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Abstract: Vertical take-off and landing unmanned aerial vehicles (VTOL UAV) are widely used
in various fields because of their stable flight, easy operation, and low requirements for take-off

and landing environments. To further expand the UAV’s take-off and landing environment to
include a non-structural complex environment, this study developed a landing gear robot for VTOL
vehicles. This article mainly introduces the adaptive landing control of the landing gear robot in an
unstructured environment. Based on the depth camera (TOF camera), IMU, and optical flow sensor,
the control system achieves multi-sensor data fusion and uses a robotic kinematical model to achieve
adaptive landing. Finally, this study verifies the feasibility and effectiveness of adaptive landing
through experiments.
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1. Introduction

Compared with fixed-wing aircraft, vertical take-off and landing (VTOL) vehicles benefit from its
multirotor power mode and have much fewer requirements for take-off and landing sites. VTOL vehicles
are widely used in reconnaissance, search and rescue, logistics and other fields. The reduced
requirements for the landing site lower the design requirements of the landing gear, but also limit the
aircraft’s ability to take off and land on non-structural terrain.

To further expand the aircraft’s landing and landing environment, that is, to take off and land
on complex unstructured terrain, more and more scholars have begun paying attention to the design
of the adaptive landing gear of VTOL vehicles. The Mission Adaptive Rotor (MAR) project of the
Defense Advanced Research Projects Agency (DARPA) organization was the first one to propose
adaptive landing [1]. They adopted a legged mechanism to enable aircraft to adapt to different terrains.
Subsequently, based on the difference in power output, two different types (active and passive) of
adaptive landing gear were developed.

The active adaptive landing gear has developed into rigid-body landing gear and flexible-body
landing gear. Rigid landing gear [2] mainly uses rigid connectors as the joints of the landing gear.
The main representatives are the plane hinged robot landing gear of Edinburgh Napier University,
Edinburgh, UK [3], the leg landing gear from Russia [4], the articulated leg landing gear of Kanazawa
Institute of Technology in Japan [5], etc. All these landing gears apply legged mechanism to adjust
touching points on the ground. The legged structure makes the robot’s modelling and controlling
easier, but also make a challenge to driving motors on their hip joints. The driving motor keeps
working all the time to keep the joints’ position, which may waste power energy. Flexible landing gear
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replaces joint motion by the deformation of flexible rods. The main representatives are the cable-driven
landing gear of Georgia Institute of Technology [6], the avian landing gear [7] of UTHA University.
The cable-driven landing gear uses spring dampers and cables to adjust its posture, and absorbs
landing shock by the cable and spring damper. It is complicated but can be applied in heavy unmanned
aerial vehicles (UAVs) and crewed aircrafts. The avian landing gear uses a soft gripper instead of a
gild-body link, which can grip a rod and help vehicle standing on the rod. The passive landing gear is
mainly powered by the weight of the robot and uses an under-actuated mechanism to achieve passive
balance adjustment of the robot during the landing process, such as soft shock absorbers [8] of Imperial
College London, a Four-bar linkage-based landing mechanism [9], and flexible landing gear [10] of
China University of Petroleum.

Both positive and active landing gear can adjust posture by their mechanism. These mechanisms
are the base hardware for adaptive landing. To complete the automatic landing, it also needs a control
system to drive the mechanism. To realize the adaptive landing function, the aircraft needs to be based
on mechanism configuration and the design of the control algorithm [11]. According to the different
sensors used by robots, adaptive landing controllers can be divided into three categories. The first
is the contact sensor, such as the tact switch [12,13], the pressure sensor [3,14], etc. These sensors
are usually placed at the contact point of the landing gear on the ground and use a passive control
method, which requires the relatively high real-time performance of the system. The second is visual
sensors, which use three-dimensional visual scanning [15] to determine the terrain of the landing point,
calculate the driving joint of the landing gear, and achieve adaptive landing. The third is the inertial
measurement unit (IMU) [2,16]. IMU achieves adaptive landing by the different attitude control laws
of the landing gear during landing. This control method requires higher design requirements for
aircraft control algorithms.

On the other hand, computer vision is widely used in robotics. In UAV field, computer vision is
applied in vision position [17,18] and visual recognition [19,20]. Vision position can calculate linear
velocity with video data streams, and scan the 3D target with dual-camera. Vision recognition is applied
in target and obstacle recognition. A depth camera is a novel vision sensor which can output both RGB
image and depth image. The depth camera is a kind of low-cost 3D scanning approach comparing
to 3D laser scanners, which is widely used in robot motion feedback [21], motion measurement [22],
UAV obstacle avoidance [23], and other fields.

This article tries to apply the depth camera in VTOL UAV’s adaptive landing. Based on the
hardware development foundation of the early landing gear robot of the laboratory team, this article
combined with multi-sensor information, such as depth vision sensor, optical flow sensor, IMU, etc.,
data fusion, motion control of the landing gear robot to realize the aircraft adaptive control on complex
unstructured terrain.

This article first introduces the main structure of the landing gear robot developed by authors.
The next section introduces the mathematical basis of the control algorithm. Then the article proposes
an adaptive landing control algorithm based on multi-sensor data fusion, and finally verifies the
feasibility and effectiveness of the algorithm through experiments.

2. Adaptive Landing Gear Robot

The landing gear robot analyzed in this paper is based on the tripod robot designed by authors.
The amphibious robot (as shown in Figure 1a) can fly in the sky, dive underwater, and run on the
ground. It is mainly composed of flying robots and landing gear robot. This article focuses on the
control system in which landing gear robots land adaptively on unstructured terrain during the
landing. This section introduces the components of the landing gear robot, including the mechanical
structure, the power module, and the sensor module. This section lays the foundations for the following
mathematical analysis and introduction of the control algorithm design.
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Figure 1. (a) The amphibious robot and (b) landing gear robot.

2.1. Mechanical Structure

Figure 1b shows the landing gear robot studied in this article, which is mainly composed of a base
and three limbs. The base is the main bearing part of the landing gear robot. The top of the base is
connected and fixed with the flying robot through bolts. The base is mainly composed of three parts:
Diving component, sensing component, and structural components. The structural components mainly
use carbon fiberboard, and photosensitive resin, which are produced by cutting and 3D printing, and
the parts are fastened and connected by screw nuts. The main function of the sensor component is to
install the sensors required for the robot system, including the depth camera and optical flow sensor.
The diving component is to achieve the robot’s diving function in the water, which is not the focus of
this article.

The top view of the base is as shown in Figure 2a. The geometric center of the base is defined
as point O. The forward direction is the X axis direction of the base. The left direction is the Y
axis. According to the right-hand rule, the direction of the vertical top surface is the Z axis direction.
The center points of the six rotation axes connected with limbs are points Ai and points Ei (i = 1, 2, 3).
Points Ai and points Ei are centrosymmetric around the Z axis. In the horizontal direction, the distance
from Point Ai and Point Ei to the center point is rA and rE, respectively.
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Figure 2. (a) Geometry structural and (b) dimensions of the base.

The three limbs use the design of the slider link mechanism, shown in Figure 3. By driving the
translation of slider Bi, the swing rod AiCi is rotated, thereby controlling the height of the landing
point Ci of the landing gear robot. The schematic diagram of the mechanism is shown in Figure 3b.
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Point Ai is the connecting point of the connecting rod DiEi, and the base and Point Ei is the connecting
point of the swing rod AiCi and the base. Point Di is the connecting point of the connecting rod and
the slider. The length of the connecting rod is lDE. The length and eccentricity of the swing rod are lAC

and dC, respectively. The displacement and eccentricity of the slider are lSi and dS, respectively.
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The structure size parameters of the mechanism are shown in Table 1. The optimization of the
structure size parameters of the structure is not the focus of this article and will not be discussed.

Table 1. Dimension parameters of the landing gear robot.

Parameter Value Parameter Value

rA 170 mm lAC 415 mm
rE 220 mm dC 40 mm

hAE 65 mm lDE 195 mm
dS 22 mm

2.2. Power System

The design and layout of the power system are related to the functional requirements of the
landing gear robot. In this study, the landing gear robot mainly has two functions: Adaptive landing
and omnidirectional motion. Therefore, this study designed two sets of power systems, as shown in
Figure 4.
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Figure 4. (a) Screw slider and (b) reduction motor with omnidirectional (OMNI) wheel.

Figure 4a shows the screw slider assembly. The motor uses a DC reduction motor with an encoder.
The structure of the leading screw allows the motor to keep the position of the slider (self-locking) when
it stops rotating. Limit switches are installed at both ends of the leading screw to prevent the slider from
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locking beyond the stroke (locked-rotor). Figure 4b demonstrates an omnidirectional wheel assembly,
which is mainly composed of a reduction motor and an omnidirectional wheel. The omnidirectional
wheel uses an omnidirectional (OMNI) wheel with a diameter of 56 mm, and the reduction motor uses
a DJI M2006 motor (made by SZ DJI Technology CO., Ltd., Shenzhen, China), which can realize the
feedback of position, speed, and torque of the motor.

2.3. Sensor and Control System

The sensors of the robot mainly include depth cameras and optical flow sensors, show in Figure 5c.
Depth cameras use Intel Realsense435i (made by Intel Corporation, Santa Clara, CA, USA), which can
output image signals, depth signals, gyro signals, and acceleration signals. Depth cameras are mainly
used for the detection of terrain during the descent of the robot. Optical flow sensor uses the lc302
optical flow (made by Youxiang Corporation, Changsha, China), which can detect the moving speed of
the aircraft in the horizontal direction.
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Figure 5. (a) Control computer, (b) driving board, (c) and sensor system.

The control system of the robot is mainly composed of a control computer (show in Figure 5a)
and a driving board (show in Figure 5b). The control computer uses the Raspberry Pi 4B (made by
RS Components Ltd., Northants, UK) as the main carrier and is operating with the Ubuntu system.
The control computer is mainly used for the analysis of image signals, the resolution of attitude
signals, and the solution of robot kinematics (kinematical analysis). Once the driving joint variables are
calculated, the control computer inputs it to the driving board to control the movement of the landing
gear robot.

The driving board is mainly composed of a microprocessor, three DC motor drivers, and
communication circuits. The microprocessor uses the STM32F405 chip (made by STMicroelectronics,
Agrate, Catania, Italy) as the main processor for signal conversion and motor control. The DC motor
drivers use the MOS chip for converting the processor’s electrical signal into the current required by
the motor. The communication circuits, mainly integrated serial signal and controller area network
(CAN) signal converter, are used to convert different signal modules.

3. Mathematical Analysis

This study is based on the mathematical modeling of the robot and the multi-sensor data fusion
algorithm to achieve the adaptive landing function of the landing gear robot. The mathematical model
of the robot is the mathematical foundation for realizing the robot motion control. The multi-sensor
data fusion algorithm is the basis for realizing robot adaptive adjustment.

The basis for landing gear robot to achieve adaptive landing is terrain detection and analysis.
Traditional mobile robots that perform three-dimensional reconstruction of environmental information
can scan the terrain in a relatively stable state (variable movement oscillations are small). However, it is
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difficult for landing gear robots to keep stable because they are fixed to flying-submarine robots when
they land. In order to maintain the attitude balance and fixed-point flight, it is difficult for the flying
robot to ensure that the aircraft’s posture is in an ideal static state, which affects the detection of
the terrain and the analysis of the landing point by the landing gear robot. Therefore, the landing
gear robot’s judgment of the landing point needs to comprehensively consider the robot’s attitude
angle, flight speed and other state information. This state information is collected by multiple sensors,
and different sensor data have different characteristic information. In order to obtain complete, accurate,
and real-time target state information, this study uses a complementary filter and Kalman filter to
perform data fusion on multi-sensor signals.

3.1. Robot Mathematical Model

The mathematical model of the robot is the basis for realizing robot motion control. In the previous
section, the article introduces the robot mechanism and the simplified structure of the robot, as shown
in Figure 6.
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Figure 6. (a) The structural and (b) kinematic diagram of the landing gear robot.

The main motion pair of the mechanism is the rotating pair and the moving pair. Our focus is
on the correlation between the joint variable of the slider driving motor and the three landing points.
The sketch map of the branch chain can clearly show the constraint relationship between the geometric
structures of the mechanism:

−−−⇀
EiDi =

−−−⇀
EiAi +

−−−⇀
AiBi +

−−−⇀
BiDi

−−−⇀
OiCi =

−−−⇀
OiAi +

−−−⇀
AiCi

(i = 1, 2, 3) (1)

The geometric constraints of the robot are converted into mathematical relations as follows:∣∣∣∣∣∣−−−⇀EiDi

∣∣∣∣∣∣ = norm(
−−−⇀
EiAi + lSi ·

−⇀esi + dS ·
−⇀esi ×

−⇀
eAi) = lDE

−−−⇀
OiCi =

−−−⇀
OiAi + lAC ·

−⇀esi + dC ·
−⇀
eAi ×

−⇀esi

(2)

where −⇀esi is the unit vector of the axis
−−−⇀
AiBi ;

−⇀
eAi is the unit vector of the rotation axis Ai.

The forward kinematics and inverse kinematics of the robot can be solved by Equations (1) and (2).
In this study, we are mainly concerned with how to estimate the robot’s driving joint variables lSi

through the height hCi of the three contact points of the robot. Here we will introduce the solution
process of inverse kinematics.
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First, through the height of the contact point, the position and unit vector of the contact point Ci
can be obtained:

−−−⇀
OCi = RAC,i

(
dOCi dOCi −hCi

)T

−⇀esi =
1
√

2
RAC,i ·

(
cos(αi) cos(αi) sin(αi)

)T

RAC,1 =


1/2 0 0

0
√

3/2 0
0 0 1

, RAC,2 =


−1 0 0
0 0 0
0 0 1

, RAC,3 =


1/2 0 0

0 −
√

3/2 0
0 0 1


(3)

where dOCi =
√

l2AC − h2
Ci + rA is the projected length of the vector

−−−⇀
OCi on the horizontal plane; αi is

the angle between the axis
−−−⇀
AiCi and the horizontal plane; RAC,i is the coordinate conversion matrix.

Then, the obtained substitution −⇀esi is substituted into Equations ((1) and (2)), and the driving rod
length lSi can be obtained by solving the unary quadratic equation.

3.2. Complementary Filter

In this study, the robot’s attitude angle was calculated mainly by acquiring data from accelerometers
and gyroscopes. The attitude angle can be obtained by integrating the angular velocity of the gyroscope.
However, the gyro sensor has an integral drift, and the angle obtained by direct integration may contain
errors. In order to eliminate the error of the sensor as much as possible, this study uses accelerometer
data to correct the gyroscope data, and uses a complementary filter to solve the attitude angle.

The solution process of the complementary filter is mainly divided into five processes:
Normalize the acceleration data:

a =
(

ax ay az
)T

=
az

norm(az)
(4)

where a is the normalized acceleration value, and az is the value directly output by the accelerometer.
Convert the gravity vector gZ in the global coordinate system to body coordinates:

gZ =


gZ,x

gZ,y

gZ,z

 =


2(q1 · q3 − q0 · q2)

2(q0 · q1 + q2 · q3)

q2
0 − q2

1 − q2
2 + q2

3

 (5)

Compensate the error e by doing a vector cross product in the body coordinate system:

e =


eX

eY
eZ

 = a× gZ =


aY · gZ,z − aZ · gZ,y

aZ · gZ,x − aX · gZ,z

aX · gZ,y − aY · gZ,x


eI =

∑
KI · e

(6)

Calculate the proportional-integral (PI) of the error and compensate the angular velocity for
compensate for the angular velocity:

gyok =
[

gyox,k gyoy,k gyoz,k
]T

= gyok−1 + KP · e + eI (7)
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Update quaternions qk:

qk =
∆t
2



2
∆t

−gyox,k −gyoy,k −gyoz,k

gyox,k
2

∆t
gyoz,k −gyoy,k

gyoy,k −gyoz,k
2

∆t
gyox,k

gyoz,k gyoy,k −gyox,k
2

∆t


· qk−1 =

∆t
2

Mq · qk−1 (8)

Convert quaternions to angles θX and θY:

θX = arctan

2q2q2 + 2q0q1

1− 2q2
1 − 2q2

2


θY = arcsin(−2q1q3 + 2q0q2)

(9)

3.3. Kalman Filter

The Kalman filter is a commonly used multi-information fusion method. It is an optimal estimation
algorithm, which calculates the state variable of the system in a stepwise recursive manner to solve the
minimum amount of estimated variance. In this study, the posture and speed of the robot are used as
state variables, and the data of the gyroscope and optical flow sensor are used as the measured values.

To accurately determine the location of the robot’s landing point, this study will fuse the gyroscope
and optical flow sensor data to calculate the robot’s position in the horizontal direction to further
determine the robot’s landing point. When using a depth camera to scan the landing terrain, the
camera is fixed at the center position of the robot. Therefore, the center point of the acquired depth
image is used as the depth position corresponding to the center of the robot. Hence this study takes
the relative displacement in the horizontal direction as one of the state variables of the filter. The state
variables related to the relative displacement of the robot in the horizontal direction also include the
angular velocity and linear velocity of the robot. The state variables of the filter can be expressed as:

xk = [ ∆PX,k ∆PY,k ωX,k ωY,k vX,k vX,k ]T (10)

where ∆Pi,k(i = X, Y) represents the relative displacement of the robot at the k moment, ωi,k represents
the angular velocity of the robot at the k moment, and vi,k represents the linear velocity of the robot at
the k moment.

When the robot is in the landing state, under ideal conditions, the robot’s horizontal speed and
displacement approach zero, and the robot is in a relatively stable state. Therefore, in this study,
the horizontal movement of the robot is approximated to a uniform speed for calculation, in other words,
the state variable at the k moment can be predicted from the state variable at the previous moment:

x̂k = A ∗ xk−1 =



0 0 0 0 ∆t 0
0 0 0 0 0 ∆t
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


∗ xk−1 (11)

where x̂k are the predicted state variables and A is the state transition matrix.
According to the covariance at the k− 1 moment, the predicted covariance P̂k at the k moment can

be calculated:
P̂k = A ∗ Pk ∗AT + Qk (12)
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where Qk is the white noise that the system is interfered with by the outside world, and it is assumed
to follow the standard normal distribution N(0, Q).

On the other hand, this study uses the data collected by the gyroscope and optical flow sensor to
correct the current estimated state. The collected data and sensor errors are expressed as follows:

µz = hk =
[

hωX hωY hvX hvY
]T

σ2
z = Rk =

[
RωX RωY RvX RvY

]T (13)

The relationship between sensor observations and state variables can be expressed by the
following formula:

µH = Hk ∗ x̂k =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 hC,k 1 0
0 0 hC,k 0 0 1

 ∗ x̂k

σ2
H = Hk ∗ P̂k ∗HT

k

(14)

where Hk represents the conversion matrix between the state variable and the observed variable;
hC,k represents the height of the robot at the current moment.

Both the measured value µz obtained and the predicted value µH obey the Gaussian distribution.
Based on these two values, the optimal estimated value at the current moment can be calculated,
which also satisfies the Gaussian distribution. According to the nature of the mean and variance of
the Gaussian distribution, the mean and covariance of the best quality values can be respectively
obtained as:

µk = µH +
σ2

H
σ2

H+σ2
z
(µz − µH) = µH + K(µz − µH)

σ2
k = σ2

H −
σ2

H
σ2

H+σ2
z
σ2

H = σ2
H −Kσ2

H

(15)

where K is the Kalman gain.
Sorting Equations (10)–(15), the update function of the Kalman filter can be obtained:

x̂k = A ∗ xk−1

P̂k = A ∗ Pk−1 ∗AT + Qk

K = Hk ∗ P̂k ∗HT
k

(
Hk ∗ P̂k ∗HT

k + R
)−1

xk = x̂k + H−1
k ∗K(hk −Hk ∗ x̂k)

Pk = P̂k −H−1
k ∗K ∗Hk ∗ P̂k

(16)

4. Control Algorithm Design

4.1. Adaptive Landing Process

In the traditional automatic landing process of a drone, the different stages of the drone landing
are mainly determined based on the altitude information of the drone. The adaptive landing also
needs to collect the environmental information of the landing site for comprehensive decision. In this
study, adaptive landing is divided into two stages: The preparation stage and the descending stage.

During the preparation for the landing phase, the system predicts the landing posture of the landing
gear robot by collecting terrain information. The control computer collects the sensor information,
analyzes and calculates it, and then transmits the robot’s driving joint variables to the driving board
through the serial port. Then the driving board drives the motors to change the robot’s attitude.
During the descending phase, the flying robot controls the entire system to descend, and the control
computer continues to analyze the terrain and make small adjustments to the robot’s landing attitude.
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4.2. Algorithm Design

The key to realizing adaptive landing function is to convert the sensor information into the driving
joint variables required by the robot. In this study, the sensor information mainly includes the depth
image of the depth camera, the triaxle acceleration of the accelerometer, the triaxle angular velocity of
the gyroscope, and the biaxial velocity of the optical flow module. The driving joint variables of the
robot refer to the displacement of the driving sliders of the robot’s three limbs.

In this study, the information conversion is implemented in three steps: Center position analysis,
contact position analysis, and drive variable analysis. The whole process is shown in Figure 7.
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4.2.1. Center Position Analysis

The center position refers to the position where the center of the robot landed on the ground,
which is, the intended landing point. The determination of the location of the landing point is key to
the robot’s adaptive terrain. In this study, we mainly discuss how to calculate the position of the center
position in depth images.

This study uses two steps to calculate the center position. First, calculate the vertical position of
the robot center on the ground, based on the attitude angle of the robot, as shown in Figure 8a:

CV = CC + Kimg ·Θ (17)
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where CC =
(

PixX/2 PixY/2
)T

is the pixel coordinates of the center position of the depth image;

Kimg =

(
kimg,X 0

0 kimg,Y

)
is the ratio parameter between the depth image pixels and the angle;

Θ =
(
θX θY

)T
is the attitude angle of the robot in the X-axis and Y-axis directions.
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Then, according to the speed of the robot in the horizontal direction ∆s, correct the center position
CR of the robot at the next moment:

CR = CV + ∆s = CV + Kimg ·Θs

Θs =
(

arctan
(

∆PX,k
fdep(CV)

)
arctan

(
∆PY,k

fdep(CV)

) )T (18)

where fdep is the depth surface function obtained by surface fitting according to the depth image at the
k moment.

4.2.2. Touch Point Analysis

Touch point refers to the contact point between the three limbs of the robot and the ground. Based
on the center position CR of the robot, this study uses the geometric relationship of the robot limbs (as
shown in Figure 8b) to calculate the robot’s touch point position.

First, calculate the depth curve ldep,Ci through the center of the robot:

ldep,Ci(ti) =

 flen
(
Pimg,i

)
fdep(Pimg,i)

, Pimg,i = RAC,i · ti + CR (19)

where Pimg,i is the coordinate position of the i-th limb in the depth image, ti is the parameter variable;

RAC,i

(
RAC,1 =

(
1/2
−
√

3/2

)
, RAC,2 =

(
−1
0

)
, RAC,3 =

(
1/2
√

3/2

))
is rotated matrix; flen is the distance

function of the pixel parameter Pimg,i and the center position in the horizontal direction:

flen
(
Pimg

)
= norm

(
fdep(CV) · tan

(Pimg,x

kimg,X

)
, fdep(CV) · tan

(Pimg,y

kimg,Y

))
(20)

Then according to the following geometric relationship, the position of the contact point Ci can
be obtained:

nrom
(
ldep,Ci −Aimg

)
=

√
l2AC + d2

C

Aimg =

(
rA

fdep(CR) − hO

)
hCi = fdep(Pimg,i) − fdep(CR) + hO

(21)
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where Aimg represents the coordinate position of point Ai in the depth image; hO is the height of the
robot center from the ground after landing.

4.2.3. Driving Variable Analysis

When substituting the centrifugal height hCi of the touch point (which is calculated by the touch
point position) into the robot inverse kinematics (analyzed above), the joint variables of each driving
joint can be solved:

lSi = Finverse(hCi) (22)

Finally, the calculated driving joint variables are input to the driving board. The driving board
uses the displacement of the slider as the target value to perform PID control on the slider motor to
realize the motion control of the robot.

5. Experimental Test

To verify the feasibility of the algorithm proposed in this article, this section will introduce
the construction of the experimental platform, the experimental process, and the analysis of the
experimental results in detail.

5.1. Experiment Platform and Process

In this study, the verification experiment was mainly carried out on an indoor experimental
platform. The experimental platform is shown in Figure 9: It is mainly composed of three parts—the
frame, the cable, and the terrain platform. One end of the cable is fixed on the robot, and the
other end is a free end that passes through the fixed pulley on the main bracket. By controlling the
expansion and contraction of the cable, the robot’s landing process is simulated. The terrain platform
is composed of modular terrain modules, which are combined with modules of different heights to
form different terrains.Sensors 2020, 20, x FOR PEER REVIEW 13 of 21 
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In this study, the robot’s take-off and landing process was simulated by releasing and pulling back
cables. The entire adaptive landing process was monitored in real-time. The experimental process is
shown in Figure 10.
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When the robot is at the standby altitude, the sensor collects terrain depth information and the
status information of the robot and transmits the information to the control computer for processing.
The control computer calculates the driving joint variables of the robot according to the algorithm
designed above, and outputs them to the driving board of the robot. The driving board executes the
motion of the motors according to the driving joint variables, and feeds back the position parameters
of the driving motors to the control computer in real-time.

The height of the robot is lowered by slowly releasing the cable, until the robot landed on the
ground. The control computer will collect and record the robot attitude information, expected driving
joint variable, actual driving joint variable, and center height of the entire experiment. It is used to
analyze the adaptive landing function of robots.

In order to test the influence of terrain structure, ambient light and terrain color on the designed
algorithm, three groups of contrast experiments were designed. The first group of experiments are
built in a normal environment, but with different terrain structures. The second group is designed
with different terrain colors. The last group is set with different ambient lights.

5.2. Results and Discussion

This section presents the results and analysis of this experiment. Figure 11 shows the four process
moments of the experiment: Initialization, adjustment, descend, and completeness.
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Figure 12 shows the robot state variables collected during the entire experiment. The sub-figures
in Figure 12 record the relationship between the driving joint variables, the attitude angle, and the
height of the robot center position. In Figure 12c, according to the height curve of the robot, the landing
process of the robot can be divided into three stages. The first stage (0–20 s, yellow region) is the
landing preparation stage, in this stage, the drone will maintain a fixed altitude and fixed-point flight.
The second stage (20–33 s, blue region) is the descent stage, in this stage, the drone lands vertically at
a low speed. The third stage (33–40 s, green region) is the landing stabilization stage. At this time,
the robot system has completed the entire landing process while keeping the height and attitude of the
robot stable.
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Figure 12. (a) Diagram of driving joint variables, (b) attitude angles, and (c) center point height.

Figure 12b records the changes of the robot’s pitch θY and roll angle θX during the descending
phase. Corresponding to the three stages of the robot’s landing process, the angle of the robot changes
greatly during the descending phase, due to the disturbance caused by the manual release of the cable.
This is similar to the disturbance phenomenon when the drone is performing position control and
attitude control during the landing at a fixed point. The robot has a small angle fluctuation during the
preparation phase as the robot is influenced by a reaction force generated when the robot rotates its
robotic arms.

Figure 12a shows the relationship between the expected driving joint variables ld,i (i = 1, 2, 3) and
the actual joint variables ls,i throughout the landing process. The dotted line represents the driving
joint variable curve calculated by the control computer through the control algorithm, and the solid
line represents the driving joint variable fed back by the robot in real-time. In the preparation stage,
the robot’s driving joint gradually approaches the expected position from the initial position, and finally
reaches the curve of the expected position. In the descending phase, when the height is lower than
60 cm, the value of the drive variable calculated by the control computer begins to change significantly.
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This is because when the robot is landed to a certain height, the viewing angle of the depth camera is
limited, and the landing point of the robot exceeds the calculation range of the viewing angle, thereby
causing a disturbance. Therefore, in this study, the height of 100 cm is set as the threshold. When the
height of the robot is higher than the threshold, the calculated drive value of the control computer is
believed to be reliable, and the robot follows the calculated value. When the height is lower than the
threshold, the robot maintains the last trusted value. The resulting curve trend is shown in Figure 12a.
When the height is less than 100 cm, the actual joint variables no longer follow the expected joint
variable movement.

To further explore the effectiveness of the adaptive landing algorithm, this study calculated the
error curve of the driving joint variable and the curve of the robot’s tilt angle. It can be seen from
Figure 13a that the variation trend of the error curve of the driving joint variables is basically consistent
with the variation trend of the drive variable fed back by the robot. In the preparation stage, when the
system is stable, there is zero error associated with the three driving joint variables, which shows
the effectiveness of the robot motor driving algorithm. Figure 13b shows the deflection angle θerr

between the Z axis of the robot’s coordinate axis and the Z axis of the geodetic coordinate system. The
calculation formula is as follows:

θerr = arccos(cos(θX) · cos(θY)) (23)
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Figure 13. (a) Diagram of driving joint error, and (b) deflection angle.

It can be seen from Figure 13 that during the landing stabilization phase, the tilt angle of the robot
is less than five degrees, and the landing can be considered as stable and horizontal. In the preparation
phase and the landing phase, the tilt angle of the robot is larger, while in the final stabilized phase,
the tilt angle is smaller. This proves that the adaptive control algorithm is less affected by the flight
attitude change and speed change, which verifies the effectiveness of the control algorithm.

The changing curve of the robot’s posture angle in Figure 12 shows that the posture angle will
vibrate with the movement of the robot. However, when the robot nearly reaches the expected position,
it will still move in small amplitude with the change of the expected driving joint variable, and this
high-frequency, small-amplitude vibration motion will have a greater impact on the flight stability of
the flying robot.
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Figure 14 demonstrates the results of the experiments in different terrains. The sub-figures in the
first row shows the 3D reconstructions in 1-m height. The second and third row present the RGB images
and the depth images separately. The curves of the driving joint variables, attitude angles, and center
point height are shown in fourth, fifth, and sixth rows. Each column represents the corresponding
experiments. In the first experiment, the terrain is flat, and all three driving joint variables are almost
the same, which satisfies the flat terrain. In the second experiment, a bulge is set on the ground.
One driving joint variable is bigger than the others to satisfy the terrain with one bulge. In the last
experiment, one high bugle and one low bugle are set on the ground. All three driving joint variables
are different owing to the terrain. These results show that the designed control systems can work well.
On the other hand, when the robot landed, the attitude angle errors were small and between plus and
minus 10 degrees, also shows the effectiveness of the designed system. The testing results show that
the designed system work well in different rigid terrains.
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Figure 14. Experiments in different terrains.

Figure 15 shows the results of the experiments in different environmental conditions. Just like
Figure 14, the sub-figures in different rows also show the results of 3D reconstructions, RGB images,
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depth images, driving joint variables, attitude angles, and center point height separately, while each
column represents the corresponding experiments in different environmental conditions. In the first
column, the figures present the results of the experiment with bright sunlight. The bright sunlight
and shadow are clear in the RGB image, and the bright sunlight does influence the depth camera,
which causes noise in the 3D reconstruction and the depth image. However, the attitude angle curves
show that the angle error are still small, which means the effect of bright sunlight is restricted. In the
second experiment, the terrain is covered by black foams. However, the change of terrain color has no
impact on the depth camera nor the control system. In the last column, the experiment is tested in the
dark environment. The terrain cannot be distinguished from the RGB image, but are still clear in the
3D reconstruction and the depth image. Moreover, the attitude angle curves also show darkness has
no impact on the control system. All the results show that the ambient light and the terrain color have
a limited impact on the designed control system.Sensors 2020, 20, x FOR PEER REVIEW 18 of 21 
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Figure 15. Experiments in different environmental conditions.
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In order to determine the specific cause of the expected joint jitter, this study continues to analyze
the relationship between the expected driving joint variable and the depth information and attitude
angle. In this study, the expected driving joint variables, depth of the center point, and attitude angle
curves are regarded as three kinds of signals, and the jitter of the signals is caused by noise. Therefore,
in this article, the noise signals of the three signals are separated by wavelet filtering, and a comparative
analysis is performed to determine the source of the expected driving joint variable noise. Figure 16
shows the filtered signal and noise signal of the driving joint signal, center position height signal,
and inclination signal during the preparation stage. It can be seen from the figure that the filtered signal
retains the movement trend of the original signal, but the change is relatively smooth. To analyze the
correlation between various noise signals, this paper analyzes the Pearson correlation coefficient [24]
among the three signals.

ρM, N =
cov(M, N)

σMσN
=

E(MN) − E(M)E(N)√
E(M2) − E2(M)

√
E(N2) − E2(N)

(24)

where cov(M, N) represents the covariance of the signal M, N = hnO, ln,1, ln,2, ln,3,θn,X,θn,Y, and σ
represents the standard deviation of the signal.
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Figure 16. (a) The filtered curve of driving joint variables, (c) attitude angles, (e) center point height,
and (b) noise curve of driving joint variables, (d) attitude angles, (f) center point height.

As shown in Table 2, it can be seen from the results that the driving joint variable is highly
correlated with the noise signal at the center position height, which are, 0.7871, 0.7602, and 0.8064,
respectively, but the noise signal correlation with the corner signal is relatively small. The height data
of the center position comes from the depth sensor, so the main cause for the vibration of the driving
variable is the signal noise of the depth sensor. By optimizing the depth solution algorithm of the
depth sensor or filtering the depth image, the vibration of the driving joint can be alleviated.
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Table 2. Pearson correlation coefficient.

Coefficient ln,1 ln,2 ln,3

hnO 0.7871 0.7602 0.8064
θn,X −0.1398 −0.0615 0.0247
θn,Y 0.1228 0.0421 0.1124

From the experiments, the results verify that the designed control algorithm can achieve adaptive
landing in different rigid terrains, and the ambient light and the terrain color have a limited impact
on the designed control system. However, some problems are also explored in the experiments.
First, noise signals from the depth camera cause an error in robot’s kinematical analysis. Second, visual
angles of the depth camera limit the control algorithm when vehicles go down below the threshold
height. Third, ambient light causes the noise in the depth camera. We will keep working on solving
these three problems and testing the system on more terrains in the future.

6. Conclusions

In order to expand the take-off and landing functions of uncrewed aerial vehicles in a non-structural
responsible environment, this study designs an adaptive landing control system for our self-developed
robots. The control system uses multi-sensor fusion technology to realize three-dimensional terrain
scanning of the landing area. To accurately calculate the robot’s landing position, the control system
uses a Kalman filter and complementary filter algorithms to fuse the robot’s inclination and speed
information. Then, based on the robot kinematics model, the robot’s landing posture and driving joint
variables are determined. Finally, this article verifies the feasibility and effectiveness of the adaptive
landing control system through experiments. Based on the analysis of experimental data, the causes of
the robot’s lower abdominal concussion are discussed, which provides a basis for further optimization
of the robot control algorithm design.
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