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Abstract: Visual-based object detection and understanding is an important problem in computer
vision and signal processing. Due to their advantages of high mobility and easy deployment,
unmanned aerial vehicles (UAV) have become a flexible monitoring platform in recent years.
However, visible-light-based methods are often greatly influenced by the environment. As a result,
a single type of feature derived from aerial monitoring videos is often insufficient to characterize
variations among different abnormal crowd behaviors. To address this, we propose combining two
types of features to better represent behavior, namely, multitask cascading CNN (MC-CNN) and
multiscale infrared optical flow (MIR-OF), capturing both crowd density and average speed and the
appearances of the crowd behaviors, respectively. First, an infrared (IR) camera and Nvidia Jetson
TX1 were chosen as an infrared vision system. Since there are no published infrared-based aerial
abnormal-behavior datasets, we provide a new infrared aerial dataset named the IR-flying dataset,
which includes sample pictures and videos in different scenes of public areas. Second, MC-CNN was
used to estimate the crowd density. Third, MIR-OF was designed to characterize the average speed of
crowd. Finally, considering two typical abnormal crowd behaviors of crowd aggregating and crowd
escaping, the experimental results show that the monitoring UAV system can detect abnormal crowd
behaviors in public areas effectively.

Keywords: unmanned aerial vehicle (UAV); monitoring; abnormal crowd behavior; multitask
cascaded CNN; pyramid L–K optical flow; infrared

1. Introduction

1.1. Motivation

With the increase of population and diversity of human activities in recent years, crowd analyses
and estimates from videos [1,2]—which have been more frequent in the real world than ever
before—have recently attracted increasing interest from the computer vision research community and
have become an active research topic, with many applications in maintaining safety and social stability
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in public places [3,4], intelligent video surveillance [5,6], etc. In the real world, temporary large-scale
venues present larger challenges to traditional fixed-video monitoring systems. Due to their high
maneuverability and flexible deployment [7], unmanned aerial vehicles (UAVs) could be a promising
technology for overcoming the above shortcomings as well as a variety of applications, such as wildlife
monitoring and conservation [8], transportation engineering [9], moving target detection [10,11] and
monitoring of invasive grasses [12], by combining artificial intelligence and computer vision.

Abnormal event detection involves sensing abnormal activity from surveillance video and then
issuing an alarm. In the monitoring of public areas, due to the unpredictability of dangerous types and
the complexity of crowd movement, various abnormal crowd events may occur. For different scenarios,
abnormal behavior has different manifestations and lack a strict definition [2,5]. Abnormal crowd events
can be divided into (1) abnormal individual events and (2) abnormal group events. For individuals,
ordinary walking can be understood as normal behavior, while falling can be understood as an abnormal
behavior. For crowd, for example, escape caused by fire alarms and aggregate caused by fights are
abnormal behaviors.

The understanding of abnormal crowd behavior is the focus of this paper. There are some cases of
crowd disasters at mass gathering events: Hillsborough disaster, PhilSports Stadium disaster and the
Love Parade disaster [2].

In China, violent incidents of varying types have occurred frequently in recent years, such as
the violent terrorist case in Urumqi, Xinjiang in 2009, the terrorist attack on Jinshui Bridge in front of
Tiananmen Square in Beijing in 2013, the stampede on the Bund in Shanghai in 2014 and the hacking
incident at Kunming Railway Station in Yunnan in 2014, etc. These violent incidents have caused heavy
losses to public property and lives. A primary disaster is one aspect; more serious is the resulting
stampede, panic, and other secondary disasters. For example, when a crowd stampedes, and many may
be crushed or trampled underfoot. These secondary disasters are mainly manifested as aggregating
and escaping. As a result, aggregating and escaping are two typical representatives of abnormal crowd
behavior in the field of public security.

In this paper, the factors of average speed and density are used to judge abnormal crowd behavior
in the field of public security. In general, when an abnormal crowd behavior occurs in a public
area, it is often accompanied by an increase or decrease in crowd density, and the speed of crowd
movement suddenly increases or decreases. For example, when a terrorist attack or a fire alarm
occurs, the crowd will appear to run around, and the number of people in the video surveillance will
drop. When congestion or trampling is imminent, it is often accompanied by the phenomenon of
increasing crowd density and decreasing crowd speed. Therefore, in the field of public security, it is
very important to carry out dynamic density-change detection and speed-change detection in public
areas to judge the abnormal behavior of crowds.

However, abnormal-crowd-behavior monitoring from infrared images obtained from UAV poses
many challenges such as: (1) effective mechanism design and monitoring strategy of UAV meeting
detection and recognition requirements, (2) effect of natural background and noise in infrared images,
fuzzy edges of infrared aerial objects, making it difficult to segment and label person objects in natural
backgrounds, (3) large variations in the scale and appearance of aerial person objects from severe
perspective distortion of the scene and the relative movement between human objects and the onboard
camera and (4) finding a reasonable crowd motion criterion for abnormal behavior monitoring.

1.2. Literature Review

Many researchers have focused on single-pedestrian detection [13–15], crowd counting and
analysis [3,5,6,16–18] and UAV-based computer-vision applications.

Some examples of this include monitoring wildlife [8], invasive grasses and vegetation [12],
close-range interaction [19], detecting roads [20], vehicles and pedestrians [21], etc.

Features act as a key factor in the challenge of pedestrian detection. According to the characteristics
of the feature extraction for pedestrian detection, there are two methods: sliding window approaches
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(also denoted as traditional approaches) and deep learning-based methods. The former, which is
typically represented by histogram of oriented gradient (HOG) and discriminative part-based model
(DPM) [14], appears promising for low to medium-resolution settings, under which segmentation
or key-point-based methods often fail [13]. In the last few years, deep-learning and in particular,
convolutional neural networks (CNN) have emerged as the state of the art in terms of accuracy for
pedestrian detection—often outperforming the previous gold standards by a large margin [15,22].
To exploit more contextual information, a multitask cascade CNN (MC-CNN) framework was proposed
for thyroid nodule recognition in [23].

Crowd analysis is a subdomain of human-activity recognition. Based on the reviews and
analysis in [3,5,18,24], existing methods for crowd counting and estimate are categorized into the
following three categories: (1) detection-based methods, (2) features-regression-based methods and
(3) density-estimation-based methods. For example, the change of energy-level distribution [1] and
Bayesian risk kernel density [25] have been proposed. The earlier detection-based methods, which are
vulnerable to threats of occasion, illumination intensity, fluctuating of background and noise, are often
based on sliding-window approaches. The features-regression-based methods are used extensively
recently [3].

Several good results in computer vision and other fields have been obtained by using
deep-learning-based means in recent years. Crowd counting and estimation is no exception [3,5,6,26].
Su et al. present a coherent long short-term memory (cLSTM) network to capture nonlinear crowd
dynamics by learning from an informative representation of crowd motions [26]. Sindagi et al.
proposed a novel system of end-to-end cascaded CNNs to jointly learn crowd-count classification
and density-map estimation; joint training is performed in an end-to-end way [6]. The multicolumn
CNN model, which allows the input image to be any arbitrary size or resolution, is presented in [3];
a true-density map is accurately computed based on geometry-adaptive kernels that also do not need
to know the perspective map of the input image. In [27], an attention-injective deformable CNN for
crowd understanding was proposed to address the accuracy degradation problem of highly congested
noisy scenes.

More comprehensive analyses and survey of different crowd counting and estimate approaches
can be found in [5,18,28].

Commercial delivery by UAVs is expected to become a widespread service in the near future.
The actual operation scenarios of UAV are often complex; any safety problem, e.g., possibility of
collision between UAVs, drone loss of control, etc.., must be avoided in actual deployment [29].
Therefore, an unmanned aircraft system must incorporate conflict detection and resolution (CDR)
methods [30,31].

Abnormal crowd-behavior monitoring focuses on identifying abnormal activity or emergency
situations in crowd scenes. Because of severe occlusions, extreme clutter, large variations in scale and
appearance of the objects in crowded scenes, conventional methods without special considerations
are not appropriate. In addition, visible-light-based methods are often greatly influenced by
environment. At the same time, temporary large-scale venues present higher challenges to the
common fixed-video monitoring systems. This research aims to address the above challenges by
proposing an abnormal-crowd-behavior monitoring system, which focuses on the two typical abnormal
crowd behaviors of aggregating and escaping by using low-resolution thermal images recorded by the
onboard thermal infrared cameras in a UAV system. A fusion-based approach, i.e., multitask cascading
CNN (MC-CNN) and multiscale infrared optical flow [32] (MIR-OF), is employed to detect abnormal
behavior in crowd scenes.

1.3. Contributions

Contributions and innovations of this paper are summarized as follows:
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(1) Since there are few published infrared-based aerial abnormal-behavior datasets obtained from
UAV, we assembled a new infrared aerial dataset named the IR-flying dataset that includes sample
pictures and videos in different scenes of public areas.

(2) A fusion algorithm is proposed. Accurate crowd density is obtained from a MC-CNN. MIR-OF
is applied to track the motion corners [32]; the motion vectors of the motion corner points in two
consecutive frames is obtained for the average velocity.

(3) A UAV system was designed and built, and all the algorithms were transplanted into the
onboard Jetson TX1. The experimental results show that the monitoring UAV system can detect
abnormal crowd behavior in public areas effectively.

1.4. Organization

The rest of the paper is organized as follows: Section 2 describes the algorithm research
and the system design, involving four parts: the hardware system design and realization of
the abnormal-crowd-behavior-monitoring UAV, using MC-CNN for crowd-density estimation,
MIR-OF-based crowd-motion estimation and fusion-based abnormal crowd behavior recognition.
Experimental results are analyzed in Section 3. Finally, conclusion remarks are given in Section 4.

2. Algorithm Research and System Design

In this section, the details of the proposed system are described. The main content is as follows:
Section 2.1 describes the hardware system design and algorithm realization of abnormal-crowd-behavior
monitoring UAV. MC-CNN-based crowd-density estimation is proposed in Section 2.2. In Section 2.3,
the MIR-OF is proposed for the average velocity. Section 2.4 presents the detailed decision flow for
abnormal crowd behavior recognition.

2.1. System Architecture

The entire UAV system can be divided into an infrared camera, remote control, and ground control
station (Figure 1). In this section, we briefly describe the system architecture of the monitoring UAV
owing to space reasons. Overall, picture of monitoring UAV is shown in Figure 1a. STM32F427VIT6 was
adopted as the core of flight control system. The infrared vision system consists of an infrared camera
FLIR TAU2-336 and a Jetson TX1 for image processor, which is shown in Figure 1a,d. The ground
control station, which is based on a well-known open source software QGroundControl, communicates
with the UAV via MAVLink.

Figure 2 presents a brief overall flowchart of abnormal-crowd-behavior monitoring system.
The basic flow of the application operation is as follows: (1) The monitoring area was designated
by remote control; (2) a thermal infrared imager (FLIR TAU2-336), which was installed on our UAV,
was used for taking pictures of the designated outdoor area; (3) the MC-CNN-based crowd-density
estimation and crowd-motion information, which was settled through MIR-OF average velocity
method-based was obtained by using high-performance embedded system with NVDIA Jetson TX1.
Finally, a fusion-based approach, i.e., crowd density and crowd mean velocity, was employed to detect
abnormal behavior in crowd scenes. Whether the abnormal crowd behavior occurs was determined
by comparing the value of the descriptors with their corresponding threshold. When the fusion
descriptors were determined to be abnormal, an alarm prompt was raised. Several actual experimental
results showed that the monitoring UAV system could effectively detect abnormal crowd behavior
in public areas.
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2.2. MC-CNN-Based Crowd-Density Estimation

CNN has been actively researched over the past several years. Inspired by the success of the
related multitasking cascade CNN [6,33,34], and taking into account the computing power, storage
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space and power consumption of the embedded platform Jetson TX1, a two-stage crowd-density
estimate method was adopted in this research to count people accurately.

A schematic diagram of the MC-CNN is presented in Figure 3. The brief workflow was as follows:
With an aerial infrared image as shown as Figure 3a as the input, the feature maps were obtained
by using the shared CNN as presented in Figure 3b. Then, the shared feature maps were used by
crowd-count classification and density-estimate stages, which are shown in Figure 3c,d, respectively.Sensors 2020, 19, x FOR PEER REVIEW  6 of 17 
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Visualizing features to gain intuition about the CNN is common practice [35]; representative
feature maps in the MC-CNN are presented in Figure 4. The resolution of Figure 4a (one of 32 instances),
Figure 4b (one of eight instances) and Figure 4c (one of 10 instances) is 336 × 256, 84 × 64 and 84 × 64,
respectively. As seen in Figure 4, the projections from each layer show the hierarchical nature of the
features in the network and show its invariance to input image as shown in Figure 3a. Note that
Figure 4b provides more global information than will affect crowd-count classification. Correspondingly,
the individual information that is more useful for counting is shown in Figure 4c. These indicate that
network training is effective and consistent with what we expect from our projections.
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The specific size of the feature map in Figure 3 is marked in detail. The following mainly discusses
the related processing flow and some specific details for the training.

2.2.1. Crowd-Count Classification

In the field of machine-learning, the directionality of classification problems can be improved by
using more distinct and meaningful classification labels. Therefore, it is easier to divide the crowd into
some special rough groups than to directly classify or regress the entire population count range.

According to the characteristics of the scene in a university, in this paper, a classifier is built
in the crowd-count classification stage and performed the task of dividing the crowd into eight groups.
As shown in Figure 3c, the final layer in the first stage contains eight neurons.

In this stage, cross-entropy error is used and defined as follows:

Lc = −
1
N

N∑
i=1

M∑
j=1

[(
yi = j

)
Fc(Xi, Θc)

]
(1)

where, N is the number of training samples, M is the total number of classes (M = 8) as shown
in Figure 3c. yi is the ground truth class, Fc(Xi, Θc) is the classification output, Xi is the i-th training
sample and Θc represents the network parameter in this stage.

2.2.2. Density-Map Estimation

The feature maps obtained from the shared layers, which are shown in Figure 3b, are processed
by the density-map estimation stage that consists of 4 convolutional layers with a parametric rectified
linear unit (PReLU) activation function after every layer as shown in Figure 3d.

The loss function for this stage is defined as follows:

Ld =
1
N

N∑
i=1

‖ Fd(Xi, Ci, Θd) −Di ‖2 (2)

where, Fd(Xi, Ci, Θd) is the estimated density map, Xi is the i-th training sample, Ci are the feature
maps obtained from the last convolutional layer of the crowd-count classification stage, Di is the
ground-truth density map, and Θd represents the network parameters of this state. The entire cascaded
network is trained using the following overall loss function:

L = λLc + Ld (3)

where, λ is the weighting factor. Experiments show that the Lc has virtually less performance impact on
the overall loss function by itself, therefore in this paper, we choose λ = 0.00001 after multiple validation.

2.2.3. The Training of MC-CNN

In this paper, the CNN training platform is the HP OMN notebook, which has 2.5 GHz CPU and
16 GB memory, and the graphics card is NVIDIA GeForce GTX 1050Ti powered by CUDA 10.1 using
PyTorch 1.4.

The performance of the CNN model is determined by the calibration quality of the target crowd
in the training data. This section describes how to convert the labeled human head into a density map.
In order to adapt the crowd-density map to different perspectives or different head size in crowded
images, the geometry-adaptive Gaussian kernel density mapping method [3] is adopted in this paper
can be expressed as:

D(x) =
N∑

i=1

δ(x− xi) ∗Gσi(x) (4)
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where, xi is the location of the head in the image. δ(x− xi) is the impulse function for the position of
the human head in the image, N is the total number of the head. Figure 5 illustrates the density map
results obtained using the proposed method.Sensors 2020, 19, x FOR PEER REVIEW  8 of 17 
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The detailed training process was as follows:
(1) Preparation of the training set. In this paper, the number of training samples was 607 and the

test samples were 260. The details of the train dataset are described in Section 3.1;
(2) Data augmentation. Data augmentation helps prevent the network from overfitting and

memorizing the exact details of the training images. Specifically, the input picture could be rotated the
scope of ±5◦;

(3) Parameter initialization. The learning rate was 0.00001 and momentum was 0.9;
(4) Training of the model. We tested the training time in different environments. The training time

was 30 h with the GPU. The training time was 168 hours without the GPU. The test accuracy of the two
models was similar.

2.3. MIR-OF-Based Crowd-Motion Estimate

Crowd-motion information is very important for abnormal crowd behavior analysis. The details
for our corner detection and tracking process is shown in Figure 6.

In this section, we combine Shi–Tomasi corner detection and pyramid LK optical flow method to
estimate the crowd-motion information. Based on this, the average moving speed of all corner points
is calculated to estimate the average of the crowd.

Sensors 2020, 19, x FOR PEER REVIEW  8 of 17 

  
(a)                               (b) 

Figure 5. Density map obtained by geometric adaptation of Gaussian kernel. (a) Input image; (b) 
corresponding density map. 

The detailed training process was as follows: 
(1) Preparation of the training set. In this paper, the number of training samples was 607 and the 

test samples were 260. The details of the train dataset are described in Section 3.1; 
(2) Data augmentation. Data augmentation helps prevent the network from overfitting and 

memorizing the exact details of the training images. Specifically, the input picture could be rotated 
the scope of ±5°; 

(3) Parameter initialization. The learning rate was 0.00001 and momentum was 0.9; 
(4) Training of the model. We tested the training time in different environments. The training 

time was 30 hours with the GPU. The training time was 168 hours without the GPU. The test accuracy 
of the two models was similar. 

2.3. MIR-OF-Based Crowd-Motion Estimate 

Crowd-motion information is very important for abnormal crowd behavior analysis. The details 
for our corner detection and tracking process is shown in Figure 6. 

In this section, we combine Shi–Tomasi corner detection and pyramid LK optical flow method 
to estimate the crowd-motion information. Based on this, the average moving speed of all corner 
points is calculated to estimate the average of the crowd. 

corner 
detection

Pyramid LK 
optimal flow 

Delete Small 
movement Corners

Mark the successfully 
tracked corners

N-th frame (n+1)-th frame 
 Infrared

Image Sequence  Preprocessing Average velocity

 
Figure 6. Crowd-motion estimate. 

2.3.1. Corners Detection and Multiscale Analysis and Tracking 

In order to avoid the effect of corner point shift caused by small motion or environmental 
interference in the background, the interference corner points in the background needed to be 
removed from the detected set of initial corners. After this, more effective crowd-motion information 
can be extracted. In this paper, the multiple scale method, which was proposed by Shi and Tomasi, 
was adopted for the movement information of the crowd in the monitoring scene [36–38]. Figure 7 
shows three-level pyramids of two frames H and I. These four steps represent S1, S2, S3 and S4, 
respectively. Steps 3 and 4 were similar to Step 2. 

Figure 6. Crowd-motion estimate.

2.3.1. Corners Detection and Multiscale Analysis and Tracking

In order to avoid the effect of corner point shift caused by small motion or environmental
interference in the background, the interference corner points in the background needed to be removed
from the detected set of initial corners. After this, more effective crowd-motion information can
be extracted. In this paper, the multiple scale method, which was proposed by Shi and Tomasi,
was adopted for the movement information of the crowd in the monitoring scene [36–38]. Figure 7
shows three-level pyramids of two frames H and I. These four steps represent S1, S2, S3 and S4,
respectively. Steps 3 and 4 were similar to Step 2.
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The main steps, each of which is explained in detail, were as follows:

(1) Two consecutive frames of images H and I, were obtained at the same time, using corner detection
on frame H and the successfully detected corners C1 from frame H were regarded as the initial
point of the pyramid LK Optical flow for tracking;

(2) The successfully detected and tracked corners from frame I were recorded as C2;
(3) The amplitude of velocity were calculated, written mag, of the corresponding corner between C1

and C2;
(4) We determined if the velocity amplitude of each corner in mag was greater than the small motion

threshold. If it was greater than the small motion threshold, the speed information of the corner
was preserved or vice versa.

Further details for the pyramid method can be found in [19]. The experiment results of motion
corners detection and tracking are shown in Figure 8. The experimental results show that the multiple
scale Shi–Tomasi corner tracking was more stable.
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2.3.2. Average Velocity

Under normal circumstances, this fluctuation range of crowd velocity is small, when the
abnormal crowd behavior happens, such as the crowd aggregating and crowd escaping and other
abnormal behavior, the average speed of the crowd suddenly become large or suddenly small,
therefore, the average velocity of the crowd can be as select a reasonable descriptive operator for
abnormal behavior.

For two continuous frame image, the optical flow information, written as
(
vx, vy

)T
, of the moving

corner is obtained by the pyramid-based L–K optical flow [32]. Thereby, the speed of corner can be
calculated as:

v =
√

v2
x + v2

y × f ps (5)

where, vx and vy are the partial velocity of the optical flow with respect to the x-axis and the y-axis,
respectively. The fps represents the frames per second. Moreover, fps = 7, which is the frame rate of the
onboard infrared camera.
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The average velocity of frame x, written v(x), can be defined as:

v(x) =
1
n
×

n∑
i=1

vi (6)

where n indicates the number of moving corners detected and the vi represents the motion velocity of
the i-th corner point.

2.4. Decision Flow for Crowd Abnormal Behavior

In order to distinguish the normal behavior and abnormal behavior of the crowd accurately and
effectively, it is necessary to find the descriptive feature with significant changes in the two cases of
normal and abnormal behavior. In this study, a abnormal crowd behavior detection method combining
CNN-based crowd-density characteristics and crowd speed characteristics is used.

Consider velocity factor and density factor together, according to the guidance of domain experts,
the criteria for determining abnormal behavior can be summarized as shown in Table 1.

Table 1. Event classification.

Velocity Factor Density Factor Normal/Abnormal

Becomes larger Becomes smaller

Abnormal
Becomes smaller Becomes larger
Becomes larger Becomes larger
Becomes larger Constant

Constant Becomes larger

Becomes smaller Becomes smaller

Normal
Becomes smaller Constant

Constant Becomes smaller
Constant Constant

Through the above statistical analysis, according to Table 1, the normal behavior of the crowd and
the abnormal behavior of the crowd can be classified based on some detailed criteria.

3. Experimental Results and Validation

In this section, we demonstrate the experiment results of our outdoor autonomous monitoring
UAV based on crowd-density characteristics, corners detection and multiple scale pyramid optical
flow. Our evaluation UAV system consists of an embedded NVDIA Jetson TX1 with 256 NVIDIA
CUDA®cores and Samsung 4 GB 64-bit LPDDR4 Memory, running Ubuntu16.04 and an implementation
of fusion feature-based crowd-motion estimation by using Python 3.6 and OpenCV 2.4.13.

3.1. Our Self-Built Data Set: IR-Flying Dataset

Most currently available crowd datasets are based on visible light. Only the OTCBVS dataset
includes some infrared images. However, the dataset does not include abnormal crowd behavior.
This paper creates a crowd-behavior dataset based on aerial infrared images in different scenarios.
This is named the IR-flying dataset. In addition, the abnormal behaviors of both aggregating and
escaping in different typical scenarios are simulated. The detailed information of the dataset is shown
in Table 2. Figure 9 shows some representative samples of this dataset.
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Figure 9. Representative images of our new crowd dataset. The samples in rows 1 to 4 indicate near
the building, intersections, squares, and roads, respectively.

Table 2. Details of the self-build datasets.

Attribute Attribute Values

Resolution 336*256
Scene 4

Image num 970
Person num 16,000
Frame rate 7

Abnormal behavior is closely related to specific scenes. Combined with specific event instances
and scenes, it is easier to understand abnormal than normal crowd behavior. Detailed information
concerning abnormal behavior and the typical scenarios in which they occur is shown in Table 3.

Table 3. Scenarios applied for each type of crowd behavior.

Type of Behavior Scenarios

#1: Aggregating

Traffic congestion
Demonstration

Trampled underfoot
Fight

#2: Escaping
Terrorist attack

Fire alarm
Earthquake

In this section, the experimental results of crowd-density estimation and the results of
crowd-motion estimation are analyzed, respectively. Then, the abnormal behavior of the crowd
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is detected by combining the crowd-density characteristics and the crowd movement characteristics,
and the experimental results are analyzed.

3.2. Experiments for Crowd Abnormal Behavior Monitoring

This paper simulates two typical abnormal crowd behaviors of aggregating and escaping in two
scenarios. Scene #1 represents a crossroad, while Scene #2 is near a building. Here we simply refer to
buildings. The average movement speed of two consecutive frame can be obtained according to the
formula (6) with the height of the UAV is 20 m.

When the average movement speed of the crowd becomes larger or smaller, the crowd movement
alarm is carried out.

After filtering, when the absolute value of the average velocity difference of two consecutive
frames is greater than the threshold th, it is considered that the abnormal movement of the crowd is
true, and the system alarm is provoked. The threshold is an indirect characteristic, which is calculated
from positive and negative samples suggested by field experts in practical experiments. Therefore,
according to the opinions of experts and the experimental verification of the average velocity, this paper
sets the threshold th equal to 10 (height = 20 m). The results of the population aggregation movement
are shown in Figure 10.

Using Figure 10a as an example, “normal” indicates that the crowd is behaving normally. Likewise,
"abnormal" indicates that the crowd is behaving abnormally.

As the crowd gathers, the speed of the crowd suddenly becomes larger. The system starts to alarm
at the 806th frame. Then the crowd walks around at random. The average movement speed of the
crowd tends to be stable, so the system does not alarm. As the crowd gathers again, the system starts
to alarm at the 880th frame, then the crowd walks around, the crowd moves normally, and the system
does not alarm. Based on similar criteria, as shown in Table 1, the system starts to alarm at the 300th
and 387th frame.

Overall, our UAV can correctly detect the number of frames with the crowd anomaly and identify
the crowd anomaly behavior of the crowd gathering and the crowd scattered.
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Figure 10. Crowd behavior recognition. (a) Crowd-aggregating motion detection, (b) crowd-escaping
motion detection.

The Jetson TX1 sends the crowd-status information to the flight control system through the serial
port. The operator can obtain the crowd-status information from the handheld remote control, and the
ground station system can obtain real-time image information through the image-transmission module.
The crowd-status information acquired by the handheld remote controller from the crossroad scene
and the scene close to the building is shown in Figures 11 and 12, respectively.
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It can be seen from Figures 11 and 12 that the ground operator can obtain the state information
of the crowd in real time—including the behavior state of the crowd, the number of people and the
average speed of the crowd.

In general, the results predicted by the algorithm are divided into the following four cases:
true positive (TP), true negative (TN), false positive (FP) and false negative (FN). The meaning is shown
in Table 4.

In order to further verify the reliability and correctness of the system, this paper uses the recall
rate (recall), precision (precision), accuracy (accuracy) and F1 score (F1) in the information retrieval
field to statistically analyze the test results and evaluate it as an algorithm.
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Table 4. Algorithm prediction result and its meaning.

Prediction Result Meaning

TP Prediction is abnormal, the actual is abnormal.
TN Prediction is normal, the actual is normal.
FP Prediction is abnormal, the actual is normal.
FN Prediction is normal, the actual is abnormal.

The specific definition are as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

F1 =
2× TP

2× TP + FP + FN
(10)

Precision reflects the model’s ability to distinguish negative samples, Recall reflects the model’s
ability to recognize positive samples and F1 score is a combination of the two and the model with high
F1-score is more robust. The emphasis on precision and recall varies in different scenarios. In the
field of public safety, it is more desirable to miss as little as possible the real abnormal behavior of
the crowd. Test and analyze the two actual scenarios. The experimental results are shown in Table 5.
In addition, the average single anomaly detection time was counted using the method of this study,
as shown in Table 6.

Table 5. Actual scene experiment results.

Scene TP TN FN FP Accuracy Precision Recall F1-Score

#1: Intersections 27 1103 6 7 98.86% 79.41% 81.81% 80.59%
#2: Buildings 40 1443 5 15 98.66% 72.72% 88.88% 79.99%

In this paper, the average speed and density factor were used to judge the abnormal behavior
of the crowd. Crowd-density estimation is an important part of detection. In the research process,
our MC-CNN-based method was superior to the typical multicolumn convolutional neural network
(MCNN). It can be seen from Table 3 that the surrounding environment changes had little effect on the
abnormal behavior detection of the crowd of Scene #1 and Scene #2. The density of the population in
Scene #1 and Scene #2 was different. Specifically, the precision rate and recall rate were quite different
in Scene #1 and Scene #2. However, the F1 scores of different scenes were very close, indicating that
our model had certain robustness for different scenes. Moreover, the correct rate of the abnormal
crowd behavior detection system designed in this paper could reach more than 90%, which satisfies
the detection requirements of abnormal crowd behavior of the actual scene.

Table 6. Average single anomaly detection time.

Scene Detection Time/s

#1: Intersections 0.224
#2: Buildings 0.219

It can be seen from Table 6 that the average time of crowd abnormality detection on Jetson TX1 is
about 0.22 s, which satisfies the real-time monitoring needs of the actual scene.
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4. Conclusions

This paper proposes an approach to detect abnormal crowd behaviors in low-resolution aerial
thermal infrared images. The proposed infrared abnormal-crowd-behavior monitoring method consists
of two parts: (1) the MC-CNN is designed to estimate the crowd density; (2) the MIR-OF is designed to
characterize the average speed of crowd. Utilizing the flexibility of the UAV and the characteristics of
infrared imaging, our system can monitor both bright and dark crowd objects in either daylight or
at night. Furthermore, since there are no published infrared-based aerial abnormal crowd behavior
datasets obtained from UAV, we self-built a new infrared aerial dataset named the IR-flying dataset,
which includes sample pictures and videos in different scenes of public areas. Finally, aiming at two
typical abnormal crowd behaviors of crowd aggregating and crowd escaping, the experimental results
show that the monitoring UAV system, which is equipped with infrared (IR) camera and Nvidia Jetson
TX1, can achieve the detection of abnormal crowd behavior in public areas effectively.

The method in this paper is aimed at crowd behavior and cannot effectively detect a single person’s
fast moving or abnormal behavior. However, as individual abnormal behavior such as violent attacks
can lead abnormal crowd behavior, such as escaping, our system can effectively detect abnormal crowd
behavior in the field of public security.

Due to the low contrast of the infrared image, the drone moves with the crowd target, combining
visible light images. Developing better algorithms for individual and crowd behavior analysis or
cooperative monitoring with multiple UAVs [39] is one of the main working directions in the future.
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The following abbreviations are used in this manuscript:

CNN Convolutional neural network
L–K Lucas–Kanade
MC-CNN Multitask cascading CNN
MIR-OF Multiscale infrared optical flow
UAV Unmanned aerial vehicles
TP True positive
TN True negative
FP False positive
FN False negative
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