

Diverse inspection techniques have been traditionally used to detect faulty PV modules and cells.
Visual inspection is one of the quickest methods to locate PV anomalies in a module [10], although only
some types of faults are detected (bubbles, delamination, yellowing, browning, broken cells, oxidized or
burned cells, corrosion or exposed electrical parts). The above can be completed with a laboratory
analysis under a microscope [11]. By means of electrical characterization, an exhaustive analysis of the
characteristics of the localized defects must be carried out. The best information from a photovoltaic
module can be obtained using the current-voltage curve (I-V) [12], and its main parameters. The main
problem with this technique is that it is not possible to locate the defect exactly [13]. The I-V
curve provides vital information on the faults in the photovoltaic modules, and it is possible to
observe degradation, cracks, problems of inappropriate resistance, anomalous operation of diodes
and shadows [11]. An interesting technique, since it is applied with the photovoltaic plant in
operation, is infrared thermography (IRT), for detecting heat distribution in the evaluated area. By IRT,
areas or points with higher or lower heat emissivity are set, which could suggest the presence of a
fault. This fact combined with the requirement of minimal instrumentation and being a non-contact
practice make IRT very attractive, in addition to the great advantage of being able to be performed
with unmanned aerial vehicles (UAV). A 97% average increasing in inspection efficiency between
aerial and to manual inspection time is indicated in [14], comparing, i.e., 1.07 EUR/kWp reduction.
Numerous works have demonstrated the validity of thermographic methods for detecting cell failure
in the module space [15–17]. Concluding the inspection systems, electroluminescence (EL) imaging
is another technique for failure identification in PV modules in which defective areas are darker,
because disconnected parts do not irradiate [18]. Although it is one of the most promising maintenance
techniques, its high cost has prevented its use regularly up to date [19]. It is a well-established
non-destructive technology that can be used in the manufacturing process of the modules, transported
to a lab after unmounting the PV modules from the site or on site, with an assembly or a specific
tripod or also by means of EL cameras mounted on UAVs. This non-invasive technique allows light
emission to be detected from the solar cell to the observer, and the intensity of light emission is used as
an indicator of the state of the cell [20–22]. Based on the EL image obtained, it is possible to have a
diagnosis of the state of the solar cell. Some works have shown the complementarity between the EL
and TIR technique, so both methods are interesting to perform [22,23].

Regarding the sensors used for each of the inspections introduced, red, green, blue (RGB) sensors
are used for visual inspections, although it can also be performed with human’s natural eye under
natural sunlight [24]. In recent times, the IR senor is included together with an RGB sensor, so the exact
location of the defect in the photovoltaic module is easier. Normally, IR sensor works in a spectral
range between 3 µm and 14 µm, covering temperatures between −20 to 350 ◦C [25]. On the other
hand, the peak of the EL spectrum of Si-PVs is at 1.15 µm, and it is more often reported at 1.1–1.2
µm. The spectral response range of short wave infrared (SWIR) cameras is around 0.9–1.7 µm [26].
Therefore, it is possible to say that it is very suitable for detecting problems in silicon cells.

Among the different systems for defects detection, conventional IRT is one of the fastest and least
expensive techniques. Although it has been traditionally applied only with the PV plant in operation,
which has the great advantage of not losing energy, it can also be applied while injecting current to the
modules in the fourth quadrant, simultaneously or subsequent to EL inspections. Some authors term
these two kinds of thermographic inspections as outdoor (illuminated) and indoor (dark) conditions,
respectively [10,27–30]. However, novel research in PV systems propose the use of a power inverter
with bidirectional power flow capability for utility-scale PV plants maintenance, using the EL technique,
together with the flexibility provided by this type of devices [19]. In this case, it allows and facilitates
the performance of outdoor IRT inspection injecting current simultaneously or subsequent to EL,
complementing the results. We propose to denominate these inspections as outdoor (dark) IRT or
outdoor (illuminated) IRT in the fourth quadrant along this paper. Outdoor (dark) and outdoor
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(illuminated) IRT provide complementary results for the same kind of defects, which are analyzed and
characterized in this research. If this power inverter with bidirectional power flow capability was not
available, the modules should be disconnected from the inverter and connected to a power source
to do the inspections. Therefore, it is a novel system in PV plants which extremely facilitates the EL
inspection as well as the outdoor (dark) IRT inspection, as it will be proved in this paper. Indoor IRT
can be done in operation of the modules if proper lamps [31] in a solar simulator are used and injecting
current in forward direction to the terminals using a current source, which can be denominated indoor
(illuminated). However, this inspection technique will not be used along this paper, as it is not the
purpose of the study. The introduced terms should not be confused with which other authors term as
indoor photovoltaics (IPVs) [31], indoor lighting conditions [32] or indoor solar cells [33], which implies
the conversion of the indoor light energy into direct electricity.

The main objective of this research is to analyze the outdoor (dark) IRT inspection using a power
inverter with bidirectional power flow capability as a new inspection technique in PV plants and to
demonstrate the things in common and the differences between outdoor (illuminated) and outdoor
(dark) IRT relating both with other inspection techniques, as I-V curves and EL. The paper begins with
the introduction to the topic covered, followed by the section on materials and methods, which explains
the operating points of a PV system based on its voltage and current and details the sensors, equipment
and modules used. Below are the main results of the study, which lead to its analysis and discussion.
Finally, the conclusions of the work are indicated.

2. Materials and Methods

2.1. I-V Curve and Its Quadrants

The working principle of a solar PV cell consists in absorbing the light and convert it into electricity.
The I-V curve under illumination represents all the possible combination of current and voltage of the
PV device under certain conditions of irradiance and temperatures. It represents the superposition of
the dark diode current with the photogenerated current, due to illumination, and can be described
with the well-known one exponential model, including the series and shunt resistances [34], as shown
in Figure 1. Equation (1) shows this expression:

I = IL − I0

[
exp

(V + I Rs

m vt

)
− 1

]
−

(
V + I Rs

Rsh

)
(1)

where IL is the photogenerated current, I0 is the diode saturation current, m is the diode ideality
factor, Rs is the series resistance, Rsh is the shunt resistance, and vt is the thermal voltage (K T/e) with
K as the Boltzmann constant, e as the electron charge, and T as the temperature in Kelvin. Figure 2
shows the typical I-V curve of a PV device both under illumination and in dark conditions, with their
characteristic points in illumination: short circuit current, Isc, open circuit voltage Voc, and maximum
power point Pmax, with its corresponding voltage Vmax, and current Imax. The criteria that has been
followed in Figure 2 and in the rest of the paper is considering that when the PV device is generating
current, both its current and voltage are positive (first quadrant).
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Figure 2. Illuminated and dark I-V curve of a PV device. Characteristic points are shown.

The optimum operational point of a PV device is the maximum power point, which is the point
searched by the PV inverters in power plants. Nevertheless, under certain conditions it is possible
that some devices move to second quadrant, or operate in the fourth quadrant (dark I-V curve) for
testing purposes.

Operation in the second quadrant usually happens in PV modules with defective cells or in case
of partial shading. A PV module is an association of PV cells, typically serially connected. If all
the module cells are identical and connected in series, under maximum power point conditions the
working current will be the cell Imax current, and the module Vmax will be the sum of each cell voltage.
If all the cells in the module are not identical, due to differences in production, defects or shading,
then the defective cell with lower current will move its operation point to the second quadrant, trying to
reach the string current. In these conditions, the cell will dissipate the power produced by the other
cells in the association, causing an increase in temperature. To avoid a high power dissipation which
could damage the cell due to overheating [35,36], PV modules are manufactured with bypass diodes in
their connection box. Bypass diodes are connected in parallel to a number of cells serially connected,
and have the function of limiting the number of cells that can dissipate power into a defective one and
to offer an alternative path to current in case of severe defects or partial shading. The operation of
the bypass diode produce a knee in the module I-V curve, whose position depends on the number
and distribution of bypass diodes in the module, and the type of defects or shading [37,38]. Figure 3
illustrates the working principle of the bypass diode.
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Figure 3. Working principle of the bypass diode. (a) Left: a damaged cell is associated in series with
other 17 cells serially connected. The string has a bypass diode. The activation point of the bypass
diode is shown. (b) Right: I-V curve of a PV module with three strings of 18 cells serially connected
(18 s). One of the strings has a defective cell.
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Operation in the fourth quadrant in dark conditions is applied to perform electroluminescence
imaging of the PV module [29]. In this case, the module is forward biased with a power supply,
to achieve a current similar to the Isc of the module. Other working points, as 10% of Isc, are commonly
selected to better distinguish certain types of failures [11,19].

2.2. Sensors

Indoor and outdoor tests have been conducted in the School of Forestry, Agronomic and Bioenergy
Industry Engineering (EIFAB) of University of Valladolid, in Soria, Spain.

Indoor tests include indoor (dark) EL, which has been performed in controlled ambient conditions
simultaneously than indoor (dark) IRT in the fourth quadrant. For these two tests, the University has a
temperature and humidity-controlled chamber, which is shown in Figure 4.
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Figure 4. Temperature and humidity-controlled chamber at the School of Forestry, Agronomic and
Bioenergy Industry Engineering (EIFAB) in Soria, Spain.

EL images have been captured with a pco.1300 camera with an exposure of 5000 ms and indoor
IRT images with a Flir C2 system, with a 80 × 60 pixels resolution, a thermal sensitivity of 0.1 ◦C and
an accuracy of ±2% o ±2 ◦C. In EL test, when the forward voltage is connected to the cell, the internal
barrier and electric field in the barrier region will decrease accordingly, which breaks the carrier balance.
Then, electrons and holes radiate compound and spontaneously radiate photons outward [26]. In this
case, the forward voltage has been applied with a laboratory source, adjusting the voltage to feed the
short circuit current (Isc) individually to each tested module.

On the other hand, outdoor tests, including outdoor (illuminated) IRT in the first quadrant,
outdoor (illuminated) IRT in the fourth quadrant and outdoor (dark) IRT have been carried out in the
PV field of the Campus Duques de Soria of the University of Valladolid, which can be seen in Figure 5.
The thermographic camera used outdoor is a Workswell Wiris Pro camera, with a 640 × 512 pixels
resolution, a thermal sensitivity of 0.05 ◦C and an accuracy of ±2% o ±2 ◦C. This camera has a frame
rate of 30 Hz, is calibrated to be used with two different lenses, 32◦ and 69◦, and includes a Full HD
RGB sensor with a resolution of 1920 × 1080 pixels and ×10 zoom. In this case, the forward voltage for
tests in the fourth quadrant has been applied with a bidirectional inverter, adjusting the voltage to feed
the Isc to the string of modules. This novel device, which is the key of the research performed as it
extremely facilitates the outdoor EL inspections, as well as the outdoor (dark) IRT inspection and the
outdoor (illuminated) IRT in the fourth quadrant, is in-depth detailed in the following subsection.
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Solar irradiance has been taken from ATERSA 4-20mA Compen solar cell, which registers the
irradiance level every minute. The ambient temperature has been taken from Advanticsys CO2,
temperature and humidity sensor, which registers the temperature every hour. All this information is
registered in the ADVANTICSYS PV plant data logger, model MPC374.

Regarding the software used for the images treatment and reporting, Imaje J [39] was used for EL
images, Flir Tools [40] for indoor Flir C2 IRT images and Workswell CorePlayer [41] for the outdoor
Wiris Pro IRT images.

2.3. Power Inverter with Bidirectional Power Flow Capability

A specific power inverter with bidirectional power flow capability was placed in the pilot-site
for this study. The power inverter is a NPC I-type that has been recently developed to help in the
maintenance of PV plants by means of EL image processing [19]. Indeed, the three-level neutral point
clamped (NPC) configuration is one of the most extended topologies in PV inverters currently on the
market. One of the main advantages of this approach is that bidirectional current flow can be useful to
avoid the typical inspection procedure, in which the modules are disconnected from the inverter to be
connected to a power source, saving a lot of effort and resources.

However, PV inverters are not usually prepared to start under low-irradiance conditions, and some
minor hardware modifications are required in this sense [19]. A DC-link pre-charge system is required
to perform inspections in low-irradiance environments. Nevertheless, the cost of the pre-charge system
is negligible compared to the cost of a utility-scale PV inverter, and the high automatization level
to perform on-site inspections. In addition, the changes do not affect the inverter’s efficiency, so the
modifications do not introduce any additional power losses.

Therefore, the proposed inverter is a novel system in PV plants which extremely facilitates
and place value on the on-site outdoor image processing inspections, taking special interests for
the following techniques: the EL inspection; the outdoor (dark) IRT inspection; and the outdoor
(illuminated) IRT inspection.

Regarding the pilot-site of this study, a power inverter with a rated output power of 3 kW has
been installed in the facilities of the solar plant. On the one hand, the output of the inverter has been
connected to the 400 V three-phase grid. On the other hand, the DC input side can set the PV string
voltage between 330 and 550 V. Note that during the EL test execution, this voltage range is enough to
allow the current control vary between 10% and 100% of Isc.

The image capturing procedure is as follows: in standard working operation conditions, the power
inverter works autonomously, taking energy from the panels and feeding it into the grid whenever there
is enough solar irradiance. However, when an inspection is required, as Figure 6 shows, a computer
connected to the inverter gives it the right orders.
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Figure 6. Inspection process diagram. The current setpoint (IRe f ), sent from the computer to the
inverter, is controlled by means of the PV side voltage (VDC ).

The user can set the desired inspection setpoint in the computer, usually the current necessary to
carry out the inspection, and afterwards, proceeds to send a command to the inverter. The system,
from that instant, ignores the maximum power point tracking (MPPT) algorithm, and follows the
reverse reference current (IRe f ), by means of varying the DC side voltage (VDC), until the desired
current has been reached.

2.4. Tested Modules

Four mono-crystalline modules with different kinds of defects have been tested in the present
research. The main characteristics of the modules are: 72 cells (6 × 12) with 3 bypass diodes (one each
24 cells), power (P) 175 W, open circuit voltage (Voc) 44.35 V, maximum power point (Vmp) 36.26 V,
Isc 5.45 A and maximum power current (Imax) 4.83 A. The modules selected for the study contain
several defects, in order to be able to identify failures with the different techniques, and to be able to
carry out the comparison. If the modules were new and they did not show defects, the assessment
would not be possible. The following Figures 7 and 8 present the RGB images and the I-V curves
of the analyzed modules, respectively. I-V curves have been traced using an I-V tracer Solar IV HT
1500 V at 800, 859, 839 and 792 W/m2 for modules 1 to 4, respectively. The interpolation to standard
test conditions (STC) has not been applied, as the significant deterioration of the modules could
importantly modify the coefficients of variation of Isc (α), Voc (β) and P (γ) with the temperature or
other interpolation equations used by the I-V tracer, not obtaining real results. In Figure 8, typical knees
of the operation of the bypass diode can be observed in the I-V curves, in which the defects induce the
bypass conduction of current, as in module 1, module 2 and module 4. The defects present in module 3
do not seem to cause the operation of the bypass diodes. However, in module 1, module 2 and module
3 there is a reduction in the Voc values with respect to module 4, which could indicate the presence of
short-circuited cells according to reference [11], as will be further analyzed in the discussion.
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analyzed in the research: (a) module 1; (b) module 2; (c) module 3; (d) module 4.
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Figure 8. I-V curves of the 175W Eoplly mono-crystalline defective modules analyzed in the research,
drawn using an I-V tracer Solar IV HT 1500V at 800, 859, 839 and 792 W/m2 for modules 1 to 4,
respectively. Typical knees of the operation of the bypass diode can be observed in the I-V curves.

3. Results

This section provides a description of the results obtained in the experimental tests detailed in
Materials and Methods, their interpretation, as well as the experimental conclusions that can be drawn.

Indoor measurements have been done at 25 ◦C, in the temperature-controlled chamber showed in
Figure 4. Outdoor and indoor IRT images irradiation, ambient temperature and module temperature
are presented in Table 1. The module temperature corresponds with the average temperature of the
whole surface of the module. This information will be used in the results discussion in the following
section. The current level could produce quantitative variations in the temperature of the defect.
However, the authors consider that there are no qualitative variations regarding the identification of
the defect.
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Table 1. Outdoor irradiation, ambient temperature and module temperature of the measurements in
modules 1 to 4.

Indoor (Dark)
IRT (b)

Outdoor
(Dark) IRT (c)

Outdoor (Illum) IRT
1st Quadrant (d)

Outdoor (Illum) IRT
4th Quadrant (e)

Module 1
W (W/m2) - - 627 927
Tamb (◦C) 25 18.2 20.7 21.6

Tmodule (◦C) 46.8 26.62 38.74 55.64

Module 2
W (W/m2) - - 657 961
Tamb (◦C) 25 18.0 20.8 21.6

Tmodule (◦C) 40.9 32.89 32.48 57.63

Module 3
W (W/m2) - - 680 917
Tamb (◦C) 25 17.6 20.9 21.8

Tmodule (◦C) 45.9 34.57 34.59 50.87

Module 4
W (W/m2) - - 545 909
Tamb (◦C) 25 17.4 20.9 21.8

Tmodule (◦C) 47.1 32.79 40.52 50.73

3.1. Module 1

Figure 9 shows the experimental results obtained when measuring the photovoltaic module 1.
The Figure 9 shows the images taken indoor and outdoor, both in darkness and in illumination. In IRT
images, the temperature of the spots hotter than the average temperature of the module is indicated in
red, while the temperature of spots cooler than the average of the module is indicated highlighted
in blue.
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Figure 9. Indoor and outdoor characterization images of module 1: (a) indoor (dark) 
electroluminescence (EL); (b) indoor (dark) infrared thermography (IRT); (c) outdoor (dark) IRT; (d) 
outdoor (illuminated) IRT first quadrant; (e) outdoor (illuminated) IRT fourth quadrant. 

  

Figure 9. Indoor and outdoor characterization images of module 1: (a) indoor (dark) electroluminescence
(EL); (b) indoor (dark) infrared thermography (IRT); (c) outdoor (dark) IRT; (d) outdoor (illuminated)
IRT first quadrant; (e) outdoor (illuminated) IRT fourth quadrant.

3.2. Module 2

Figure 10 shows the experimental results obtained when measuring the photovoltaic module 2.
The Figure 10 shows the images taken indoor and outdoor, both in darkness and in illumination. In IRT
images, the temperature of the spots hotter than the average temperature of the module is indicated in
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red, while the temperature of spots cooler than the average of the module is indicated highlighted
in blue.
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3.3. Module 3

Figure 11 shows the experimental results obtained when measuring the photovoltaic module 3.
The Figure 11 shows the images taken indoor and outdoor, both in darkness and in illumination. In IRT
images, the temperature of the spots hotter than the average temperature of the module is indicated in
red, while the temperature of spots cooler than the average of the module are indicated highlighted
in blue.

3.4. Module 4

Figure 12 shows the experimental results obtained when measuring the photovoltaic module 4.
The Figure 12 shows the images taken indoor and outdoor, both in darkness and in illumination. In IRT
images, the temperature of the spots hotter than the average temperature of the module is indicated in
red, while the temperature of spots cooler than the average of the module is indicated highlighted
in blue.
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Figure 11. Indoor and outdoor characterization images of module 3: (a) indoor (dark) EL; (b) indoor
(dark) IRT; (c) outdoor (dark) IRT; (d) outdoor (illuminated) IRT first quadrant; (e) outdoor (illuminated)
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Figure 12. Indoor and outdoor characterization images of module 4: (a) indoor (dark) EL; (b) indoor
(dark) IRT; (c) outdoor (dark) IRT; (d) outdoor (illuminated) IRT first quadrant; (e) outdoor (illuminated)
IRT fourth quadrant.
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4. Discussion

As seen in the results section, it is possible to do IRT in different situations. However, before getting
into this analysis, it is necessary for a brief reminder regarding photovoltaics. A PV module has two
ways of working, in illumination and in darkness. Therefore, it is not correct to speak of IRT (or
EL) just outdoor or indoor, but rather it is correct to speak of: outdoor (illuminated), outdoor (dark),
indoor (illuminated), indoor (dark). Results obtained in the different situations are discussed through
this section. To denominate a specific cell within a module, it will be done identifying its row with a
letter and the column with a number, starting with the upper left cell of the module as cell A1.

4.1. Illuminated IRT

The first subject which will be discussed is the analysis of outdoor (illuminated) IRT first quadrant
and outdoor (illuminated) IRT fourth quadrant. IRT in both situations is performed in illumination but
the effect on the PV module is different. When the module is in illumination and receiving the injected
current (fourth quadrant) (e) figures from the bidirectional inverter, the protection diodes cannot bypass
the current, because they work as an open circuit with this polarity, and all cells (including damaged
cells) receive all the injected current. Therefore, the damaged cells can receive all the current injected
into the module. Instead, in illumination and operating normally (in the first quadrant), (d) images,
the bypass diodes will protect the sub-strings with defective cells, limiting the power dissipation. In the
previous figures, from Figure 9 to Figure 12, this slight difference in IRT can be seen in (d) and (e).

The operation of a PV module in the fourth quadrant under illumination is a condition that would
be difficult to achieve in the field. Nevertheless, with the aid of the bidirectional inverter and for
testing purposes, the operation point of the modules was moved to this quadrant to investigate the
differences in temperature with respect to the other conditions. As future work, it is proposed to
apply all these techniques in other plants. This research group collaborates with a company that has
inverters of these characteristics in a real plant in operation. However, the objective of this article is
the comparison of the different IRT techniques (illumination and darkness). It was observed that in
some of the cases, for instance, in Figure 11d,e, the faulty cells increase their temperature over the
module 3 average temperature, due to power dissipation in both conditions, outdoor illuminated
first and fourth quadrant. In Figure 11d, the difference of temperature between the two hotspots and
the module average temperature is 2.31 ◦C and 5.41 ◦C, for the left and right hotspots respectively.
In Figure 11e, these differences are 4.33 ◦C and 6.33 ◦C, respectively. This can be due to the difference
in the irradiation conditions between both cases, as image in Figure 11d was taken with 680 W/m2

and (e) with 917 W/m2. However, regarding Figure 12d,e, there is agreement among the spotted cells,
however, they appear hotter than the module 4 average temperature in outdoor (illuminated) IRT in
the first quadrant (d), and one hotter and the rest cooler in outdoor (illuminated) IRT in the fourth
quadrant (e). A similar effect is found in module 2 (Figure 10).

4.2. Dark IRT

Secondly, with respect to the dark IRT, the technique can be performed both indoor (dark) and
outdoor (dark), as can be seen in images from Figure 9 to Figure 12b,c in Section 3, respectively.
Both images are similar, and complementary to the image obtained in EL (a). This means that dark
IRT can be used to identify faults in PV modules similar to those identified with the EL technique,
as it will be further discussed in Section 4.4. As seen in the previous Figures 9–12, cold-spot failures
can be identified, which have been defined by authors in [11], and are recognized as black cells in EL
images (a). This fact can be observed in Figure 9a, which has two contiguous black cells, detected as
cold spots in Figure 9b,c. Additionally, module 1 presents two cells with some inactive areas (C2 and
E6) in EL (Figure 9a). One of those cells (cell C2) is detected as a cold spot, while the other one, cell
E6, is shown as a hotspot in Figure 9b,c. The difference of temperature of the inactive cells (D9 and
D10) with respect to the average of the module is −8.80 ◦C in indoor (dark) IRT (b) and −7.82 ◦C in
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outdoor (dark) IRT (b). The differences of temperature of the broken cells (C2 and E6) with respect to
the average of the module are −5.0 ◦C and +6.4 ◦C, respectively, in indoor (dark) IRT (b), and −4.52 ◦C
and 12.48 ◦C, respectively, in outdoor (dark) IRT (b). As seen, similar results are obtained in indoor
and outdoor (dark) IRT.

In all the modules, outdoor (dark) injection of current to the PV modules has been possible thanks
to a bidirectional inverter. This new device allows EL and IRT to be done in the dark, without the need
to disconnect the PV modules, and without having to connect them to an external power source.

4.3. Comparison between Illuminated and Dark IRT

The working point in an illumination curve is different from the working point in dark conditions
(in the dark curve), which is responsible of the different results between the illumination and dark
IRT. This can be seen comparing Figure 9 to Figure 12 in Section 3 (b), (c) versus (d) and (e). As can
be seen in the figures in Section 3, when comparing images in darkness (b) and (c) and images in
illumination (d) and (e), the results are different. In dark images, the cold spots of the PV module are
easily recognizable, as seen with the inactive cells in Section 4.2, while in the illuminated images, these
spots do not appear, and hot spots are located. This effect can be seen in Figure 10b,c, in which the three
inactive cells (D5, E5 and E6) are seen as cold spots in indoor and outdoor (dark) IRT. On the other hand,
in the illuminated IRT images, Figure 10d,e, these cold spots are difficult to identify, while hot spot
of damaged cell C9 is easily located. The images in darkness are equal comparing the images taken
indoors and outdoors (b) and (c), respectively, since, in both cases, we work on the darkness curve as
already detailed in Section 4.2. They could present some minor differences, since those outdoors could
be affected by weather conditions (mainly temperature), which are introduced in Table 1.

4.4. Indoor (Dark) IRT and EL

It can be highlighted the similarity between the outdoor (dark) IRT images (equally for those
indoors) with EL images. It is possible to affirm that outdoor (dark) IRT images are capable of
detecting failures inherent in cells, and that they only appear in EL and do not appear in IRT in
illumination, as seen in Section 4.3. Finally, it can be reviewed the cold-spots temperatures in (dark)
IRT of completely inactive areas in the modules evaluated (cells D9 and D10 in module 1 (Figure 9a),
cells D5, E5 and E6 in module 2 (Figure 10a) and cells E9 and E10 in module 3 (Figure 11a), which could
correspond with short-circuited cells according to reference [11]. For the temperatures comparison,
will be used the indoor (dark) IRT information (b), as it has been captured simultaneously to EL
images (a). The difference of temperatures of the inactive cells with respect to the average of the
module are: −8.80 ◦C in module 1 Figure 9b, −11.9 ◦C in module 2 Figure 10b, and −9.9 ◦C in module
3 Figure 11b. Therefore, the cooling is similar in the three cold-spot evaluated.

Consequently, it is possible to conclude that the outdoor (dark) IRT images are similar to the
indoor (dark) IRT images, and highly coincide with the information seen in EL images. In contrast,
outdoor (dark) IRT images are different from outdoor (illuminated) IRT images.

5. Conclusions

In recent years, the EL technique is gaining much interest in the scientific world, and its application
in installed plants is beginning to be carried out. Traditionally, the EL technique requires the
disconnection of the PV module and its connection to an external source, or the supply of a complete
string through the power supply. In this work, authors have presented a bidirectional inverter that is
used to carry out EL without disconnection of modules. Taking advantage of this device, authors of
this work have raised the possibility of doing outdoor (dark) IRT, as a complement to EL images.
The injection of current from the bidirectional inverter to the PV string will allow EL and IRT to be
carried out in the dark, without the need to disconnect the installed modules.

With respect to IRT, the work has served to present the differences and similarities of said technique
according to its point of operation. An outstanding conclusion is that IRT in the dark produces similar
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results, whether done outdoors or indoors, and furthermore, its results provide information that is
significantly similar to that obtained with EL. In this sense, the detection of cold spots is very accurate,
and the results are easily recoverable.

On the other hand, the work has shown that the information obtained with IRT in darkness is
very different from that obtained with IRT in illumination. Therefore, the work invites to perform IRT
in darkness when outdoor (dark) EL is performed, in order to have complementary information to that
available with IRT in illumination.

The authors will carry out these described techniques in production plants, but these plants
must have a photovoltaic inverter like the one presented. The authors will also work on advanced
measurements in photovoltaic plants, which complement the conclusions obtained through images
(EL and IRT).
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