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Abstract: With the rapid development of mobile networks, there are more and more application
scenarios that require group communication. For example, in mobile edge computing,
group communication can be used to transmit messages to all group members with minimal
resources. The group key directly affects the security of the group communication. Most existing
group key agreement protocols are often flawed in performance, scalability, forward or backward
secrecy, or single node failure. Therefore, this paper proposes a blockchain-based authentication
and dynamic group key agreement protocol. With our protocol, each group member only needs to
authenticate its left neighbor once to complete the authentication, which improved authentication
efficiency. In addition, our protocol guarantees the forward secrecy of group members after joining
the group and the backward secrecy of group members after leaving the group. Based on blockchain
technology, we solve the problem of single node failure. Furthermore, we use mathematics to prove
the correctness and security of our protocol, and the comparison to related protocols shows that our
protocol reduces computation and communication costs.
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1. Introduction

With the rapid development of mobile networks, the secure transmission of data is no
longer limited to both parties in communication, but is required in group communication.
Group communication can transmit messages to all group members with minimal resources [1].
This is because the sending of the message only needs to be broadcast once within the group, instead of
sending the same message to all group members one by one, which results in a significant increase
in communication efficiency. In order to reduce network latency in cloud computing, Mobile Edge
Computing (MEC) [2] is introduced. In MEC, the Small Cell Manager (SCM) needs to dynamically and
elastically manage the computing and/or storage resources of multiple Small Cell Clouds (SCCs) [3].
Therefore, the use of group communication can greatly improve the efficiency of MEC.

In order to provide a reliable and scalable group communication service, the most basic and
critical security issue is access control [4]. In most cases, access control can be achieved by encrypting
or decrypting messages, because only legitimate group members can get the key and use this to
decrypt the ciphertext to access the messages [5,6]. Therefore, in order to ensure efficient and secure
communication in the group, all group members need to use the same session key, which is also called
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the group key. This means that the group key agreement protocol directly affects the security and
efficiency of group communication.

In recent years, many researchers have proposed many authentication and group key agreement
protocols. However, according to the research of [7,8], we found that most of these protocols have the
following defects: (1) performance: before the group key is negotiated, mutual authentication is usually
required between group members, which may consume much of the computation and communication
costs; (2) scalability: the protocol cannot efficiently handle the joining or leaving of group members,
which results in the poor scalability of the protocol; (3) forward or backward secrecy: it is difficult
to guarantee the forward or backward secrecy of group members after joining or leaving the group,
such as [9]; (4) single node failure: since most existing protocols store the registration information of all
group members in a single node, these protocols are vulnerable to the problem of single node failure.
Therefore, these protocols are not suitable for MEC. We design a blockchain-based authentication and
dynamic group key agreement protocol to solve the above problems in this paper. The protocol has
the following characteristics:

• In our protocol, before negotiating the group key, each group member only needs to authenticate
its left neighbor once and perform batch authentication once, instead of implementing
mutual authentication between group members, which reduces much of the computation and
communication costs.

• The blockchain can be regarded as a shared distributed ledger [10], which can effectively solve the
problem of single node failure. Therefore, we use the blockchain to store the public parameters and
registration information of all group members. This allows our protocol to solve the problem of
single node failure, while also making all the parameters and information stored in the blockchain
unmodifiable [11]. In addition, based on blockchain technology, group members can join any group
in the entire system after completing registration on any server, which improves convenience.

• In our protocol, when group members join or leave a group, they only needs to update the
parameters of an adjacent group member, which also improves the scalability of our protocol.

• Our protocol guarantees the forward secrecy of group members after joining the group and the
backward secrecy of group members after leaving the group.

The rest of this article is arranged as follows. Section 2 describes the related works.
Some preliminaries are introduced in Section 3. The proposed protocol is described completely in
Section 4. Section 5 analyzes the security of our protocol. The performance analysis is shown in
Section 6. Finally, we conclude the article in Section 7.

2. Related Works

Many researchers have proposed many solutions to ensure the security of group keys.
These solutions are generally divided into the following three types [12,13].

(1) Centralized group key agreement protocol:

There is usually only one entity for controlling the entire group in this type of protocol,
which is called a Key Distribution Center (KDC). The KDC is responsible for key generation,
distribution, and management. It also needs to be responsible for tasks such as group communication.
The protocol proposed by Wong et al. [14] is a typical group key agreement protocol based on a Logical
Key Hierarchy (LKH). A binary tree is stored in the KDC of this type of protocol. The root node of
the tree is a shared encryption key; the intermediate nodes of the tree hold different keys along the
path from the leaves to themselves; and the leaf nodes of the tree hold keys related to group members.
This type of protocol requires less space to store the keys, and when the keys need to be updated,
the amount of communication is greatly reduced. The group key agreement protocol of Islam et al. [7]
is proposed for the Internet of Vehicles, and the trusted authority in their protocol acts as the KDC.
In the centralized group key agreement protocol, since the KDC needs to be responsible for storing
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and distributing all keys and controlling group communication, the scalability and storage costs of this
type of protocol are very large. In addition, once the KDC fails, the entire system cannot continue to
operate normally.

(2) Decentralized group key agreement protocol:

This type of protocol usually divides the entire group into several subgroups, and each subgroup
has a group controller to manage all group members in the subgroup. In this way, the burden
of KDC is greatly reduced, and single node failure is also solved. Mittra [15] proposed a scalable
multicast framework, which divides large groups into multiple subgroups, and each subgroup has
a controller called a group security intermediate node or a group security agent. In the protocol of
Setia et al. [16], the group key is updated at regular intervals, rather than when group members join or
leave. Naresh et al. [8] proposed a cluster-based hybrid group key agreement protocol, which divides
large groups into a certain number of clusters and specifies the last member of the cluster as the
cluster head and group controller. In 2018, Gupta et al. [17] proposed a group key agreement protocol
based on self-certified public keys. In their protocol, there is a group controller for each group.
Moreover, before generating the group key, each group member needs to mutually authenticate with
other group members, which leads to high computation and communication costs. Zheng et al. [18]
proposed a multi-domain group key agreement protocol. Their protocol uses authentication between
group members and a group controller instead of authentication between each group member to
reduce computation and communication costs. However, this makes their protocol vulnerable to
single node failure. The main problems faced by decentralized group key agreement protocols are
key distribution efficiency, how to establish a trusted relationship with a third party, and mutual
authentication of sub-members across groups.

(3) Distributed group key agreement protocol:

All group members in this type of protocol are equal, and there is no group controller. In addition,
the KDC usually does not participate in the generation of group keys. Without a base station,
Wang et al. [19] proposed a device-to-device group key agreement protocol. The protocol guarantees
the anonymity of each device and uses a signature scheme based on the gap Diffie–Hellman group [20].
In 2018, Zhang et al. [21] proposed a distributed group key agreement protocol. Their agreement
achieves cross-domain authentication and key self-certification. Based on the hyper elliptic curve digital
signature and ElGamal algorithm, Kavitha et al. [22] proposed a distributed group authentication
protocol for the healthcare system in the Internet of Things. Since the KDC or group controller in
this type of protocol usually does not participate in the process of group key generation, the mutual
authentication between group members becomes the largest computational overhead, which means
that the cost of generating a group key will increase as the number of group members increases.
Therefore, reducing the number of mutual authentications between group members is the core of
reducing the cost of generating a group key. There are many protocols dedicated to reducing the
number of authentications between group members by reducing the number of authentication rounds.
The group key agreement protocol proposed by Geng et al. [23] and Zheng et al. [9] divides the
entire protocol into two rounds. The first round is mutual authentication between members, and the
second round is group key generation. In the above two protocols, each group member only needs
to authenticate the two adjacent group members. The protocol proposed by Zhang et al. [24] and
Shi et al. [25] merges the two processes described above into one. The protocol proposed by Alphonse
and Reddy [26] forms each group member into a structure similar to a binary tree, and all group
members authenticate each other from the leaf node to the root node. Although their protocol reduces
the computation and communication costs required to generate group keys, all group members
must wait for the final root node to be authenticated before they can negotiate the group key.
Therefore, the computing time is still not low.
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3. Preliminaries

3.1. Network Model

There are two parts in our network model, namely KDC and General Node (GN). In MEC,
the KDC can be regarded as the SCM, and the GN can be regarded as the SCC. All GNs are equal,
and there is no hierarchy or subordinate relationship. In addition, all GNs usually have certain
computing and storage resources, and they can join or leave a group at any time. All KDCs are wire
connected, and each KDC can manage one or more GNs. The network model used in our protocol is
shown in Figure 1.

In our protocol, multiple KDCs form a blockchain network. In order to improve the efficiency of
new block generation, we consider using a more efficient Proof-of-Stake (PoS) [27] or Delegated
Proof-of-Stake (DPoS) [28] consensus mechanism, such as ouroboros, a provably secure PoS
protocol [27], instead of using a Proof-of-Work (PoW) mechanism [29]. According to this consensus
mechanism, at regular intervals, all KDCs will regenerate new blocks including groups whose GNs
have changed during this period. In each block, in addition to the hash value of the previous block,
the timestamp, and Merkle tree root, it also contains the identifier of these groups, the identity list
of all GNs in these group, and the related parameters of all GNs in these group. All GNs only have
the permission to read information from the blockchain. In addition, there may be multiple different
groups, so after the GN enters the network, it first needs to select a group to join.

Figure 1. The network model used by our protocol.

Before the GN joins the network, it can submit its identity to a KDC closest to it. The KDC will
calculate a pair of keys based on the identity and distribute it to the GN. After that, all KDCs will
generate a new block containing the identity and related information of the newly added GN through
the consensus mechanism. The detailed operation of KDCs is described in the next section. Note that
not all KDCs participate in group key agreement.
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3.2. Threat Model

We define the threat model as follows:

• The adversary has the ability to intercept all data transmitted over unsecured channels, and he/she
can inject new data and replace or replay the previously sent data.

• All KDCs are semi-trusted parties, which means that they may misbehave themselves, but do not
conspire with any other KDC [30].

• With the help of a Tamper-Proof Device (TPD), we assume that even if the adversary compromises
the KDC, he/she cannot extract any secret keys from it.

• The adversary has the ability to capture any number of GNs and can access all the secret
information stored in the GN’s memory by capturing attack.

3.3. Bilinear Pairing

Let G1 and G2 be cyclic additive and multiplicative groups of prime order q,
respectively. The generator of G1 is g1. Let e : G1 × G1 → G2 be a bilinear pairing, which satisfies the
following properties:

• Bilinearity: ∀P, Q ∈ G1 and ∀a, b ∈ Z∗q , e(aP, bQ) = e(P, bQ)a = e(aP, Q)b = e(P, Q)ab

are satisfied.
• Non-degenerate: ∀P, Q ∈ G1 such that e(P, Q) 6= 1.
• Computable: for all P, Q ∈ G1, there is always an effective algorithm to compute e(P, Q).

The security of our protocol is based on the following computationally infeasible problems.

• Elliptic Curve Discrete Logarithm problem (ECDL): Let a ∈ Z∗q , given P, aP ∈ G1, and compute a.
• Computational Diffie–Hellman problem (CDH): Let a, b ∈ Z∗q , given g1, ag1, and bg1, and find abg1.
• Decisional Diffie–Hellman problem (DDH): Let a, b, c ∈ Z∗q , given g1, ag1, bg1, and cg1, and decide

if e(ag1, bg1) = e(g1, cg1).

4. Proposed Protocol

In the distributed group key agreement protocol, each group member is equal, which means
that before the group key is negotiated, each group member usually needs to consume many
communication and computing resources to perform mutual authentication with all other group
members. In order to reduce these costs, in our protocol, we arrange all GNs into a list according
to their identities. According to the list, before the group key is negotiated, each GN only needs to
send an authentication request to its right neighbor once and be authenticated by its right neighbor.
In other words, each GN will receive an authentication request from its left neighbor and authenticate
its left neighbor. Since each GN only needs to complete authentication once, this can greatly reduce the
computation and communication costs caused by authentication between group members. In addition,
when any GN needs to join or leave the group, only the left neighbor of the GN needs to update the
parameters, which can also reduce the computation and communication overhead.

Our protocol has seven parts: the initialization phase, the registration phase, the mutual
authentication phase, the group key generation phase, the GN join phase, the GN leave phase, and the
internal attacker detection process. When the system runs for the first time, the initialization phase is
performed by the System Administrator (SA). Each GN performs the registration phase before entering
the network. When the group key needs to be negotiated, all GNs perform the mutual authentication
phase and the group key generation phase. When a GN wants to join a group, it needs to perform
the GN join phase. When a GN in the group wants to leave, the GN leave phase is performed. If the
group key fails to be generated multiple times, the KDC will execute the internal attacker detection
process to find the malicious GN and expel it from the group.

Suppose there are GNi(1 ≤ i ≤ n) that need to generate the group key, and their identities are
IDi(1 ≤ i ≤ n), where n is the number of GN. Since there may be multiple groups, we named each
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group GIDu, where u is the number of groups. Each group has a list L that stores the identity IDi of
all GNs in the group and is managed by the KDC. All IDi in L are sorted in descending order, and L
is a circular list, which means that the largest IDi and the smallest IDi are linked. Table 1 shows the
description of the symbols. The details of the above seven parts are as follows.

Table 1. Symbols used in our protocol.

Symbol Description

SA System Administrator
KDC Key Distribution Center
GN General node
q A large prime number
G1 Cyclic additive groups of prime order q
G2 Cyclic multiplicative groups of prime order q
Q The generator of G1
e Bilinear pairing e : G1 × G1 → G2
IDi The identity of GNi
GIDu The identity of the group
L A circular list that stores all GN-related information in the group
s The KDC’s private key
Ppub The KDC’s public key
Wi, Ai The GN’s public key
Si, ai The GN’s private key
t1, t2 Timestamp
tnew The timestamp when the latest information was received
∆t Maximum communication transmission delay
KTi Symmetric key
Ek Symmetric encryption algorithm
Dk Symmetric decryption algorithm
h(.) Hash operation
Ks Group key
⊕ Bitwise XOR operation
(a, b) Concatenation of data a and data b

4.1. Initialization Phase

First, the SA picks {G1, G2, Q, e, p}, where G1 is a cyclic additive group of order p, G2 is a
cyclic multiplicative group of order p, Q is a generator of G1, and e : G1 × G1 → G2 is a bilinear
map. Second, the SA generates a random private key s and computes the corresponding public key
Ppub = sQ. Finally, the SA publishes parameters {p, G1, G2, Q, e, Ppub, h(.), Ek, Dk} and stores s in the
memory of each KDC in a secure environment, where h(.) is the hash function used by this protocol,
Ek is the symmetric encryption algorithm, and Dk is the symmetric decryption algorithm.

4.2. Registration Phase

Before the GN joins the network, it needs to choose the nearest KDC to register and receive the
corresponding key. The steps in this phase are as follows.

Step R1: The KDC generates a unique identity IDi for the GNi and computes its public key
Wi = h(IDi) and the corresponding private key Si = sWi. Finally, the KDC sends Si to GNi through a
secure channel.

Step R2: GNi generates a random ai, computes Ai = aiQ, and sends Ai to the KDC through a
secure channel.

Step R3: The KDC broadcasts IDi, Wi, and Ai.
Step R4: According to the group’s identity GID, the GN can choose to join a group or pick a new

unique GID to create a new group. Based on the selection of the GN, there are three different situations:
(1) Situation A: the GN joins a group that already has a group key; (2) Situation B: the GN joins a group
that has not started negotiating group keys; (3) Situation C: the GN creates a new group. In Situation
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A, the GN performs the GN join phase. In Situation B and Situation C, the KDC will package GID,
the corresponding L, and multiple tuples (IDi, Wi, Ai) related to all members of the group into a new
block, which will be verified by all other KDCs. After successful verification, the new block will be
linked to the blockchain. Figure 2 shows the three situations faced by the GN and the solution strategies.

Figure 2. The three situations faced by the GN and the solution strategies.

4.3. Mutual Authentication Phase

In this phase, GNi first sends a message to its right neighbor GNi+1, and GNi+1 will authenticate
GNi. At the same time, GNi will also receive a message from its left neighbor GNi−1, and it needs to
authenticate GNi−1. Figure 3 shows the mutual authentication phase and the group key generation
phase of our protocol. GNi performs the following operations.

Step A1: Generates a random mi and a timestamp t1i and gets Ai+1 from the blockchain.
Step A2: Computes Mi = miQ, KTi+1 = ai Ai+1, SEi+1 = EKTi+1(Mi), Ci = h(SEi+1, KTi+1, t1i )Si.
Step A3: Sends message (SEi+1, Ci, t1i ) to GNi+1.
Step A4: GNi receives a message (SEi, Ci−1, t1i−1 ) from GNi−1 and gets Ai−1 from the blockchain.
Step A5: Checks that tnew − t1i−1 < ∆t holds or not. If the check fails, it broadcasts an

authentication failure message.
Step A6: Computes KTi = ai Ai−1.
Step A7: Checks whether the condition e(Q, Ci−1)? = e(Ppub, h(SEi, KTi, t1i−1)Wi−1) is satisfied.

If the condition is not true, it broadcasts an authentication failure message.
Step A8: Uses KTi to decrypt SEi and get Mi−1.
Step A9: Generates a random bi and a timestamp t2i .
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Step A10: Computes Xi = biWi, Zi = e(Mi −Mi−1, Q), Yi = (bi + h(Xi, Zi, t2i ))Si.
Step A11: Broadcasts Ri = (Xi, Yi, Zi, t2i ).

Figure 3. The mutual authentication phase and the group key generation phase of our protocol.

4.4. Group Key Generation Phase

During this phase, each GNi receives the message Rr(r ∈ n, r 6= i) from all other GNs. At this
point, each GNi will perform a group authentication and then negotiate the group key. The execution
steps of each GNi are as follows.

Step K1: Checks that the timestamp tnew − t2r < ∆t, (r ∈ n, r 6= i) in each received message is
valid. If the check fails, it broadcasts an authentication failure message.

Step K2: After receiving the message from all other GNs, it checks that:

e(∑
r 6=i

Yr, Q)
?
= e(∑

r 6=i
(Xr + h(Zr, t2r )Wr), Ppub)

holds or not. If the check fails, it broadcasts an authentication failure message.
Step K3: Computes k = e(nMi, Q)Zn−1

i+1 Zn−2
i+2 · · · Zi−1 and group key Ks = h(k, R1, R2, · · · , Rn).

4.5. GN Join Phase

When a new GNj wants to join the group, it needs to be registered in the KDC first. This means
that according to the registration phase, GNj has selected a group to join. Figure 4 shows the GN join
phase of our protocol. The detailed steps are as follows.

Step J1: GNj obtains the corresponding list L of the group from the blockchain, inserts its identity
IDj into the appropriate position in L, and broadcasts the new L.

Step J2: GNj generates a random number aj and computes Aj = ajQ. After that,
GNj broadcasts Aj.

Step J3: GNj’s left neighbor GNj−1 regenerates a new random number a′j−1 and computes
A′j−1 = a′j−1Q. After that, GNj−1 broadcasts A′j−1.
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Step J4: The KDC packages the updated L, corresponding GID, and multiple tuples (IDi, Wi,
Ai) related to all members of the group into a new block, which will be verified by all other KDCs.
After successful verification, the new block will be linked to the blockchain.

Step J5: According to the steps in the mutual authentication phase, GNj sends (SEj+1, Cj, t1j ) to
its right neighbor GNj+1 and receives message (SE′j, C′j1 , t′1j−1

) from GNj−1.
Step J6: After the messages received by GNj and GNj+1 are successfully authenticated, all GNs

broadcast Ri = (Xi, Yi, Zi, t2i ) and perform the group key generation phase to complete the key update.

4.6. GN Leave Phase

When a GNj in the group wants to leave, the following steps need to be performed. Figure 5
shows the GN leave phase of our protocol.

Step L1: GNj deletes its identity IDj from list L and broadcasts the new L.
Step L2: GNj−1 regenerates a new random number a′j−1, and computes A′j−1 = a′j−1Q. After that,

GNj−1 broadcasts A′j−1.
Step L3: The KDC packages the updated L, corresponding GID, and multiple tuples (IDi, Wi, Ai)

related to all members of the group into a new block, which will be verified by all other KDCs. After
successful verification, the new block will be linked to the blockchain.

Step L4: According to the steps in the mutual authentication phase, GNj−1 sends
(SE′j, D′j−1, t′1j−1

) to GNj+1.

Step L5: After Uj+1 authenticates Uj−1, all GNs broadcast Ri = (Xi, Yi, Zi, t2i ) and perform the
group key generation phase to complete the key update.

Figure 4. The GN join phase of our protocol.

Figure 5. The GN leave phase of our protocol.
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4.7. Internal Attacker Detection Process

It can be found in our protocol that every GN is required to be honest during the group key
generation phase. If a malicious GN intentionally broadcasts an error message, the entire group cannot
generate a group key. However, since all GNs are equal, it is impossible to discover malicious GNs
through these GNs. Therefore, our agreement regards KDC as the judging body. When the group fails
to negotiate multiple times, the process will be executed and try to find the malicious GN. The steps of
this process are as follows.

Step D1: The KDC first records all messages sent by each GNi in the group GID.
Step D2: All GNi generate a timestamp tDi , compute H = h(Wi, Si, IDi, KTi+1, bi), and send the

tuple (IDi, Wi, H, KTi+1, bi) to the KDC.
Step D3: After receiving the tuple, the KDC first verifies the validity of the time stamp tDi .

Then, the KDC computes S′i = sWi, H′ = h(Wi, S′i , IDi, KTi+1, bi) and verifies H′? = H. If it does not
hold, GNi is regarded as a malicious GN.

Step D4: If the above formula holds, the KDC continues to compute C′i = h(SEi+1, KTi+1, t1i )Si,
Y′i = (bi + h(Xi, Zi, t2i ))Si and verify C′i ? = Ci, Y′i ? = Yi. If it does not hold, the corresponding GNi
will be expelled from the group immediately.

5. Security and Performance Analysis

5.1. Correctness Analysis

Theorem 1. GNi and GNi+1 can calculate the same symmetric key KTi+1, so that GNi+1 can get Mi.

Proof. Since GNi computes KTi+1 = ai Ai+1 to get KTi+1 and GNi+1 computes KTi+1 = ai+1 Ai
to get KTi+1, then:

KTi+1 = ai Ai+1

= aiai+1Q

= ai+1 Ai.

Since the same KTi+1 can be obtained by calculating ai Ai+1 and ai+1 Ai, GNi and GNi+1 can use
the symmetric key KTi+1 to encrypt or decrypt transmitted messages.

Theorem 2. It is valid for GNi to authenticate GNi−1.

Proof. The authentication of GNi for GNi−1 is achieved by verifying whether the formula
e(Q, Ci−1) = e(Ppub, h(SEi, KTi, t1i−1)Wi−1) holds. The correctness of the formula is proven as follows.

e(Q, Ci−1) = e(Q, h(SEi, KTi, t1i−1)Si−1)

= e(Q, h(SEi, KTi, t1i−1)sWi−1)

= e(Ppub, h(SEi, KTi, t1i−1)Wi−1)

Although the adversary can easily obtain Q, Ppub, Ai ∈ G1, due to the ECDL and the
CDH, he/she cannot calculate s, any ai, or KTi in polynomial time. Therefore, the adversary also
cannot calculate h(SEi, KTi, t1i−1). If the adversary wants to forge a GNi to pass the above verification,
he/she needs to create a new valid e(Ppub, h(SEi, KTi, t1i−1)Wi−1). However, since the adversary
cannot obtain ai and s, he/she cannot calculate a new e(Ppub, h(SEi, KTi, t1i−1)Wi−1). In addition,
due to the DDH, for a random z ∈ G1, the adversary cannot decide if e(Q, Ci−1) = e(Ppub, z) in
polynomial time.
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Theorem 3. During the group key generation phase, GNi is valid for the batch authentication of other
group members.

Proof. In the group key generation phase, GNi authenticates other group members in batches by
verifying whether formula e( ∑

r 6=i
Yr, Q) = e( ∑

r 6=i
(Xr + h(Xr, Zr, t2r )Wr), Ppub) holds. The correctness of

the formula is proven as follows.

e(∑
r 6=i

Yr, Q) = e(∑
r 6=i

(br + h(Xr, Zr, t2r ))Sr, Q)

= e(∑
r 6=i

(br + h(Xr, Zr, t2r ))sWr, Q)

= e(∑
r 6=i

(brWr + h(Xr, Zr, t2r )Wr), sQ)

= e(∑
r 6=i

(Xr + h(Xr, Zr, t2r )Wr), Ppub).

If the adversary wants to forge a GN∗i to pass the above batch authentication, he/she needs
to create a valid X∗i and Y∗i to satisfy e(Y∗i , Q) = e((bi + h(X∗i , Zi, t2i ))sWi, Q). First, the adversary
cannot get bi, so it is difficult for him/her to calculate (bi + h(X∗i , Zi, t2i ))sWi. Second, even suppose
that (bi + h(X∗i , Zi, t2i )) is revealed by the adversary, but he/she still cannot calculate a valid X∗i or Y∗i
because he/she cannot get s. In addition, due to the DDH, for a random z ∈ G1, the adversary cannot
decide if e( ∑

r 6=i
Yr, Q) = e(z, Ppub) in polynomial time.

Theorem 4. If all GNis participating in the group key generation phase are honest, then all GNis can negotiate
the same group key.

Proof. According to Theorem 1, as long as all GNis participating in the group key generation phase
are honest, each GNi can obtain the parameter Mi−1 sent by its left neighbor. Therefore,

k = e(nMi, Q)Zn−1
i+1 Zn−2

i+2 · · · Zi−1

= e(miQ, Q)nZn−1
i+1 Zn−2

i+2 · · · Zi−1

= e(Q, Q)nmi+(n−1)(mi+1−mi)+(n−2)(mi+2−mi+1)+···+(mi−1−mi−2)

= e(Q, Q)m1+m2+···+mi .

From the above, it can be found that all GNis can calculate the same parameter k.
Therefore, their group keys Ks = h(k, R1, R2, · · · , Rn) are also the same.

5.2. Simulation Based on the ProVerif Tool

ProVerif is a widely known authentication protocol verification tool that can prove the
security of multiple encryption schemes or authentication protocols, such as signature schemes and
Diffie–Hellman key exchange algorithms [31,32]. Since each GN does not need to communicate with
other nodes during the group key generation phase, we use ProVerif to verify the security of the mutual
authentication phase of our protocol. In addition, since we do not need to verify the performance of
our protocol in this section, we assume that there are only three GNs that need to negotiate a group
key, which are GN1, GN2, and GN3. Figure 6 shows the code for the mutual authentication phase of
our protocol. Figure 7 shows the simulation results. The results show that in our protocol, the secret
parameters M1, M2, and M3 for group key generation, as well as the private keys s, a1, a2, and a3

will not be obtained by the adversary.



Sensors 2020, 20, 4835 12 of 19

Figure 6. The code for the mutual authentication phase of our protocol.

Figure 7. The PV simulation results of our protocol.

5.3. Informal Security Analysis

5.3.1. GN Impersonation Attack

The adversary needs to create valid messages (SEi+1, Ci, t1i ) or (Xi, Yi, Zi, t2i ) to perform an
impersonation attack on GNi. However, according to Theorem 2 and Theorem 3, the adversary cannot
create a valid message.

5.3.2. GN Capture Attack

After the adversary has captured several GNs, we need to ensure that the private key s cannot
be obtained by the adversary. After the adversary captures a GNi, he/she can obtain Si containing
information about s. However, according to the ECDL, although the adversary can obtain Wi and sWi,
he/she cannot calculate s in polynomial time.
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5.3.3. Replay Attack

Our protocol uses timestamps t1 and t2 to defend against replay attacks. In addition,
our protocol guarantees that the timestamp cannot be modified. For messages (SEi+1, Ci, t1i ),
the adversary must obtain KTi+1 and Si before replacing a new valid timestamp t′1i

. For messages
(Xi, Yi, Zi, t2i ), the adversary must obtain bi and Si before replacing a new valid timestamp t′2i

.
However, the adversary cannot get KTi+1, bi or Si because they are never transmitted directly in
the channel. In addition, due to the ECDL, it is difficult for the adversary to calculate these parameters.

5.3.4. Forward Secrecy after a New GN Joins

When a GN wants to join a group, it needs to ensure that GNj cannot get the previous group key.
In our protocol, we assume that GNj has intercepted all historical communication messages of the
group. This results in that when GNj joins the group, as long as it obtains mj−1, it can calculate the
previous group key. However, when the GNj joins the group, its left neighbor GNj−1 will regenerate
a new m′j−1 and send it to GNj, which means GNj can only get m′j−1 instead of mj−1. Therefore, our
protocol ensures the forward secrecy after a new GN joins.

5.3.5. Backward Secrecy after a GN Leaves

When a GNj leaves the group, it needs to ensure that it cannot get the group key generated in the
future. We assume that after GNj leaves the group, it still retains the secret parameter mj−1 sent by its
left neighbor and is able to intercept all group communication messages. This means that as long as
mj−1 is kept unchanged, GNj can still calculate the group key after leaving the group. However, in our
protocol, after GNj leaves the group, its left neighbor Uj−1 will regenerate a new m′j−1 and send it
to GNj+1. This results in that at Step A11, GNj−1 will broadcast Z′j−1 = e(M′j−1 −Mj−2, Q) and Uj+1
will broadcast Z′j+1 = e(Mj+1 −M′j−1, Q). At this point, mj−1 has expired, and GNj cannot calculate
the group key through this parameter. Therefore, our protocol ensures the backward secrecy after a
GN leaves.

5.3.6. Single Node Failure

Although all KDCs will not participate in the mutual authentication phase and the group key
generation phase, each group still needs to be managed by a KDC. This is because each group may
need the KDC to act as a judging body to expel malicious nodes. If the KDC fails, since all KDCs
share the same blockchain that stores all GNs’ authentication parameters, it only needs to switch to
another KDC. This means that in our protocol, as long as there is a working KDC, the entire system
can operate normally.

6. Performance Analysis and Comparison

6.1. Computation Cost

The symbols tsym, th, tpm, tpa, and tbp represent the computing time required to implement one
symmetric encryption or decryption, one general hash function operation, one point multiplication
operation on Elliptic Curve Cryptography (ECC), one point addition operation on ECC, and one
bilinear pairing operation, respectively. In the mutual authentication phase and the group key
generation phase of our protocol, each GN needs to perform n + 7 point multiplication operations
on ECC, 4 bilinear pairing operations, n + 3 hash operations, 2 symmetric encryption or decryption
operations, and n + 1 point addition operations on ECC, where n is the number of GN. In other words,
the total computation cost of each GN is (n + 7)tpm + 4tbp + (n + 3)th + 2tsym + (n + 1)tpa.
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6.2. Communication Cost

We assume C is 256 bits and timestamp T is 64 bits. In the mutual authentication phase of our
protocol, each GN needs to send message (SEi+1, Ci, t1i ) to GNi+1 and broadcast (Xi, Yi, Zi, t2i ).
Therefore, each GN needs to send messages of length 5C + 2T and receive messages of length
(3n− 1)C + nT. The total communication cost in the the mutual authentication phase and the group
key generation phase of our protocol is (3n2 + 4n)C + (n2 + 2n)T.

6.3. Comparison with Related Protocols

We compare our protocol with the protocol of Zheng et al. [9], the protocol of Zhang et al. [21],
and the protocol of Gupta et al. [17] in terms of computation costs, energy consumption, communication
costs, and security.

In the protocol of Zheng et al. [9], the total computation cost required to generate the group key
is (n + 4)tpm + 6tbp + (n + 4)th + (3n + 1)tpa, and each group member needs to send messages of
length 7C + 2T and receive messages of length (7C + 2T)(n− 1). In the protocol of Zhang et al. [21],
the total computation cost required to generate the group key is (3n + 2)tpm + 2ntbp, and each
group member needs to send messages of length 4C and receive messages of length 4(n − 1)C.
In the protocol of Gupta et al. [17], the total computation cost required to generate the group key is
4ntpm + 5th + (2n + 1)tpa. In their protocol, there is a group controller in each group, which undertakes
most of the communication work and causes the communication cost of each group member to be very
low. Therefore, we consider that the total length of the messages that need to be sent and received is
6nC + 1, rather than the communication cost of each group member. Table 2 shows the comparison of
computation cost and communication cost between our protocol and related protocols.

Table 2. The comparison of computation cost and communication cost between our protocol and
related protocols.

Zheng et al. [9] Zhang et al. [21] Gupta et al. [17] Our Protocol

Point multiplication n + 6 3n + 2 4n n + 7operations on ECC
Bilinear pairing 6 2n 0 4
Hash operation n + 9 0 5 n + 3

Symmetric encryption 4 0 0 2or decryption
Point addition 3n + 1 0 2n + 1 3n + 1operations on ECC

Message length sent 7C + 2T 4C - 5C + 2Tby each group member
Message length received

(7C + 2T)(n− 1) 4(n− 1)C - (3n− 1)C + nTby each group member
Total sent message length (7C + 2T)n 4nC 6nC + 1 (5C + 2T)n

Total received message length n(n− 1)(7C + 2T) 4n(n− 1)C 6nC + 1 (3n2 − n)C + n2T

Next, we will compare our protocol with related protocols in terms of energy consumption.
According to the work of Carman et al. [33] and Zhang et al. [21], we obtained that a “Strong ARM”
microprocessor running at 133MHz performing one symmetric encryption or decryption operation
needs to consume 0.00217 mJ, one point multiplication operation on ECC requires 8.8 mJ, one general
hash function operation requires 0.000108 mJ, and one bilinear pairing operation requires 47 mJ.
According to the work of Makri and Konstantinou [34], we obtained that an IEEE 802.11 Spectrum24
WLAN card requires 0.00066 mJ for the transmission of 1 bit and 0.00031 mJ for the reception of 1 bit.
According to [35], the computing time of one point addition operation on ECC is about half of one
symmetric encryption or decryption operation. Therefore, we considered that the energy consumption
of a point addition operation is about 0.001085 mJ. We summarize the above energy consumption in
Table 3. Figure 8 shows the total communication energy consumption in different protocols. Figure 9
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shows the communication energy consumption of each group member in different protocols. Figure 10
shows the total communication and computation energy consumption in different protocols.

It can be found from Table 2 that our protocol has the lowest computation costs, and the
computation costs of our protocol and the protocol of Zheng et al. [9] are very similar.
However, from Figure 8, it can be found that our protocol consumes less communication resources.
In addition, because after group members join or leave a group, neither their left neighbor nor their
right neighbor updated the corresponding temporary secret parameter, this leads to the newly joined
group members being able to easily obtain the previous group key, and group members who leave the
group can also easily obtain the subsequent group key. Therefore, the protocol of Zheng et al. [9] lacks
forward or backward secrecy.

According to Figure 10, in the distributed group key agreement protocol, such as the protocol of
Zheng et al. [9] and the protocol of Zhang et al. [21], our protocol has the least total communication
and computation energy consumption. With the help of the group controller, the decentralized group
key agreement protocol such as the protocol of Gupta et al. [17] will consume less energy when there is
a large number of group members. However, in the protocol of Gupta et al. [17], each group member
needs to perform mutual authentication with the group controller one by one, which requires much
total computing time. Moreover, the existence of the group controller makes their protocol vulnerable
to single node failure. Once the group controller fails, the group cannot continue to negotiate the group
key. According to Figures 8 and 9, excluding the protocol of Gupta et al. [17], the total communication
energy consumption of our protocol is the lowest, and the communication energy consumption of
each group member in our protocol is also the lowest.

Figure 8. The total communication energy consumption in different protocols.

Table 3. Energy consumption for computing and communication.

Operations Energy Consumption

tsym 0.00217 mJ
tpm 8.8 mJ
tpa 0.001085 mJ
th 0.000108 mJ
tbp 47 mJ
Transmitting a bit 0.00066 mJ
Receiving a bit 0.00031 mJ
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Figure 9. The communication energy consumption of each group member in different protocols.

Figure 10. The total communication and computation energy consumption in different protocols.

7. Conclusions

This paper proposes a blockchain-based authentication and dynamic group key agreement
protocol. Each group member in our protocol only needs to authenticate its left neighbor once to
complete the authentication, which improves authentication efficiency. When a node joins or leaves a
group, only the left neighbor of the node needs to update the data, which also improves the scalability
of our protocol. Our protocol also guarantees forward or backward secrecy when group members
join or leave the group. In addition, we use blockchain technology to store group identities, a list of
group members, and some group member-related parameters, which can solve the problem of single
node failure. Finally, we use mathematics and ProVerif to prove the correctness and security of our
protocol. The comparison with related protocols shows that our protocol reduces computation and
communication costs.
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The following abbreviations are used in this manuscript:

MEC Mobile Edge Computing
SCM Small Cell Manager
SCC Small Cell Cloud
GN General Node
KDC Key Distribution Center
LKH Logical Key Hierarchy
TPD Tamper-Proof Device
ECC Elliptic Curve Cryptography
SA System Administrator
ECDL Elliptic Curve Discrete Logarithm problem
CDH Computational Diffie–Hellman problem
DDH Decisional Diffie–Hellman problem
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