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Abstract: Deep learning based methods have achieved state-of-the-art results on the task of ship type
classification. However, most existing ship type classification algorithms take time-frequency (TF)
features as input, the underlying discriminative information of these features has not been explored
thoroughly. This paper proposes a novel feature optimization method which is designed to minimize
an objective function aimed at increasing inter-class and reducing intra-class feature distance for ship
type classification. The objective function we design is able to learn a center for each class and make
samples from the same class closer to the corresponding center. This ensures that the features maximize
underlying discriminative information involved in the data, particularly for some targets that usually
confused by the conventional manual designed feature. Results on the dataset from a real environment
show that the proposed feature optimization approach outperforms traditional TF features.
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1. Introduction

Underwater acoustic target recognition based on radiated noise is one of the main applications
of a passive sonar system. Based on the complexity of sound propagation in shallow sea and high
background noise in a sea area, the sonar sensors may receive quite different audio signals coming from
the same target. In the last decades, the traditional statistical feature like LoFar [1] and DEMON [2] have
dominated many application scenarios of underwater acoustic target recognition until the development
of Deep Neural Networks (DNN).

DNN have received extensive attention in underwater tasks in the past few years. Especially,
several new attempts have been made to this field in order to improve ship type classification capability
automatically in an unattended scene. The improvement of the system is mainly in two aspects:
feature extraction and classifier training. In [3], wave structure was utilized straightly with support
vector machines. After that, a deep learning model was used for feature extraction automatically [4]
and complex classification model in underwater acoustic targets recognition. A time-delay neural
network (TDNN) and convolutional neural network (CNN) were introduced for underwater acoustic
targets recognition in [5,6] respectively. However, most deep learning-based approaches focused on
utilizing the TF feature for deep learning classification models of ship data, ignoring the importance
of extracting stable feature of targets. Especially due to changes in the underwater environment,
the received signal may mislead the judgement from well-trained sonarmen. Hence, how to improve
the discrimination ability of signal characteristics has attracted many researchers’ attention.
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In contrast to most existing algorithms [7-10], in this paper, we try to improve the discriminative
capability of features by introducing the idea of feature optimization into the underwater acoustic
targets, firstly embedding the extractor. A feature optimization framework, including model structure
and training strategy is proposed to enhance the discriminative capability of features. Some training
criteria (loss functions) are utilized to constrain the distance between categories in training process,
like center loss [11] and triplet loss [12]. The final objective function is focused on increasing inter-class
and reducing intra-class distance. The result shows that the proposed feature optimization approach
outperforms traditional TF features using DNN classifier with the same structure.

The rest of the paper is organized as follows. Section 2 gives an introduction of the auditory
inspired deep neural network for ship type classification. The optimization framework we proposed
is presented in Section 3. Section 4 compares the experimental results with traditional method at
same dataset and describes the effect of feature optimization by feature visualization, and Section 5
concludes this work.

2. Architecture of Deep Neural Network for Ship Classification

The overview of the basic framework is shown in Figure 1. It mainly includes two parts,
feature extraction and classifier design. For feature extraction, the raw underwater acoustic data
is taken as input, then we extract the TF feature with temporal information. On the basis of TF features,
filter bank (Fbank) can be obtained by designing different filter banks, which have different weights in
different frequency ranges. Furthermore, mel frequency cepstral coefficents (MFCC) can be obtained
by using discrete cosine transform (DCT) based on Fbank. Fbank and MFCC are not only common
features in traditional target classification, but also widely used in classification tasks based on deep
learning. Generally, traditional feature optimization methods such as cepstral mean and variance
normalization (CMVN) or L1/L2 normalization [13,14] can improve feature discrimination, but they
just refine the features at the mathematical level and ignore the degree of association within the class.
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Figure 1. The architecture of Deep Neural Network (DNN) for ship classification.

As a classifier, DNN has replaced SVM and other traditional classification frameworks for more
and more tasks, and has become a research hotspot. It is composed of an input layer, hidden layer and
output layer, and there is no limit on the number of hidden layers. In deep learning, DNNs with two
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or more hidden layers are used generally. TDNN [15] or long short-term memory (LSTM) [16] are a
better choice for samples with temporal information to make final classification.

3. Feature Optimization Learning for Ship Classification

3.1. Motivation

Different from the air channel, the underwater acoustic channel is affected by temperature and
sea conditions easily, which leads to underwater sound speed profile (S55P) change and further affects
the transmission channel [17,18]. This causes differences in the received signals from the same target,
which seriously affects the performance of the classification model trained by these data.

In classification tasks, obtaining a robust and discriminative representation is crucial for better
performance [19-21]. Usually, this can be partly achieved by exploiting the TF or DNN-based
features [6,22]. However, these features are obtained only from the current signal and the classifiers
only focus on finding a decision boundary to separate different classes, without considering the
intra-class compactness of the features.

3.2. Center Loss

Center loss [11] is proposed to compensate for softmax loss in face verification. It learns a center
for the features of each class and meanwhile tries to pull the deep features of the same class close to
the corresponding center. Basically, for classification task {(x;, y;) }, consisting of N samples x; and
their corresponding labels y; € {1,2,..., Y}. x; is embedding into a new vector f(x;) with a DNN [23].
Center loss can be formulated as:

L= L 0(fx0 ), m

where ¢y, is the center of class y;, function D(-) stands for the distance function. During training,
center loss will encourage instances between samples of the same classes to be closer to their learnable
class center. However, since the parametric centers are updated at each iteration based on a mini-batch
instead of the whole dataset, which is unstable. It usually has to be under the joint supervision of
softmax loss during training.

3.3. Triplet Loss

Triplet loss is motivated in [12] for image verification. It is expected to make sample x{ closer to
all other samples xf (positive) of the same class than it is to any sample x/' (negative) of other classes.
Thus, the function is designed as:

N
Lii = 3 (113 = x 1B +a =[x = x][3), ¥(xt,xf,2) € Q, @)
i=1

where « is a margin that is enforced between positive and negative pairs. ) is the set of all possible
triplets in the training set. As the training set becomes larger, it is obvious that it will become harder
and harder to train the model because the number of triplets will rise exponentially.

3.4. The Proposed Feature Optimizer

For solving the problem, the main part of the method we proposed is a feature optimizer, which is
trained with a new loss function. We measure the distance between each sample to the class center
instead of exhausting all triplets, which will save plenty of training time. It will make model training
easier in multiclass classification tasks. The feature optimizer is aimed at making the feature more
discriminative by reducing intra-class distance and increasing inter-class distance as illustrated in
Figure 2.
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Figure 2. The architecture of the proposed feature optimization.

As the Figure 2 shows, these feature samples x; are used as inputs of DNN. f(x;) is the deep
learning feature. Then, it calculates a center for each class by calculating the average of all samples
of each class in a minibatch (the five-pointed stars in Figure 2 represent the centers). Based on these
centers, for each sample in the minibatch, the distance to each center is measured. Two of these
distances are worth paying attention to. One is the distance to its correct center, and the other is to its
nearest wrong center. These centers are updated at each iteration. Therefore, for a batch of training
data with N samples, the feature optimization Ly, loss is defined as:

N
L = Y max (|1f (i), eyl B — min [1f(x1), 13 +a,0), G)
i=1 i
where where ¢y, is the center of class y; and || - ||3 represents the Euclidean distance function, n is
feature dimension:
n
lla, bI[F =/ }_(ai — ;)% @

i=1
By minimizing feature optimization loss Ly,, the proposed optimization method will make those
samples that are more susceptible to be classified closer to their corresponding right center by a
constant « during training. & controls the relative distance between the embedding to its corresponding
center and to its nearest wrong center.

3.5. Joint Training with Classifier

As mentioned above, the parameter of optimization model is updated through a minibatch
including different classes data. That means that the centers of each class change in every iteration.
A back-end classifier is considered to train with the optimization model jointly. The back-end
supervised classifier would serve as a good guide for the direction of optimization and make the
learned embedding more discriminative. The classifier would also have a global view to the whole
dataset avoiding falling into local optimum during training. These two losses would be combined
together to achieve more discriminative embeddings according to our experiments in Section 4,
which can be written as:

Ltotar = )\Lfo + Lsotﬁmx—CE/ ®)

where A is a hyper-parameter which controls the trade-off between the feature optimization loss and
softmax 10ss. Lsosnax-cE is defined for minimizing the cross entropy (CE) [24] between estimated target
category and the reference target category, given by:

1
Lsotfmax—CE = _N Z yn In an + (1 - yn) In (1 - an)/ (6)
n
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where y is the excepted output, y = {0, 1}, a is the actual output between 0 and 1, n corresponded to each
unit in output layer and N is the number of units. We attribute the benefit brought by softmax loss to
the fact that the parametric centers of feature optimization are randomly initialized and updated based
on the minibatches instead of the whole datasets which might by tricky, while softmax loss would be
benefited from seeking better class centers. The whole joint training structure is shown in Figure 3.
The left side of the diagram is an optimization model and the right side of the diagram represents a
classification model that uses different features. The top of the diagram is the extraction process of
traditional features, such as raw ship-radiated spectral feature, Fbank and MFCC. All of these feature
will be compared in experiments in Section 4. It is worth mentioning that L2-normalization is adopted
in the spectral feature for reducing the difference between different frames in the same recording audio.
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Figure 3. An overview of architecture for joint training. We adopt multilayer DNN as the basic component
for achieving representations of ship types, and the proposed optimization loss is used as the supervision
loss. In addition, softmax loss could be also combined into the framework for boosting performance.
The blue arrow and yellow arrow present forward propagation and backpropagation respectively.

4. Experiment

4.1. Data Description

All data of ship-radiated noise come from a database called ShipsEar [25]. During 2012 and
2013, the sounds of many different classes of ships were recorded on the Spanish Atlantic coast and
were included in the ShipsEar database (available at http:/ /atlanttic.uvigo.es/underwaternoise/).
The recordings were made with autonomous acoustic digitalHyd SR-1 recorders, manufactured by
MarSensing Lda (Faro, Portugal). This compact recorder includes a hydrophone with a nominal
sensitivity of —193.5 dB re 1 V/1 upa and a flat response in the 1-28 kHz frequency range. The dataset
contains a total of 91 records of 12 vessel types.
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As the setup of the author of the dataset, 11 vessel types were merged into four experiment classes
(based on vessel size) and one background noise class, which follows the division of data set provider

strictly, as follow in Table 1.

Table 1. The 11 vessel types were merged into four experiment classes and one background noise class.

Class A fishing boats, trawlwes, mussel boats, tugboats and dredger

ClassB  motorboats, pilot boats and sailboats

Class C  passenger ferries

Class D  ocean liners and ro-ro vessels

ClassE  background noise recordings

Spectrograms of example signals of different vessels are shown in Figure 4. There are 7503 samples
for Class A, 6239 samples for Class B, 7898 samples for Class C, 9122 samples for Class D, 4555 samples
for Class E. Each sample lasts approximately 1 s with a sampling frequency of 52,734 Hz. The details
of the number of recordings and samples are shown in Table 2.

In our experiment, we divided all recordings into five subsets and a five-fold cross validation
procedure was used to test the optimizer and classifier. In order to simulate real application situation,
segments in one recording cannot be split into a training dataset and test dataset. The models would
be trained by four subsets and the remaining one was used for testing. This procedure was repeated
five times so five different models needed to be trained altogether.
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Figure 4. Spectrogram of hydrophone signal for parts of ships. (a) background noise; (b) motorboats;
(c) passenger ferries; (d) dredger; (e) mussel boats; (f) ro-ro vessels;

Table 2. Database composition of part types of ships in ShipsEar.

Class
A B C D E
Database number of recordings 17 19 17 10 12

material ~ number of samples 7503 6239 7898 9122 4555
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4.2. Parameters for Feature Extraction

The feature is extracted based on the frequency energy feature. The frame length is about 1 s
and the frame shift is about 0.5 s. The bandwidth for 500-Dim Fbank and MFCC feature extraction is
within 8 kHz. The Kaldi toolkit [26] is utilized for feature extraction.

4.3. Parameters for Feature Optimization Model

The TensorFlow [27] toolkit is utilized for training feature optimization model and DNN-based
classification model. The configuration of the DNN-based classification model is that of six layers
(one input layer + four hidden layers + one output layer) with 1024 hidden nodes.

The activation function used in our experiment is the Rectified Linear Units (ReLU) [28], which is
designed as f(x) = max (0,x). 0.5 dropout is set in first layer to avoid overfitting. The batch size is
set to 100, including 20 samples for each class. We sampled the samples cyclically in each class until
all samples have been trained. After that, all samples were shuffled once and the next epoch training
process starts. L2 normalization is set before features fed into DNN. The embedding dimension is also
500. The initial learning rate for optimizing the model was set to 0.0001. We clip the gradient of center
by 0.01 for stable network weight updates.

4.4. Parameters for Classification Model

The configuration of DNN-based classification model was similar to the optimization model.
The difference is that the normalization function was not used and softmax function was selected
to calculate the probability vector in the output layer. The network parameters were uploaded by
minimizing the CE between softmax output and the corresponding one-hot vector. The parameters
of the model were optimized by back propagation (BP) algorithm with Adam optimizer (51 = 0.9,
B2 =0.99) [29]. Training was carried out for 300 epochs with a batch size of 100 and a initial learning
rate of 0.0001, which decayed with iterations.

4.5. Result

4.5.1. Parameter Selection.

As indicated by the loss function in Equations (3) and (5), the parameter « and A would affect all
combinations of the losses. A controls the trade-off between optimization loss and softmax loss. For a
wide-ranged values from 0.01 to 1, the model was robust to this parameter. Specially, when A was set
as 0, which means the model was trained using only softmax-CE loss, the performance was the worst.
While « controled the relative distance between the embedding to its corresponding center and to its
nearest wrong center, it was more sensitive than A. If it was too small, the optimization effect was
weakened and it may cause over-fitting with a too-large value. Obviously, the best parameter selection
was different in different datasets. An analysis was necessary to determine the best value of « and
A. We tried different A from 0.01 to 1 while observing the change of loss function at the same time.
We found it had little effect on the performance of the final model. A is fixed to be 0.1, and then set & to
be 5-25, respectively. As the Figure 5 shows, we set « to be 15 in default for following experiments.

4.5.2. Experiment Results and Discussion.

The convergent tendency of our proposed loss function with optimization method is shown in
Figure 6a while Fbank was chosen as the basic input feature. It is observed that the classification
model trained by optimized feature can converge normally. Figure 6b shows changes of the intra-class
distance and the inter-class distance respectively, which means the optimization model had the ability
to pull samples of the same class together as much as possible, and push samples of different class
away. Thus, the classification model would be easier to use for distinguishing these embeddings.
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Figure 6. The classification loss curves and feature optimization loss curves with iterations.

The basic input and output of the model were all based on frames. We calculated the frame
accuracy of recordings by counting the posterior probability of output of the model. If the classification
results of most frames from a recording were correct, we consider that the classification of the recording
was correct, and then calculate the utterance accuracy. All experimental results after this subsection
were based on utterance accuracy.

Table 3 summarizes the results of using raw TF feature and handcrafted traditional features
such as Fbank and MFCC in comparison with DNN classifier (with or without optimization method)
and the baseline proposed by Santos-Dominguez [25], who is the provider of Shipsear. We notice
that Fbank with optimization method obtains the best result in our experiment. It indicates it is
beneficial to increase the weight of the low frequency part in the feature, but more complex spectrum
transformations (such as discrete cosine transform) may make it worse. For all three different features,
the utterance accuracy is significantly improved while feature optimization method is used. Relative
improvements of 13.3%, 10.5%, and 7.4% were obtained on raw TF feature, Fbank, and MFCC,
respectively. Therefore, it can be concluded that the optimization method based on feature distance
has stable improvement for multiple features.
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Table 3. The accuracy comparison on Shipsear dataset among Santos-Dominguez’s, DNN,
and op+DNN, op+DNN means using optimization model and DNN classification model.

Method Basic Feature  Class A ClassB ClassC ClassD ClassE  Average

Santos-Dominguez’s [25] 0.625 0.800 0.764 0.555 1.000 0.754
raw TF feature  0.529 0579 0.588 0.500 0.833 0.600
DNN Fbank 0.706 0.684 0.647 0.800 1.000 0.760
MECC 0.706 0.684 0.647 0.700 0.900 0.733
raw TF feature  0.588 0.632 0.647 0.600 1.000 0.680
Fbank 0.824 0.789 0.765 0.900 1.000 0.840

+DNN
P MECC 0.749 0.737 0.706 0.800 1.000 0.787

Furthermore, it is clear from Table 3 that the method we proposed has an absolute 9%
increase compared with Santos-Dominguez’s method [25]. Compared with the method proposed by
Santos-Dominguez, we found that our classifier, trained by the optimized feature, can achieve higher
utterance accuracy than the original method in classifying all four vessel classes while maintaining
100% accuracy in detecting vessel presence.

Table 4 shows the confusion matrix for this experiment using optimized Fbank. It is obvious that
there is no confusion between background noise and the other types of ships. More confusion occurs
in Class A, B and C. One possibility is that the displacement of vessels in Class D is much greater than
that of Class A,B,C, which makes it easier to distinguish the ship-radiated noise in Class D.

Table 4. Confusion matrix for the performance of our proposed method. Each cell shows the number
and percentage of vessels for the classes in the rows classified in the classes in the columns. The diagonal
indicates the number of correctly classified utterance. Each utterance is an audio file containing a recording
of a single vessel. Classes A-D refer to four vessel classes and class E refers to background noise.

Predicted Sound
A B C D E

A 14(824%) 2 (11.8%) 00%)  1(59%)  0(0%)

B 1(53%) 15(789%) 2(105%) 1(53%)  0(0%)
Actualsound € 1(59%)  3(17.6%) 13(765%)  0(0%) 0 (0%)
D
E

0 (0%) 1(10%) 0(0%)  9(90%)  0(0%)
0 (0%) 0 (0%) 0 (0%) 0(0%) 12 (100%)

4.5.3. Comparison with Other Loss Functions and Optimization Models.

To validate our proposed loss, we extended experiments on other losses, including center loss
with softmax (it is hard to train with center loss only) and triplet loss using Fbank. Since the training
time of using all triplets is much higher than that of the other two methods, which cannot be completed
in limited time, we select 1000 positive samples and 1000 negative samples randomly in every model
training. As can be seen in Table 5, our proposed loss function get the best recognition effect. On the
other hand, we add time delay —1,0,10 — 1,0,10 — 1,0, 1 to the current DNN, which means previous
and next frames are spliced to current frame in the input layer, the second hidden layer and the forth
hidden layer. TDNN was used as optimization model for comparison of different loss functions. It can
be seen that while the optimization model was changed from DNN to TDNN, the loss function we
proposed can still achieve robust improvement compared with the previous loss functions.
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Table 5. Accuracy comparison with different optimization models and different loss functions.

Optimization Model Loss Function Accuracy %
Center loss + Softmax 0.803
DNN Triplet loss + softmax 0.786
Proposed loss function 0.840
Center loss + Softmax 0.813
TDNN Triplet loss + softmax 0.786
Proposed loss function 0.840

4.5.4. Visualization of Learned Representations.

We adopt t-SNE [30] to visualize the optimized features of the samples from our test set. As is
shown in Figure 7, compared with the Fbank, the learned embeddings using optimization method
make clusters of the same class more compact and different ones more separated at the same time.
This demonstrates that better underlying representations for classification task can be obtained using
our proposed joint optimization loss.
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Figure 7. Visualization of Fbank and optimized feature.

5. Conclusions

In this paper, we focus on a feature optimization method and propose an optimization loss
function for ships classification tasks and obtain the best result 84% on the standard five-class data
set. This loss function can optimize features directly by minimizing the intra-class distance while
also maximizing the inter-class distance at the same time through a DNN-based network. As a
result, the learned embeddings are more robust and discriminative, thus more appropriate for the
classification task.
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