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Abstract: Wood is widely used in construction, the home, and art applications all over the world
because of its good mechanical properties and aesthetic value. However, because the growth and
preservation of wood are greatly affected by the environment, it often contains different types of
defects that affect its performance and ornamental value. To solve the issues of high labor costs and
low efficiency in the detection of wood defects, we used machine vision and deep learning methods in
this work. A color charge-coupled device camera was used to collect the surface images of two types
of wood from Akagi and Pinus sylvestris trees. A total of 500 images with a size of 200 × 200 pixels
containing wood knots, dead knots, and checking defects were obtained. The transfer learning
method was used to apply the single-shot multibox detector (SSD), a target detection algorithm and
the DenseNet network was introduced to improve the algorithm. The mean average precision for
detecting the three types of defects, live knots, dead knots and checking was 96.1%.
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1. Introduction

Wood plays an important role as an essential raw material in many industries, especially in the
home and construction industries. However, in China, due to the long growth cycle of most woods,
environmental impacts, and resource shortages, production needs are not being met. Additionally
Chinese consumers prefer to buy solid wood materials without knots, checkings and wormholes.
In order to meet consumer t demand for solid wood panels, Chinese wood processing enterprises are
required to spend a lot on labor costs to identify the defects on the surface of solid wood panels, so as
to eliminate the defects by sawing and then splice the remaining materials into certain specified plate
products through finger joint technology (Figure 1), while also reducing wood waste and increasing
the economic benefits. However, the use of manpower to identify the surface defects of solid wood
panels has many disadvantages such as strong subjectivity, low work efficiency, high labor intensity,
and high cost. Therefore, more and more wood processing enterprises have introduced automation
and intelligent wood detection technology to replace humans to identify and detect the quality of the
wood, improve work efficiency, reduce costs and increase profits [1].
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knot defects (Figure 2a) are caused when a part of the branches of a living tree are embedded in the 
main tree trunk. A high number of the live knots complicates the wood pattern and affects the wood’s 
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is often partly or completely separated from the surrounding tissues. The existence of dead knots 
seriously reduces the mechanical properties of solid wood panels. Checkings (Figure 2c) refer to the 
gaps formed by the separation of wood fibers. Most checkings are caused by external forces. 
Checkings decrease the wood’s shearing strength parallel to the grain and affect the overall strength 
of the wood. In addition, fungal infections often occur at checking defects, causing wood to rot and 
deteriorate. Given that live knots, dead knots, and checkings are the most common defects in the 
processing of solid wood panels and they have a great impact on the overall quality of the panels, 
these three defects were considered in this work in order to facilitate the subsequent cutting of solid 
wood panels. 
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In the past, contact methods were commonly used to examine or test wood, such as using 
loading detect the mechanical properties of the wood [3], or using a pin or dielectric moisture meter 
to detect the moisture content of the wood. In recent years, various methods based on machine vision 
and computer science have been developed to detect the quality of wood. Non-destructive wood 
testing methods that are now commonly used include near-infrared spectroscopy testing [4–6], 
ultrasonic testing [7–9], X-ray testing [10,11], laser testing [12,13], and acoustic emission technology 
[14–16]. Good results have been obtained by combining the above methods of extracting the surface 
or internal features of wood with classic machine learning methods, such as back propagation neural 
network (BP), support vector machine (SVM), and K-means clustering algorithm to predict and 
classify wood features. With the development of these technologies, wood inspection has gradually 
made the transition to automated inspection and classification. Due to the ongoing improvement in 
image acquisition equipment and the expanding role of deep learning technology in the field of image 

Figure 1. Finger joined lumber.

Wood defects refer to various abnormal tissue structures and damage caused by physiological and
pathological factors during the growth process of wood or processing. Common defects on the surface
of solid wood panels, include live knots, dead knots, checkings and slope of grain [2]. Live knot defects
(Figure 2a) are caused when a part of the branches of a living tree are embedded in the main tree trunk.
A high number of the live knots complicates the wood pattern and affects the wood’s ornamental value.
Dead knot defects (Figure 2b) are caused by dead tree branches. The fiber structure is often partly or
completely separated from the surrounding tissues. The existence of dead knots seriously reduces
the mechanical properties of solid wood panels. Checkings (Figure 2c) refer to the gaps formed by
the separation of wood fibers. Most checkings are caused by external forces. Checkings decrease the
wood’s shearing strength parallel to the grain and affect the overall strength of the wood. In addition,
fungal infections often occur at checking defects, causing wood to rot and deteriorate. Given that live
knots, dead knots, and checkings are the most common defects in the processing of solid wood panels
and they have a great impact on the overall quality of the panels, these three defects were considered
in this work in order to facilitate the subsequent cutting of solid wood panels.
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knot (c) Checking.

In the past, contact methods were commonly used to examine or test wood, such as using loading
detect the mechanical properties of the wood [3], or using a pin or dielectric moisture meter to detect the
moisture content of the wood. In recent years, various methods based on machine vision and computer
science have been developed to detect the quality of wood. Non-destructive wood testing methods
that are now commonly used include near-infrared spectroscopy testing [4–6], ultrasonic testing [7–9],
X-ray testing [10,11], laser testing [12,13], and acoustic emission technology [14–16]. Good results have
been obtained by combining the above methods of extracting the surface or internal features of wood
with classic machine learning methods, such as back propagation neural network (BP), support vector
machine (SVM), and K-means clustering algorithm to predict and classify wood features. With the
development of these technologies, wood inspection has gradually made the transition to automated
inspection and classification. Due to the ongoing improvement in image acquisition equipment and
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the expanding role of deep learning technology in the field of image recognition, research has focused
on combining machine vision technology with deep learning networks [17] and applying them to the
non-destructive inspection of wood surfaces. For example, He et al. [18] used a linear array CCD camera
to obtain wood surface images, and proposed a hybrid total convolution neural network (Mix-FCN) for
the recognition and location of wood defects; however, the network depth was too deep and required
too much calculation. Hu et al. [19], Shi et al. [20] and others used the Mask R-CNN algorithm in wood
defect recognition, but they used a combination of multiple feature extraction methods, which resulted
in a very complex model. Kurdtongmee [21] introduced the YOLO algorithm for wood pith recognition;
however, the study only investigated the detection issues related to wood pith, and did not consider
the recognition and multi-classification of wood defects. Indeed, there are numerous non-destructive
testing methods for wood and each has its own advantages and disadvantages. Ultrasonic, X-ray,
acoustic emission technology, near infrared spectroscopy and other methods are generally used for the
detection of internal defect features in wooden structures, but they lack the precision for small target
recognition. Compared to the non-destructive wood testing technology mentioned above, machine
vision equipment is cheaper than other inspection equipment, and is often used to obtain the surface
features of objects. Also, deep learning has shown surprising results, for example, it significantly
improves the precision and speed of detection. Therefore, the combination of machine vision and deep
learning has become a mainstream method for wood surface inspection.

The purpose of wood defect identification and classification is different depending on the industry.
For example, in the construction industry, identifying defects is used to determine the strength
characteristics of wood [22]. For us, the purpose of identifying defects is to remove them from the
original panels, and then use the remaining high-quality wood to splice into panels to make furniture.
The production line in a cooperative enterprise requires a recognition accuracy of higher than 95% for
three kinds of defects, namely, live knots, dead knots and cracks on the surface of solid wood panels,
and the speed of the conveyor belt should be 50 m per minute. Since the length of each board is 1 m,
the scanning time of each board is 1.2 s, so the calculation time for each board image must be less than
1.2 s to ensure that the real-time collection of board images can be realized for the production line.
To improve the detection speed and precision of wood surface defects, and meet the requirements of
the production line in wood processing enterprises, it is necessary to obtain deeper features of the
wood surface image for the identification and location of defects. However, the increase in the depth
of the convolutional neural network can cause problems such as an increase in error and gradient
disappearance [23].

The main innovations of this paper are: (1) the DenseNet network is introduced to extract the deep
features in wood images, which avoids the problems of gradient disappearance and increased error,
which are often caused by the network being too deep; (2) the feature fusion method in the classic target
detection algorithm, the single-shot multibox detector (SSD) was used to fuse the multi-layer feature
map obtained by the DenseNet network for the regression of the position parameter of the wood defect
in the image and the classification of the defect; and (3) by changing the network parameters, the SSD
algorithm was adapted to the 200 × 200 pixel image, and one layer of feature maps was reduced
when multi-layer feature maps were merged. These two measures reduced the amount of network
calculation and the calculation time. The main contribution of the paper is that our scheme increased
the average precision of defect recognition on wood board surfaces to 96%, and the detection time was
only about 56 ms, which greatly improves the efficiency of wood surface detection.

2. Materials and Methods

2.1. Wood Surface Defect Dataset

The wood image was obtained by using the self-developed solid wood panel image acquisition
equipment shown in Figure 3. The image acquisition equipment consists of two sections of conveyor
belt, industrial cameras distributed on both sides of the conveyor belt, a strip light source and a
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photoelectric switch to trigger the camera. The industrial camera is a DALSA LA-GC-02K05B, the ES12
D15NK photoelectric sensor is produced by LanHon in Shanghai, China, and its detection distance is
up to 15 cm. When the solid wood panel moves forward on the conveyor belt, the infrared sensor
triggers the linear array CCD cameras distributed on the top and bottom of the conveyor belt to
collect double-sided images (Figure 4). In this study, a total of 200 solid wood panels were scanned
using two types of wood, Akagi and Pinus sylvestris, and 400 original images of the panels were
obtained. The pixels of the original image are 2048 × 18,000, and only a small part of the whole
image was defective. Using the convolutional neural network on very large images, will increase the
amount of calculation of, use too much memory, and seriously affect the running speed of the network.
So, a relatively small image containing wood surface defects was segmented from the original image
for network learning. After processing, the collected original image was divided into 200 × 200 pixel
images containing different defects (Figure 5), and a total of approximately 500 images were obtained
as the original data set.
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In supervised machine learning, small batch data are often divided into a training set and a test set
at a ratio of 7:3. The function of the training set is to help us train the model, that is, let us determine the
parameters of the fitting curve through the data from the training set. The test set is to test the precision
of the trained model. In order to better fit our model, we randomly selected 70% of the original data
set as the training set. Then the original training set was expanded to three times the original through
four expansion methods. The first method was used to mirror the upper and lower parts of all images
in the training set with the horizontal axis of the image as the symmetry axis; the second method
randomly extracted one third of the original training set and increased its uniform noise; the third
method randomly extracted one third of the original data set and rotated it clockwise by 30 degrees;
the fourth method randomly extracted one third of the original data set and rotated it clockwise by
60 degrees. The expanded part of the training images is shown in Figure 6. The remaining 30% of the
original data set was used as the test set of the model. After dividing the data and image expansion,
the distribution of the samples was as shown in Table 1.
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Table 1. Distribution of the Number of Defect Labels in the Data Sets.

Defect Original Labels
Data Set

Train Labels
Data Set

Augmented Train
Labels Data Set

Test Labels
Data Set

Live knot 491 342 1026 149
Dead knot 229 159 477 70
Checking 194 136 408 58

Total 914 637 1911 277

2.2. Original Network

2.2.1. Network Backbone

Before deep learning is applied to target detection, the detection of objects by traditional
algorithms is commonly divided into three stages: region selection, feature extraction, and feature
classification. Traditional algorithms usually use the sliding window algorithm for region selection,
perform feature extraction by carefully designing feature extractors, such as SIFT and HOG, and then
use classic classification networks, such as SVM and AdaBoost, to classify the extracted features.
However, the sliding window algorithm generates many redundant frames and has high computational
complexity. The artificially designed extractor contains fewer parameters and is less robust, and the
quality of extraction is low.

Convolutional neural networks (CNNs) are currently widely used in image classification and
recognition, target detection, and other fields because they can achieve good image feature extraction.
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Many parameters of deep neural networks can extract features with better robustness and semantics,
and their classification performance is also superior. The emergence of regions with CNN features
(R-CNN) [24] paved the way for the use of deep learning for target detection. On the basis of R-CNN,
Fast R-CNN [25] realizes end-to-end object detection and convolutional sharing and Faster R-CNN
provides the anchor mechanism [26]. These networks first focus on finding the location of objects,
obtain suggested boxes, and then classify the suggested boxes. This type of algorithm is known as a
two-stage algorithm. The other type is called a one-stage algorithm. One-stage algorithms usually
rely on the network experience of feature fusion to complete the prediction of the object position and
category in one stage. The SSD [27] algorithm used in this study is a classic first-order algorithm.
SSD draws on the anchor mechanism in Faster R-CNN and the regression process of the YOLO [28]
algorithm. The algorithm improves the speed and detection precision.

Figure 7 shows the structure of the framework of the SSD algorithm, which is mainly divided into
two parts. One part is the deep convolutional neural network at the front end, which uses the image
classification of the VGGNet-16 network (i.e., a 16-layer structure VGGNet) with the classification
layer removed and is used for the preliminary feature extraction of the target. The other part is the
multi-scale feature detection network at the back end, which is a group of cascaded CNNs that extracts
features under different scale conditions from the feature layer generated by the front-end network.
The SSD algorithm cancels the fully connected layer in YOLO and maps multi-scale feature maps on the
detection layer to adapt to the objective facts of the different target sizes of the input image. After the
detection layer, the SSD algorithm uses non-maximum suppression [29] to obtain the maximum value
in the local range.
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The SSD algorithm has been widely used in the field of target detection, but its input image
is generally 300 × 300 pixels, and our data set was 200 × 200 pixels. In order to ensure the normal
operation of the SSD algorithm on our data, we deleted a layer of the feature map on the basis of the
original algorithm, and fused five layers feature map for detection and recognition. The modified
network structure is shown in Figure 8.
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2.2.2. Verifying the Original Network

For the solid wood panel image sample, the image size was first enlarged to 300× 300 for importing
into the SSD model. Although the data set was expanded, the final amount of label data remained
extremely small, thus we decided to adopt the transfer learning method, that is, we used the solid
wood panel data set to train the pre-trained model on the ImageNet data set. The software, hardware,
and environment configurations are shown in Table 2.

Table 2. Software and Hardware Environment Configurations.

Parameter

System Windows 10 × 64
CPU Inter Xeon W-2155@3.30GHz
GPU Nvidia GeForce GTX 1080 Ti(11G)

Environment configuration PyCharm + Pytorch1.2.0 + Python3.7.7
Cuda10.0+cudnn7.6+tensorboardX2.1.0

To find the best detection model in iterations, the loss function is used to measure the gap between
the predicted value of the object and the true value, and the optimizer is used to gradually reduce
the loss value and to finally stabilize it at a lower level, which indicates that the detection model
convergence is effective. In the target detection field, the loss function is composed of the positioning
loss of the object and the classification loss. The formula is as follows:

L(x, c, l, g) =
1
N

(
Lcon f (x, c)+ ∝ Lloc(x, l, g)

)
(1)

where Lloc(x, l, g) is the object positioning loss. To enhance the robustness of the loss function to outliers,
the Smooth L1 Loss function was used to calculate the location loss of defect detection, namely,

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xk
i jsmoothL1

(
lmi − ĝm

j

)
(2)

where Lcon f (x, c) is the object classification loss. Commonly used classification loss functions include
the mean square error and cross entropy loss functions. The parameter gradient will increase with
the loss value. However, when using the mean square error loss function, if the loss value is large,
then the gradient of the parameter will decrease instead, but the cross entropy error will not cause this
problem, and the loss value can be quickly converged. Therefore, the cross entropy function was used
to calculate the classification loss of defect detection, namely,

Lcon f (x, c) = −
N∑

i∈Pos

xp
ij log

(
ĉp

i

)
−

∑
i∈Neg

log
(
ĉ0

i

)
where ĉp

i =
exp

(
ĉp

i

)
∑

p exp
(
ĉp

i

) (3)

where x is the true value of the object, c is the object prediction category, l represents the predicted
boxes, g denotes the true boxes, and coefficient ∝ is used to balance the optimized ratio of the two
losses and was assigned a value of 1 in this study. The Pytorch framework was used to write the
SSD model, and the solid wood panel data set was used for the pre-training model. The number of
training iterations was set to 20,000, the learning rate was set to 1 × 10−4, and the batch size was set to
16. To find a better loss function optimizer, stochastic gradient descent (SGD) and the Adam optimizer
were used for optimization. The graph of the reduction in the training loss value is shown in Figure 9,
and the recognition effect of the statistical test set is shown in Table 3.
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Table 3. Surface Defect Detection Results of Solid Wood Panels Based on the SSD Algorithm.

Optimizer Defect Average Precision Mean Average
Precision Mean Detect Time

SGD
(moment = 0.9)

Live knot 89.7 ± 0.5%
90.4 ± 0.5% 30 ± 1 msDead knot 90.9 ± 0.5%

Checking 90.7 ± 1%

Adam
(betas = [0.9,0.99])

Live knot 90.2 ± 0.5%
91.2 ± 0.5% 17 ± 1 msDead knot 90.1 ± 0.5%

Checking 93.4 ± 0.5%

Figure 9 and Table 3 indicate that the Adam optimizer reduced the loss value of the traditional
SSD algorithm faster than SGD and the training loss was reduced from 8.6 to approximately 0.9.
The trained model can detect images faster than the SGD method, and the average detection time for
each image was only 17 ms. However, the SSD algorithm is generally not effective in identifying the
surface defects of solid wood panels. The average precision (AP) was approximately 0.90 for the three
types of defects, namely, live knots, dead knots, and checkings. The analysis indicates that the depth of
the VGG16 network is insufficient to obtain higher-level image semantic information and extreme loss
of information can easily occur during multiple convolution pooling. Therefore, this study optimized
and improved the basic network skeleton of the traditional SSD algorithm.

2.3. Network Improvement Method

The VGG16 network skeleton is used in the traditional SSD algorithm. Table 4 shows that the
VGGNet uses five sets of convolutions and three fully connected layers. The size of the convolution
kernel used is basically 3 × 3, and many stacked two 3 × 3 convolution kernels are used. From the
perspective of the receptive field, the effect of the same 5 × 5 convolution kernel is the same, but the
parameter is smaller and two layers of convolution require two activation functions, which greatly
improves the learning ability of convolutional networks. However, when the VGG network reaches
a certain depth, increasing the number of layers cannot improve its performance and gradient
disappearance and explosion can occur, which affects the convergence of the network and reduces the
detection precision.
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Table 4. The VGGNet Structure.

ConvNet Configuration

A A-LRN B C D E

11 weight
layers

11 weight
layers

13 weight
layers

16 weight
layers

16 weight
layers

19 weight
layers

input (224 × 224 RGB image)

conv3-64 conv3-64
LRN

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

maxpool

conv3-128 conv3-128 conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

maxpool

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256
conv1-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

maxpool

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

Soft-max

To solve this problem, He et al., proposed a deep residual convolutional network (ResNet),
which refers to the concept of residual learning (Figure 10), which adds several shortcuts to the feed
forward connection to make the network fit the residual mapping instead of the direct mapping from
the previous layer. If the desired network is finally mapped to H(x), the network on the left side
must be fitted directly to H(x), and the sub-module of ResNet on the right side changes the mapping
that must be fitted into F(x) = H(x) − x, by introducing a shortcut branch. ResNet is based on the
assumption that optimizing the residual network mapping F(x) is easier than directly optimizing
potential mapping H(x). This structure resolves the problem of network degradation caused by the
increase in the number of convolutional network layers.
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Figure 10. Residual learning: a building block.

After ResNet introduced the concept of residual learning into the neural network, Huang et al.
proposed a new dense connection convolution network (DenseNet) [30], whereby the information
exchange between the front and back layers was maximized. By establishing dense connections
between all the front and back layers, feature multiplexing was realized in the channel dimension,
which performs better than ResNet with fewer parameters and calculations. Figure 11 presents a
diagram of a DenseNet structure containing three dense blocks. The figure shows that in the dense
block, the input of each layer is composed of the output of all previous convolutional layers.
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Figure 11. DenseNet network structure.

The implementation details of the dense block are shown in Figure 12. Each block is composed
of several bottlenecks, and each bottleneck is composed of BN, ReLU, 1 × 1 convolution, BN, ReLU,
and 3 × 3 convolution in sequence. Then, the channel is concatenated with the result of the previous
layer. DenseNet is generally composed of 4 blocks, and the depth of the network is determined by the
number of bottlenecks in each block.
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Figure 12. Dense block structure.

To avoid further information loss and prevent the gradient from disappearing, the authors
removed the classification layer (Figure 10) of DenseNet, and added a 1 × 1 convolutional layer.
Then, this improved DenseNet network replaced VGG16 to extract the image features of solid wood
panels and optimized and improved the application of the SSD algorithm in the recognition of solid
wood panel defects. Table 5 shows the network structure of DenseNet121, which was used in solid
wood board defect recognition.
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Table 5. DenseNet Network Structure in the Improved SSD Algorithm for Solid Wood Board
Defect Recognition.

Layers DenseNet121 (k = 32) Output Size Channels

Input 200 × 200 3
Convolution 7 × 7 conv, stride 2 100 × 100 64

Pooling 3 × 3 max pool, stride 2 50 × 50 64
Dense Block (1) Bottleneck × 6 50 × 50 256

Transition Layer (1) 1 × 1 conv 50 × 50 128
2 × 2 average pool, stride 2 25 × 25 128

Dense Block (2) Bottleneck × 12 25 × 25 512

Transition Layer (2) 1 × 1 conv 25 × 25 256
2 × 2 average pool, stride 2 12 × 12 256

Dense Block (3) Bottleneck × 24 12 × 12 1024

Transition Layer (3) 1 × 1 conv 12 × 12 512
2 × 2 average pool, stride 2 6 × 6 512

Dense Block (4) Bottleneck × 16 6 × 6 1024
Conv Layer 1 × 1 conv 6 × 6 1024

In the traditional SSD algorithm, the object is detected by fusing the conv4_3 layer of VGG16,
replacing the conv_7 layer of the fully connected layer, and adding the feature map obtained by the
four convolutional layers. Then, the detection result is obtained through the non-maximum value
suppression algorithm. In the improved DenseNet-SSD algorithm, the feature maps were obtained
by fusing the Dense Block (2), Dense Block (3), and Dense Block (4) of the DenseNet121 network and
using the three newly added convolutional layers as input to the detection layer to better integrate the
high-level features with the low-level features and satisfy the feature map size requirements of the
feature mapping layer. The specific structure is shown in Figure 13.
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3. Experiment and Results

3.1. Model Performance Indicators

The IoU value, the precision-recall (P-R) curve and the AP value are commonly used as performance
evaluation indicators in the field of target detection. The value of IoU refers to the ratio of the intersection
between the prediction box and the real box and their union. When the value of IoU is greater than
the threshold we set, the prediction box is considered correct, otherwise the prediction is wrong.
The horizontal axis of the P-R curve is the recall rate and the vertical axis is the precision rate. Alive knot
defect was taken as an example. The recall rate refers to the proportion of all the images with the actual
value of a live knot that are detected as live knot defects. Precision refers to the proportion of images
whose true value is a live knot among all the images detected as live knot defects. The AP value is
the area enclosed by the P-R curve and the coordinate axis, and the value is between 0 and 1. Ideally,
the higher the recall and precision rates of each category, the better. The two rates should both be high
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to avoid reducing the recall rate to increase the precision rate and vice versa. The steeper the P-R curve
is, the better, and the figure enclosed by the coordinate axis tends to be a square.

3.2. Experimental Results

By using the same method of transfer learning, the Densenet121’s pre-training model was used
on the ImageNet data set to train the data. The batch size value was 16, the learning rate was 1e-4
and the IoU threshold was set to 0.5. During the test, 3638 prediction boxes were generated on each
picture, and the number of pictures in the test set was 204, so a total of 742,152 prediction boxes were
generated. Since there were a total of 277 defect labels in the test set, most of the prediction boxes were
background types. This can also be seen from the confusion matrix in Figure 14. The numbers on the
diagonal are the number of correct predictions for each type of defect. The specific test results are
shown in Table 6, and the P-R curve is shown in Figure 13. By comparing Tables 3 and 6, it can be
concluded that the SSD algorithm improved by DenseNet significantly improved the overall defect
recognition precision, and the detection recall rate of various defects were up to 100%.
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Table 6. Experimental Results of DenseNet-SSD in Solid Wood Board Defect Detection.

Network Defect True
Positive

False
Positive Recall Average

Precision

Mean
Average
Precision

Mean Detect
Time

DenseNet-SSD
Live knot 147 44 98.7% 90.5 ± 0.3%

96.1 ± 0.3% 56 ± 1 msDead knot 70 8 100% 98.6 ± 0.3%
Checking 58 27 100% 99.0 ± 0.3%

It can be seen from the confusion matrix in Figure 14 that there are two live knot defect labels
predicted as background, and a few of them are mistaken as defects in the prediction box with the
true value of the background class. In Figure 15a, the red curve represents the P-R curve of dead knot
defects, the blue curve represents the P-R curve of live knot defects, and the yellow curve represents
the P-R curve of the checking defects. The P-R curve of the checkings defects is the steepest. When the
recall rate of the horizontal axis approaches 1, the precision of the vertical axis can still be maintained
at 1. A comparison of the P-R curves of the SSD algorithm improved by DenseNet (Figure 15a) and the
traditional SSD algorithm (Figure 15b) indicates that the P-R curve of all types of defects in the former
is steeper than that of the latter. Thus, the AP value of the area under the curve is also larger than that
of the latter, and the average detection precision of the three types of defects is 0.961. The P-R curve of
the live knot defect is taken as an example. When the traditional SSD algorithm is used for detection,
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the precision rate drops sharply when the recall rate is approximately 0.6, whereas the precision rate
decreases after the recall rate reaches 0.8 when the DenseNet-SSD algorithm is used for detection.
This finding shows that the DenseNet-SSD algorithm achieves a better balance between the recall and
precision rates of various types of defect detection than the traditional SSD algorithm. Therefore, the
performance of the improved SSD algorithm is superior to that of the traditional SSD algorithm in
identifying solid wood board defects. The detection results for several images are shown in Figure 16.
It can be seen from Figure 16d that the reason why the live knot defect was mistaken as the background
may be that the texture around the misjudged defect was too complex and was closely connected to the
background. The reason why the background was misjudged as a defect may be because the texture
and color in the prediction boxes were evenly distributed in the same way as live knots.
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4. Discussion

In recent years, many algorithms have been developed for the recognition and location of defects
in wood surface images with different precision and speed. Although the implemented algorithms are
different, the basic processing flow is similar and can be summarized in three categories.

In the first category, the defective image is first extracted from the original image using the image
segmentation method, and then different feature extraction methods are used to extract the texture,
edge and other types of features of the defect. Then these features are classified by classifiers such as
the back propagation (BP) neural network and SVM. For example, mathematical morphology was used
to locate the defect location [6], and the spectral information for the defect at different wavelengths was
obtained, then the principal component vector was extracted as the input of the BP neural network
through principal component analysis. Kamal [31] used the gray level co-occurrence matrix (GLCM)
and the law of texture energy measurement to extract texture features of wood images as the input of
the BP neural network.

The second category of processing methods appeared with the advent of convolutional neural
networks, which are used to extract the features of the entire image, and then machine learning methods
are used to perform regression classification on the feature map. For examples, the Faster R-CNN
algorithm used by Xiao [32] belongs to this category. It uses CNN as the feature extractor, the region
proposal network (RPN) to generate target candidate frames, and the softmax classifier to determine
whether there are defects in the candidate frame and the category of the defect. Augustas [33] used the
transfer learning AlexNet, VGG16 and ResNet152 networks in Faster R-CNN. A comparison of these
methods found that the detection accuracy of wood defects was highest at 80.6% when the RestNet
pre-training model was used. Shi [20] designed a glance network at the front end of Mask R-CNN to
classify normal panels and panel images with defects, and then input the images of panels with defects
into the Mask R-CNN model. The detection accuracy increased to 95.31%. However, because it is a
combined model, the subsequent classification accuracy of the Mask R-CNN model is very dependent
on the performance of the glance network.

The third category involves the use of fully convolutional neural networks to complete the feature
extraction, regression and classification operations of wood images. The YOLO, SSD and Densenet-SSD
algorithms studied in this article belong to this category. This study compared the trained model with
the above algorithms. The results of the comparison are shown in Table 7.

Table 7. Comparison of Different Algorithms.

Algorithms Mean Precision (%) Time (ms)

mathematical morphology + ResNet152 83.4 1012
Faster-RCNN 93 870

YOLO-tiny 95.2 152
SSD 91.2 17

DenseNet-SSD 96.1 56

A comparison of the performance of other target detection algorithms in wood defect detection
(Table 7), shows that our method performed well overall. Compared with the worst-performing
mathematical morphology and ResNet152, the precision of the model proposed in this paper was
improved by 12.7% to 96.1%, which met the precision requirement of not less than 95% of wood
processing enterprises. The poor performance of the first method may be due to the different image
quality, and the poor generalization of the mathematical morphology method in feature positioning.
Compared with the two-step target detection algorithm Faster-RCNN, the one-step target detection
algorithm SSD and YOLO-tiny can detect images faster, but the detection precision of traditional
SSD algorithms is relatively low. The DenseNet-SSD algorithm we proposed improves the detection
precision to 96.1% from 91.2% for the SSD algorithm, which is higher than the other methods. Although
the detection time increases slightly, it is still far lower than other algorithms. The result can be
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explained by the fully connected layers and the dense connection between the convolutional layers.
The dense connection feature means that the image information of each layer of the feature maps
convolved to retain more image information than ResNet and VGG16, thus it has the advantage of
network prediction to obtain accurate results, and uses multi-layer feature fusion to make the network
more adaptable to defect targets with variable sizes.

However, our model still has some limitations. From the experimental results, we can see that
the recognition precision of our model for dead knots and checking defects is more than 98%, but the
precision rate for live knot defects is still around 90%, and was not significantly improved. The reason
may be that live defects are more similar to background features than dead knots and checking defects.
In addition, from the perspective of the training process of the model, the performance of the model
is closely related to its defect location precision. The higher the location precision, the greater the
classification precision.

5. Conclusions

Over time, many non-destructive wood testing theories and methods have emerged and the
testing accuracy and testing speed have been greatly improved; however, it is often still necessary to
sacrifice one of these to improve the other. Here, we adopted the transfer learning method to apply the
traditional SSD algorithm to solid wood board defect recognition, and the SGD method and the Adam
optimizer applied to the solid wood board defect data were compared in the training performance of
the traditional SSD algorithm to obtain a better loss function optimizer. It was found that compared
with SGD method, the Adam optimizer training could get faster loss value and lower loss value of
0.901, and the detection time was also reduced by 13 ms. However, because the VGG network is
shallow and multiple convolution pooling can easily cause the loss of a lot of feature information,
which causes gradient disappearance, the performance of traditional SSD networks in identifying
defects in solid wood panels was unsatisfactory. To improve this situation and the recognition
accuracy of solid wood board defects, the DenseNet121 network was introduced to replace the VGG16
network in the traditional SSD algorithm, and the idea of residual learning was adopted to increase
the depth of the network while avoiding the loss of feature map information. After experimental
verification, the detection performance of the solid wood board defect detection network improved,
the mean average precision value increased by 4.6% to 96.1%, and the detection time only increased
by about 38 ms, both of which satisfy the needs of wood processing enterprises. Also, the P-R curve
corresponding to various defects was steeper, and the area under the curve also increased in AP value.
The recall and precision rates of the model achieved a better balancing effect than those of traditional
SSD algorithms. The research results have been applied recently in the wood sawing production line
of Jiangjia Machinery Co., Ltd. in Jiangsu Province, China.

However, due to the limitations mentioned above, in the future, we need to explore the reasons
why the precision rate of live joint defects has not been improved and other methods to improve
this, and extend the model to the identification of other wood surface defects such as wormhole,
discoloration and so on. In addition, we plan to study the regression method of target location
information in target detection to improve the positioning precision of the target, thereby improving
the overall precision of the target recognition.
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