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Abstract: Buckling stability of thin films on compliant substrates is universal and essential in
stretchable electronics. The dynamic behaviors of this special system are unavoidable when the
stretchable electronics are in real applications. In this paper, an analytical model is established to
investigate the vibration of post-buckled thin films on a compliant substrate by accounting for the
substrate as an elastic foundation. The analytical predictions of natural frequencies and vibration
modes of the system are systematically investigated. The results may serve as guidance for the
dynamic design of the thin film on compliant substrates to avoid resonance in the noise environment.
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1. Introduction

As is well known, buckling instability appears in the film/substrate system when subjected to
external loading, which is utilized by stretchable electronics to achieve stretchability. Recent advances
in the buckling of thin films on a compliant substrate enable high stretchability for stretchable
electronics [1–8], which can be used as human vital signs monitors [9–13], sensitive electronic
skins [14–16], eye-like digital cameras [17–19], tunable phase optics [20,21], and tunable optical
window [22,23].

In these systems, controlled buckling is generated in thin films deposited onto prestrained
substrate after releasing the prestrain in the substrate [24–32]. The post-buckling morphology can
be global buckling and local buckling with different modulus of substrate [24,25]. Bowden et al. [26]
showed the buckling morphology surface within 100 nm–100 µm range in the film. Furthermore,
Khang et al. [28] illustrated wave length and amplitude with specific external pre-strains through
the experiments and the analytical model. A series of analytical models were developed to precisely
predict the post-buckling shape with different material, geometric, and loading conditions [29,30].

However, in operation conditions, the system undergoes complex noise environment with
electrical, mechanical, and thermal loadings. The dynamic behavior of the post-buckled system is
one of the most important problems to solve for the applications of stretchable electronics. Many
investigations on vibration analysis of post-buckling structures have been carried out in recent
years [33–42]. Nayfeh et al. [33] presented an exact solution for the post-buckling configurations of
beams, investigates the lowest natural frequencies of vibration around each of the first three buckled
configurations beams with various boundary conditions, and discusses the stability of the beam.
Emam et al. [34] derived approximate analytical solutions for the nonlinear free vibrations of laminated
composite beams in prebuckling and postbuckling. Cristobal et al. [35] investigated dynamic and
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impact behaviors of glass fiber reinforced polymer composites. Neukirch et al. [36] investigated the
vibration of post-buckled rods clamped at both ends. Emam and Nayfeh studied the non-linear
response of the buckled beam considering internal resonances [37]. Furthermore, Ansari et al. [38]
derived an analytical model to describe the dynamic behaviors of a postbuckled microscale functionally
graded (FG) beam with modified coupled stress theory. The response of nonlinear vibration of
postbuckled beams has also been investigated numerically [39]. Focusing on stretchable electronics,
Wang et al. [41] established an analytical model to predict the dynamic behaviors of buckled thin films
considering surface effects, and Wang et al. [42] derived an explicit analytical solution for the vibration
mode and the linear natural frequency of a buckled ribbon, which was verified by finite element
method (FEM) and experiments. Tseng et al. [43] derived a solution to the linear natural frequency of
the first-order vibration mode for a buckled ribbon with fixed ends. The former papers have paid much
attention to buckling and dynamic behaviors of thin film. However, they are not directly applicable in
solving the vibration problem for flexible electronics, in which the compliant substrates beneath the
devices vibrate together with thin films. Currently, there are very scant investigations of analytical
solution on the vibration analysis of post-buckled thin films on a compliant substrate. With only
the assistance of numerical simulations, it is difficult to understand the mechanical nature of the
film/substrate system and is time-consuming in practical device design and optimization.

Therefore, this paper aims to establish an analytical model to illustrate the dynamic behaviors of
this special system. However, dynamic loading, temperature change, vibration environment, and other
factors affect the mechanical properties of the substrate, which can make the substrate viscoelastic
instead of just being simplified as springs. This paper mainly focuses on hyperelastic substrate such as
polydimethylsiloxane (PDMS) with small temperature change and low vibration frequency. In such
cases, viscoelasticity of the substrate has negligible influence on the vibration analysis. The outline of
this paper is as follows. Section 2 illustrates the analytical modeling for buckling analysis, and the
vibration analysis is shown in Section 3. Results and discussion are given in Section 4. The main
conclusions are presented in Section 5.

2. Buckling Analysis

Figure 1a illustrates the thin film with thickness of hf on top of a compliant substrate with thickness
of hs subjected to a compressive load P̂ and non-conservative force q̂. Buckling occurs after loading
because the thickness of the film is extremely small, which is very similar to a slender beam buckling.
In the analytical model, the thin film is considered as Euler–Bernoulli beam with fixed condition at
both ends, since the thickness of film hf is far less than the length L [42]. Planes of the cross sections
remain planes after deformation, and the plane of the cross section is still perpendicular to the axis
after deformation. It is unnecessary to employ the von Karman plate theory to model the film because
it leads to lengthy solutions not convenient for practical use due to the in-plane displacement and
the shear traction [44]. A common approximation is to ignore the in-plane displacement and the
shear traction [45,46]. The film deformed out of a plane only can be modeled into a beam, which
greatly simplifies theoretical analysis [24]. The compliant substrate is considered to be a Winkler elastic
foundation [47–50], whose reaction at any point is proportional to the deflection, with stiffness k̂ and
deflection of the thin film ŵ shown in Figure 1b, where ŵ is the function of Cartesian coordinate x̂,
which is along the axial direction of the thin film.
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∂x̂ )
2
dx̂)δŵ]
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where t̂ is time. In consideration of the arbitrariness of variation and boundary conditions for fixed
support at both ends, the governing equations are obtained:

m
∂2ŵ
∂t̂2

+ EI
∂4ŵ
∂x̂4

+ P
∂2ŵ
∂x̂2 + k̂ŵ−

EA
2L

∂2ŵ
∂x̂2

∫ L

0
(
∂ŵ
∂x̂

)
2
dx̂− q̂ = 0 (5)

The boundary condition is ∂ŵ/∂x̂ = 0 and ŵ = 0 at x̂ = 0 and x̂ = L, respectively. For the
convenience of deduction, we use the non-dimensional variables as below

x = x̂
L , w = ŵ

r , t = t̂
√

EI
mL4 ,

q = q̂ L4

rEI , P = P̂L2

EI , k = k̂ L4

EI

(6)

where r =
√

I/A is the radius of gyration of the cross section. Substituting Equation (6) into
Equation (5) gives,

..
w + wIV + Pw′′ + kw−

1
2

w′′
∫ 1

0
w′2dx− q = 0, (7)

for fixed condition at both ends,

w′ = 0 and w = 0, at(x = 0, x = 1), (8)

where superscript “.” and “′” stand for the derivation to t and x, respectively.
In order to solving buckling problem first, the buckling equilibrium equation can be obtained

through omitting the time term and transverse load term from Equation (7) and denoting the buckled
configuration by Φ(x), 

ΦIV + PΦ′′ − 1
2 Φ′′

∫ 1
0 Φ′2dx + kw = 0

Φ′ = 0, (x = 0, x = 1)
Φ′ = 0, (x = 0, x = 1)

(9)

Here, assuming σ2 = P− κ = P− 1
2

∫ 1
0 Φ′2dx is a constant, then Equation (9) becomes

ΦIV + σ2Φ′′ + kΦ = 0
Φ′ = 0, (x = 0, x = 1)
Φ = 0, (x = 0, x = 1)

(10)

When σ4 > 4k, the general solution of Equation (10) can be assumed as

Φ(x) = c1 sin(k1x) + c2 cos(k1x) + c3 sin(k2x) + c4 cos(k2x) (11)

where k1 =
√(
σ2 +

√

σ4 − 4k
)
/2 and k2 =

√(
σ2 −

√

σ4 − 4k
)
/2; ci (i = 1,2,3,4) is the coefficient to be

determined by the boundary conditions. Substituting Equation (11) into the four boundary conditions
of Equation (10) derives

Ac = 0, (12)

where,

A =


0 1 0 1

sin(k1) cos(k1) sin(k2) sin(k2)

k1 cos(k1) −k1 sin(k1) k2 cos(k2) −k2 sin(k2)

k1 0 k2 0

 , c =


c1

c2

c3

c4

 (13)
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Demanding that the determinant of the coefficient matrix equals zero, σ can be obtained via
solving the following characteristic equation,

k1k2 cos(k1)
2
− 2k1k2 cos(k1) cos(k2) + k1k2 sin(k1)

2
− k1

2 sin(k1) sin(k2)

−k2
2 sin(k1) sin(k2) + k1k2 cos(k2)

2 + k1k2 sin(k2)
2 = 0

(14)

It can be seen from the equation σ2 = P− κ = P− 1
2

∫ 1
0 Φ′2dx that P ≥ σ2, which means that the

critical buckling force is σ2. We can obtain the value of ci by solving the Equation (12),

c1 = −c k2
k1

c2 = c k1 sin(k2)−k2 sin(k1)
−k1 cos(k1)+k1 cos(k2)

,

c3 = c

c4 = −c k1 sin(k2)−k2 sin(k1)
−k1 cos(k1)+k1 cos(k2)

(15)

where c is constant. Substituting Equation (15) and Equation (11) into σ2 = P − κ = P − 1
2

∫ 1
0 Φ′2dx

gives the value of c, and the bucking mode Φ(x) can be obtained.

3. Vibration Analysis of Post-Buckled System

In order to investigate the vibration problem of the beam near the buckling configuration, we need
to introduce a small dynamic displacement ε(x, t),

w(x, t) = Φ(x) + ε(x, t) (16)

Substituting Equation (16) into Equation (7) gives,

εIV +
..
ε+ k

.
ε+ σ2ε′′ =

1
2

Φ′′
∫ 1

0

(
2Φ′ε′ + ε′2

)
dx +

1
2
ε′′

∫ 1

0

(
2Φ′ε′ + ε′2

)
dx + q, (17)

with boundary conditions: ε = 0 and ε′ = 0 at x = 0, x = 1. For the post-buckling linear free vibration
problem, the post-buckling vibration equilibrium equation can be derived by omitting the nonlinear
term and the transverse load term from Equation (17),

..
ε+ εIV + k

.
ε+ σ2ε′′ = Φ′′

∫ 1

0
Φ′ε′dx (18)

We assume that ε(x, t) has the following form,

ε(x, t) = ξ(x)eiωt, (19)

where ξ(x) denotes the post-buckling vibrational mode, and ω denotes the vibration frequency.
Substituting Equation (19) into Equation (18),

ξIV + σ2ξ′′ −ω2ξ+ kξ = Φ′′
∫ 1

0 ΦAξ′dx
ξ = 0 (x = 0, 1)
ξ′ = 0 (x = 0, 1)

(20)

The general solution of Equation (20) can be expressed as,

ξ(x) = ξh(x) + ξp(x), (21)
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where ξh(x) is the general solution of the equation ξIV + σ2ξ′′ − (ω2
− k)ξ = 0, which can be expressed

as when ω2 > k,

ξh(x) = d1 sin(s1x) + d2 cos(s1x) + d3sinh(s2x) + d4 cosh(s2x), (22)

where di are constants, and si is

s1,2 =

(
±

1
2
σ2 +

1
2

√
σ4 + 4(ω2 − k)

) 1
2

(23)

The particular solution ξp(x) can satisfy Equation (20),

ξp
IV + σ2ξp

′′
−ω2ξp + kξp = Φ′′

∫ 1

0
Φ′ξh

′dx + Φ′′
∫ 1

0
Φ′ξp

′dx (24)

Assuming that
ξp(x) = d5Φ′′ (25)

Substituting Equation (25) into Equation (24) considering ΦIV + σ2Φ′′ + kΦ = 0 provides,∫ 1

0
Φ′ξh

′dx + d5(ω
2 +

∫ 1

0
Φ′Φ′′′dx) = 0 (26)

As a result, the solution of Equation (20) can be expressed as,

ξ(x) = d1 sin(s1x) + d2 cos(s1x) + d3sinh(s2x) + d4 cosh(s2x) + d5Φ′′ (27)

Then, substituting Φ(x) and ξ(x) into Equation (26) and boundary conditions of Equation (20)
gives homogeneous linear equations, which can be rewritten as,

Bd=0, (28)

where

B =


0 1 0 1 −c2k1

2
− c4k2

2

s1 0 s2 0 −c1k1
3
− c3k2

3

sin(s1) cos(s1) sinh(s2) cosh(s2) α6

s1 cos(s1) −s1 sin(s1) s2 cosh(s2) s2sinh(s2) α7

α1 α2 α3 α4 ω2 + α5


, d =


d1

d2

d3

d4

d5


(29)

where αi are constants as below,

α1 =
∫ 1

0 Φ′ sin′(s1x)dx

α2 =
∫ 1

0 Φ′ cos′(s1x)dx

α3 =
∫ 1

0 Φ′sinh′(s2x)dx

α4 =
∫ 1

0 Φ′ cosh′(s2x)dx

α5 =
∫ 1

0 Φ′Φ′′′dx
α6 = −c1k1

3 cos(k1) + c1k1
3 sin(k1) − c1k2

3 cos(k2) + c1k2
3 sin(k2)

α7 = −c1k1
3 cos(k1) + c1k1

3 sin(k1) − c1k2
3 cos(k2) + c1k2

3 sin(k2)

(30)

Since di cannot simultaneously be zero, det(B) = 0, which provides the condition to obtain
the value of ω. Furthermore, the vibrational mode ξ(x) corresponding to natural frequency ω can
be obtained.
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4. Results and Discussion

The effective stiffness of substrate k can have significant effects on the buckling behaviors of the
thin film. Figure 2 shows the deflection of the first-order buckling mode in the films with different
substrate stiffness with normalized pre-stress of 10 × π2. When the pre-stress is chosen as 0.001 very
close to zero, the deflection can nearly equal the results obtained without substrate [29], which can
verify the accuracy of the analytical model in the post-buckling analysis. As substrate stiffness increases,
the Young’s modulus of compliant substrate increases, and the deflection of the thin films decreases.
When substrate stiffness changes from 0 to 500, the deflection of the film decreases from 4.9 to 3.0.
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The first-order critical buckling force and the buckling modes can also be affected by substrate
stiffness, as shown in Figure 3. When k is lower than 877, the buckling mode is shown in Figure 3A,
but with increase of k, the first-order buckling mode gradually varies from global buckling to local
buckling. The values of k at the transition points between the first fourth buckling modes are 877, 6225,
and 21,750, respectively. Figure 3D exhibits the first-order buckling mode with k of 5.5 × 107 where the
number of wrinkles reaches up to 27, which is the typical morphing of local buckling. For comparisons,
the number of wrinkles is just two or three when k belongs to the range of 877~6225 or 6225~21,750,
respectively. The buckling modes and the first-order critical buckling force obtained from theoretical
calculation agree reasonably well with simulation results.
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Figure 3. The first-order critical buckling force versus substrate stiffness comparison between theory
and simulation when P = 106. The first-order buckling mode with (A) k = 0~877, (B) k = 877~6225,
(C) k = 6225~21,750, and (D) when k = 5.5 × 107.

Figure 4 illustrates the deflections of first and second vibration modes of the post-buckled thin film
in the first-order buckling mode with compressive load of 10 × π2. When k is close to zero, the vibration
mode can be validated by the results obtained by Ref. [29], and if k is larger, the deflections obviously
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decrease. When k increases from 0 to 500, the deflection of the first-order vibration mode decreases
from 57.6 to 40.9.Sensors 2020, 20, x FOR PEER REVIEW 8 of 12 

 

 
Figure 4. (a) The first order and (b) the second order vibration modes of the first-order buckling with 
different substrate stiffness or without substrate when P = 10 × π2. 

The substrate stiffness can have negative effects on the natural frequencies, which can be found 
in Figure 5. Blue lines and red lines in the main figure stand for the first and the second order natural 
frequencies for the system. However, the corresponding buckling modes are shown in the graphs A–
D, where A and B show the vibration mode in the first buckling mode; C and D show the vibration 
modes in the second buckling mode. With increase of k, the first linear natural frequency and the 
second linear natural frequency both decrease gradually, and the first vibration mode disappears 
when the first nature frequency decreases to 24.13 below k  in first buckling mode and decreases 
to 60.71 below k  in second buckling mode, because Equation (22) turns into the condition 

2 kω > . 

 
Figure 5. The first order (blue line) and the second order (red line) natural frequencies in the first two 
orders buckling modes with different substrate stiffness when P = 106. (A,B) are the first order (blue 
line) and the second order (red line) vibration modes in the first order buckling mode (dot line). (C,D) 
are the first order (blue line) and the second order (red line) vibration mode in the second order 
buckling mode (dot line). 

A typical stretchable electronics example, mechanical response of copper thin film on PDMS 
substrate subjected to a compressive load, is used to demonstrate the application of theoretical 
calculation. The buckling of copper thin film on PDMS substrate is widely used in various flexible 
electronic devices as the bridges in “island-bridge” [51,52]. The elastic modulus Es, the width b, the 
thickness hs, and the length L of PDMS substrate are 2 MPa, 4 mm, 1 mm, and 10 mm, respectively. 
The elastic modulus Ef and the thickness hf of copper thin film are 71,000 MPa and 0.01 mm. 
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The substrate stiffness can have negative effects on the natural frequencies, which can be found in
Figure 5. Blue lines and red lines in the main figure stand for the first and the second order natural
frequencies for the system. However, the corresponding buckling modes are shown in the graphs A–D,
where A and B show the vibration mode in the first buckling mode; C and D show the vibration modes
in the second buckling mode. With increase of k, the first linear natural frequency and the second
linear natural frequency both decrease gradually, and the first vibration mode disappears when the
first nature frequency decreases to 24.13 below

√
k in first buckling mode and decreases to 60.71 below

√
k in second buckling mode, because Equation (22) turns into the condition ω2 > k.
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Figure 5. The first order (blue line) and the second order (red line) natural frequencies in the first
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buckling mode (dot line).

A typical stretchable electronics example, mechanical response of copper thin film on PDMS
substrate subjected to a compressive load, is used to demonstrate the application of theoretical
calculation. The buckling of copper thin film on PDMS substrate is widely used in various flexible
electronic devices as the bridges in “island-bridge” [51,52]. The elastic modulus Es, the width b,
the thickness hs, and the length L of PDMS substrate are 2 MPa, 4 mm, 1 mm, and 10 mm, respectively.
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The elastic modulus Ef and the thickness hf of copper thin film are 71,000 MPa and 0.01 mm. Meanwhile,
the structure with fixed condition at both ends is subjected to a compressive load P̂ = 2.367 × 10−4 N.
The dimensionless quantities k and P are obtained by Equation (6),

P = 5000, k = 3.38× 106 (31)

The mechanical response of this structure can be obtained by the theoretical analysis. The first
order critical buckling force is 3677.2, and the first two orders natural frequencies in first buckling mode
are 75.40 and 452.22. Figure 6 illustrates the first order buckling mode and its first two vibration modes.
The wrinkle mode is helpful to understand the mechanical behavior of stretchable electronics [53,54].
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5. Conclusions

In summary, an analytical model was developed for the dynamic behaviors of post-buckled thin
films on a compliant substrate. The effects on buckling modes, buckling critical force, and vibration
modes via stiffness of the substrate were investigated systematically. The increase of substrate stiffness
can obviously reduce the deflection of post-buckling modes and vibration modes. Meanwhile, the first
order buckling mode gradually varies from global buckling to local buckling, and the buckling mode
is wrinkled. With the increase of substrate stiffness, the natural frequencies in the first two orders
buckling modes drop noticeably. The results serve as guidelines for dynamic design of stretchable
electronics to avoid resonance in a complicated noise environment, which is of great significance for
the accurate measurement and the long-term use of flexible electronic devices [9–14] integrated on
elastic substrate worked in complex service environments.

Author Contributions: Conceptualization, Y.L.; Investigation, X.F. and Y.W.; Writing—original draft, Y.L.;
Writing—review & editing, H.F. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the National Natural Science Foundation of China (Grant Nos. 11772030,
61933002 and 11972325), the Aeronautical Science Foundation of the PR China (2018ZC51030), the Public Welfare
Research Program of Jiaxing (No. 2018AY32041), and the Open Foundation of IFET (No. 2019KF1101).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rogers, J.A. Wearable Electronics Nanomesh on-skin electronics. Nat. Nanotechnol. 2017, 12, 839–840.
[CrossRef] [PubMed]

2. Zhang, Y.H.; Huang, Y.G.; Rogers, J.A. Mechanics of stretchable batteries and supercapacitors. Curr. Opin.
Solid State Mater. Sci. 2015, 19, 190–199. [CrossRef]

http://dx.doi.org/10.1038/nnano.2017.150
http://www.ncbi.nlm.nih.gov/pubmed/28737749
http://dx.doi.org/10.1016/j.cossms.2015.01.002


Sensors 2020, 20, 5425 10 of 12

3. Ma, Q.; Cheng, H.Y.; Jang, K.I.; Luan, H.W.; Hwang, K.C.; Rogers, J.A.; Huang, Y.G.; Zhang, Y.H. A nonlinear
mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures.
J. Mech. Phys. Solids 2016, 90, 179–202. [CrossRef] [PubMed]

4. Song, J. Mechanics of stretchable electronics. Curr. Opin. Solid State Mater. Sci. 2015, 19, 160–170. [CrossRef]
5. Song, J.Z.; Feng, X.; Huang, Y.G. Mechanics and thermal management of stretchable inorganic electronics.

Natl. Sci. Rev. 2016, 3, 128–143. [CrossRef]
6. Ma, Y.J.; Zhang, Y.C.; Cai, S.S.; Han, Z.Y.; Liu, X.; Wang, F.L.; Cao, Y.; Wang, Z.H.; Li, H.F.; Chen, Y.H.; et al.

Flexible Hybrid Electronics for Digital Healthcare. Adv. Mater. 2020, 32, 1902062. [CrossRef]
7. Yan, D.; Chang, J.; Zhang, H.; Liu, J.; Song, H.; Xue, Z.; Zhang, F.; Zhang, Y. Soft three-dimensional network

materials with rational bio-mimetic designs. Nat. Commun. 2020, 11, 1180. [CrossRef]
8. Wu, H.; Tian, Y.; Luo, H.B.; Zhu, H.; Duan, Y.Q.; Huang, Y.A. Fabrication Techniques for Curved Electronics

on Arbitrary Surfaces. Adv. Mater. Technol. 2020, 5, 29. [CrossRef]
9. Li, H.C.; Xu, Y.; Li, X.M.; Chen, Y.; Jiang, Y.; Zhang, C.X.; Lu, B.W.; Wang, J.; Ma, Y.J.; Chen, Y.H.; et al.

Epidermal Inorganic Optoelectronics for Blood Oxygen Measurement. Adv. Healthc. Mater. 2017, 6, 1601063.
[CrossRef]

10. Wang, C.; Hwang, D.; Yu, Z.B.; Takei, K.; Park, J.; Chen, T.; Ma, B.W.; Javey, A. User-interactive electronic
skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904. [CrossRef]

11. Webb, R.C.; Ma, Y.J.; Krishnan, S.; Li, Y.H.; Yoon, S.; Guo, X.G.; Feng, X.; Shi, Y.; Seidel, M.; Cho, N.H.; et al.
Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular
blood flow. Sci. Adv. 2015, 1, 1500701. [CrossRef] [PubMed]

12. Gao, L.; Zhang, Y.H.; Malyarchuk, V.; Jia, L.; Jang, K.I.; Webb, R.C.; Fu, H.R.; Shi, Y.; Zhou, G.Y.; Shi, L.K.; et al.
Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of
the skin. Nat. Commun. 2014, 5, 1–10. [CrossRef] [PubMed]

13. Ma, Y.; Choi, J.; Hourlier-Fargette, A.; Xue, Y.; Chung, H.U.; Lee, J.Y.; Wang, X.; Xie, Z.; Kang, D.; Wang, H.; et al.
Relation between blood pressure and pulse wave velocity for human arteries. Proc. Natl. Acad. Sci. USA
2018, 115, 11144–11149. [CrossRef] [PubMed]

14. Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor
matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004,
101, 9966–9970. [CrossRef] [PubMed]

15. Kim, J.; Lee, M.; Shim, H.J.; Ghaffari, R.; Cho, H.R.; Son, D.; Jung, Y.H.; Soh, M.; Choi, C.; Jung, S.; et al.
Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 1–11. [CrossRef]

16. Yang, S.X.; Chen, Y.C.; Nicolini, L.; Pasupathy, P.; Sacks, J.; Su, B.; Yang, R.; Sanchez, D.; Chang, Y.F.;
Wang, P.L.; et al. “Cut-and-Paste” Manufacture of Multiparametric Epidermal Sensor Systems. Adv. Mater.
2015, 27, 6423–6430. [CrossRef]

17. Jin, H.C.; Abelson, J.R.; Erhardt, M.K.; Nuzzo, R.G. Soft lithographic fabrication of an image sensor array on
a curved substrate. J. Vac. Sci. Technol. B 2004, 22, 2548–2551. [CrossRef]

18. Ko, H.C.; Stoykovich, M.P.; Song, J.Z.; Malyarchuk, V.; Choi, W.M.; Yu, C.J.; Geddes, J.B.; Xiao, J.L.; Wang, S.D.;
Huang, Y.G.; et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics.
Nature 2008, 454, 748–753. [CrossRef]

19. Jung, I.W.; Xiao, J.L.; Malyarchuk, V.; Lu, C.F.; Li, M.; Liu, Z.J.; Yoon, J.; Huang, Y.G.; Rogers, J.A. Dynamically
tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl. Acad.
Sci. USA 2011, 108, 1788–1793. [CrossRef]

20. Harrison, C.; Stafford, C.M.; Zhang, W.H.; Karim, A. Sinusoidal phase grating created by a tunably buckled
surface. ApPhL 2004, 85, 4016–4018. [CrossRef]

21. Yang, D.; He, L.H. Photo-triggered wrinkling of glassy nematic films. SmMaS 2014, 23. [CrossRef]
22. Li, Z.W.; Zhai, Y.; Wang, Y.; Wendland, G.M.; Yin, X.B.; Xiao, J.L. Harnessing Surface Wrinkling-Cracking

Patterns for Tunable Optical Transmittance. Adv. Opt. Mater. 2017, 5, 170425. [CrossRef]
23. Lee, E.; Zhang, M.L.; Cho, Y.; Cui, Y.; Van der Spiegel, J.; Engheta, N.; Yang, S. Tilted Pillars on Wrinkled

Elastomers as a Reversibly Tunable Optical Window. Adv. Mater. 2014, 26, 4127–4133. [CrossRef] [PubMed]
24. Song, J.; Jiang, H.; Liu, Z.J.; Khang, D.Y.; Huang, Y.; Rogers, J.A.; Lu, C.; Koh, C.G. Buckling of a stiff thin film

on a compliant substrate in large deformation. IJSS 2008, 45, 3107–3121. [CrossRef]
25. Wang, S.D.; Song, J.Z.; Kim, D.H.; Huang, Y.G.; Rogers, J.A. Local versus global buckling of thin films on

elastomeric substrates. ApPhL 2008, 93, 023126. [CrossRef]

http://dx.doi.org/10.1016/j.jmps.2016.02.012
http://www.ncbi.nlm.nih.gov/pubmed/27087704
http://dx.doi.org/10.1016/j.cossms.2015.01.004
http://dx.doi.org/10.1093/nsr/nwv078
http://dx.doi.org/10.1002/adma.201902062
http://dx.doi.org/10.1038/s41467-020-14996-5
http://dx.doi.org/10.1002/admt.202000093
http://dx.doi.org/10.1002/adhm.201601013
http://dx.doi.org/10.1038/nmat3711
http://dx.doi.org/10.1126/sciadv.1500701
http://www.ncbi.nlm.nih.gov/pubmed/26601309
http://dx.doi.org/10.1038/ncomms5938
http://www.ncbi.nlm.nih.gov/pubmed/25234839
http://dx.doi.org/10.1073/pnas.1814392115
http://www.ncbi.nlm.nih.gov/pubmed/30322935
http://dx.doi.org/10.1073/pnas.0401918101
http://www.ncbi.nlm.nih.gov/pubmed/15226508
http://dx.doi.org/10.1038/ncomms6747
http://dx.doi.org/10.1002/adma.201502386
http://dx.doi.org/10.1116/1.1795249
http://dx.doi.org/10.1038/nature07113
http://dx.doi.org/10.1073/pnas.1015440108
http://dx.doi.org/10.1063/1.1809281
http://dx.doi.org/10.1088/0964-1726/23/4/045012
http://dx.doi.org/10.1002/adom.201700425
http://dx.doi.org/10.1002/adma.201400711
http://www.ncbi.nlm.nih.gov/pubmed/24710742
http://dx.doi.org/10.1016/j.ijsolstr.2008.01.023
http://dx.doi.org/10.1063/1.2956402


Sensors 2020, 20, 5425 11 of 12

26. Huck, W.T.S.; Bowden, N.; Onck, P.; Pardoen, T.; Hutchinson, J.W.; Whitesides, G.M. Ordering of
spontaneously formed buckles on planar surfaces. Langmuir 2000, 16, 3497–3501. [CrossRef]

27. Sharp, J.S.; Jones, R.A.L. Micro-buckling as a route towards surface Patterning. Adv. Mater. 2002, 14, 799–802.
[CrossRef]

28. Khang, D.Y.; Jiang, H.Q.; Huang, Y.; Rogers, J.A. A stretchable form of single-crystal silicon for
high-performance electronics on rubber substrates. Science 2006, 311, 208–212. [CrossRef]

29. Chen, X.; Hutchinson, J.W. Herringbone buckling patterns of compressed thin films on compliant substrates.
J. Appl. Mech. Trans. ASME 2004, 71, 597–603. [CrossRef]

30. Huang, Z.Y.; Hong, W.; Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate.
J. Mech. Phys. Solids 2005, 53, 2101–2118. [CrossRef]

31. Su, Y.W.; Zhao, H.Y.; Liu, S.Y.; Li, R.; Wang, Y.H.; Wang, Y.Z.; Bian, J.; Huang, Y.A. Buckling of beams with
finite prebuckling deformation. IJSS 2019, 165, 148–159. [CrossRef]

32. Pang, W.; Cheng, X.; Zhao, H.; Guo, X.; Ji, Z.; Li, G.; Liang, Y.; Xue, Z.; Song, H.; Zhang, F.; et al.
Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based
on dielectric elastomer platforms. Natl. Sci. Rev. 2020, 7, 342–354. [CrossRef]

33. Nayfeh, A.H.; Emam, S.A. Exact solution and stability of postbuckling configurations of beams. Nonlinear
Dyn. 2008, 54, 395–408. [CrossRef]

34. Emam, S.A. Approximate analytical solutions for the nonlinear free vibrations of composite beams in
buckling. CmpSt 2013, 100, 186–194. [CrossRef]

35. Cristobal, G.; Irina, T.; Andrea, Z. The Effect of Polycaprolactone Nanofibers on the Dynamic and Impact
Behavior of Glass Fibre Reinforced Polymer Composites. J. Compos. Sci. 2018, 2, 43.

36. Neukirch, S.; Frelat, J.; Goriely, A.; Maurini, C. Vibrations of post-buckled rods: The singular inextensible
limit. J. Sound Vibrat. 2012, 331, 704–720. [CrossRef]

37. Emam, S.A.; Nayfeh, A.H. Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. Int. J.
Non Linear Mech. 2013, 52, 12–25. [CrossRef]

38. Ansari, R.; Ashrafi, M.A.; Pourashraf, T.; Hemmatnezhad, M. Vibration Analysis of a Postbuckled Microscale
FG Beam Based on Modified Couple Stress Theory. SV 2014, 2014. [CrossRef]

39. Shojaei, M.F.; Ansari, R.; Mohammadi, V.; Rouhi, H. Nonlinear forced vibration analysis of postbuckled
beams. Arch. Appl. Mech. 2014, 84, 421–440. [CrossRef]

40. Emam, S.A.; Eltaher, M.A.; Khater, M.E.; Abdalla, W.S. Postbuckling and Free Vibration of Multilayer
Imperfect Nanobeams under a Pre-Stress Load. Appl. Sci. 2018, 8, 2238. [CrossRef]

41. Wang, Y.; Feng, X. Dynamic behaviors of controllably buckled thin films. ApPhL 2009, 95, 231915. [CrossRef]
42. Wang, H.L.; Ning, X.; Li, H.B.; Luan, H.W.; Xue, Y.G.; Yu, X.G.; Fan, Z.C.; Li, L.M.; Rogers, J.A.;

Zhang, Y.H.; et al. Vibration of mechanically-assembled 3D microstructures formed by compressive
buckling. J. Mech. Phys. Solids 2018, 112, 187–208. [CrossRef] [PubMed]

43. Tseng, W.Y.; Dugundji, J. Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation. J. Appl. Mech.
1971, 38, 467. [CrossRef]

44. Huang, R. Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 2005, 53,
63–89. [CrossRef]

45. Sridhar, N.; Srolovitz, D.J.; Cox, B.N. Buckling and post-buckling kinetics of compressed thin films on viscous
substrates. AcMat 2002, 50, 2547–2557. [CrossRef]

46. Gioia, G.; DeSimone, A.; Ortiz, M.; Cuitino, A.M. Folding energetics in thin-film diaphragms. Proc. R. Soc.
A-Math. Phys. Eng. Sci. 2002, 458, 1223–1229. [CrossRef]

47. Younesian, D.; Hosseinkhani, A.; Askari, H.; Esmailzadeh, E. Elastic and viscoelastic foundations: A review
on linear and nonlinear vibration modeling and applications. Nonlinear Dyn. 2019, 97, 853–895. [CrossRef]

48. Kounadis, A.N.; Mallis, J.; Sbarounis, A. Postbuckling analysis of columns resting on an elastic foundation.
Arch. Appl. Mech. 2006, 75, 395–404. [CrossRef]

49. Wen, C.Q.; Tang, L.; Yang, G.T. Buckling and post-buckling of pinned Euler beams on weakened Winkler
foundation under thermal loading. JThSt 2020, 43, 529–542. [CrossRef]

50. Akgoz, B.; Civalek, O. Bending analysis of FG microbeams resting on Winkler elastic foundation via strain
gradient elasticity. CmpSt 2015, 134, 294–301. [CrossRef]

51. Kim, D.; Shin, G.; Kang, Y.J.; Kim, W.; Ha, J.S. Fabrication of a Stretchable Solid-State Micro-Supercapacitor
Array. ACS Nano 2013, 7, 7975–7982. [CrossRef]

http://dx.doi.org/10.1021/la991302l
http://dx.doi.org/10.1002/1521-4095(20020605)14:11&lt;799::AID-ADMA799&gt;3.0.CO;2-D
http://dx.doi.org/10.1126/science.1121401
http://dx.doi.org/10.1115/1.1756141
http://dx.doi.org/10.1016/j.jmps.2005.03.007
http://dx.doi.org/10.1016/j.ijsolstr.2019.01.027
http://dx.doi.org/10.1093/nsr/nwz164
http://dx.doi.org/10.1007/s11071-008-9338-2
http://dx.doi.org/10.1016/j.compstruct.2012.12.044
http://dx.doi.org/10.1016/j.jsv.2011.09.021
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.01.018
http://dx.doi.org/10.1155/2014/654640
http://dx.doi.org/10.1007/s00419-013-0809-7
http://dx.doi.org/10.3390/app8112238
http://dx.doi.org/10.1063/1.3273385
http://dx.doi.org/10.1016/j.jmps.2017.12.002
http://www.ncbi.nlm.nih.gov/pubmed/29713095
http://dx.doi.org/10.1115/1.3408799
http://dx.doi.org/10.1016/j.jmps.2004.06.007
http://dx.doi.org/10.1016/S1359-6454(02)00082-4
http://dx.doi.org/10.1098/rspa.2001.0921
http://dx.doi.org/10.1007/s11071-019-04977-9
http://dx.doi.org/10.1007/s00419-005-0434-1
http://dx.doi.org/10.1080/01495739.2020.1734128
http://dx.doi.org/10.1016/j.compstruct.2015.08.095
http://dx.doi.org/10.1021/nn403068d


Sensors 2020, 20, 5425 12 of 12

52. Xu, S.; Zhang, Y.H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J.A.; Su, Y.W.; Su, J.; Zhang, H.G.; et al. Stretchable
batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun.
2013, 4, 1–8. [CrossRef] [PubMed]

53. Chen, T.; Xue, Y.H.; Roy, A.K.; Dai, L.M. Transparent and Stretchable High-Performance Supercapacitors
Based on Wrinkled Graphene Electrodes. ACS Nano 2014, 8, 1039–1046. [CrossRef] [PubMed]

54. Zhao, C.; Wang, C.Y.; Yue, Z.L.; Shu, K.W.; Wallace, G.G. Intrinsically Stretchable Supercapacitors Composed
of Polypyrrole Electrodes and Highly Stretchable Gel Electrolyte. ACS Appl. Mater. Interfaces 2013, 5,
9008–9014. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/ncomms2553
http://www.ncbi.nlm.nih.gov/pubmed/23443571
http://dx.doi.org/10.1021/nn405939w
http://www.ncbi.nlm.nih.gov/pubmed/24350978
http://dx.doi.org/10.1021/am402130j
http://www.ncbi.nlm.nih.gov/pubmed/23947753
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Buckling Analysis 
	Vibration Analysis of Post-Buckled System 
	Results and Discussion 
	Conclusions 
	References

