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Abstract: A design scheme of multi-element sensor which included electrical resistivity probes,
multiple Cl− selective electrodes, and a steel corrosion monitoring system was proposed in this
work. Embedding this multi-element sensor in concrete enables the real-time and non-destructive
monitoring of internal electrical resistivity, free Cl− (Clf) contents in the concrete pore solution
at different depths, and steel corrosion parameters. Based on the monitoring data obtained by
the multi-element sensor, the freezing-thawing (F-T) damage degree, the Clf diffusion coefficient,
the quantitative relation between F-T damage degree and Clf diffusion coefficient, the initiation period
of steel corrosion, and the critical content related to steel corrosion are determined. To conclude,
the multi-element sensor provides key durability parameters for the establishment of the Clf diffusion
model, the assessment of health condition, and the prediction of service life of concrete under the
coexistence of the F-T cycle and Cl−.

Keywords: monitoring; sensor; chloride; freezing-thawing; concrete

1. Introduction

Modern reinforced concrete is widely applied due to its excellent workability, mechanical
properties, and potential durability [1]. Reinforced concrete durability has attracted great attention
especially in marine areas where reinforced steel in concrete faces severe corrosion. Passive film
adhered to the steel surface becomes unstable and is then destroyed when the content of chloride
ions (Cl−) around steel reaches a threshold value [2]. The single Cl− penetration mechanism and
the impact of Cl− on steel corrosion have been widely reported in previous research [3,4]. However,
this is inconsistent with the real service environment where concrete suffers from more than one
environmental factor, such as the F-T cycle, carbonation, drying-wetting cycle, and thermal gradient.
The coupled action of Cl− and environmental factors usually leads to more severe deterioration and
complex damage mechanisms than the single Cl− works [5–7]. Specifically, in the marine and cold
coexisting region, the F-T cycle leads to the generation and propagation of microcracks in concrete
which, in turn, accelerates the Cl− diffusion rate and increases Cl− penetration depth [8,9] in concrete.
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Consequently, the F-T cycle increases the risk of initiating steel corrosion and the corrosion rate of
steel [10]. The premature or unexpected failure of concrete due to steel corrosion or F-T damage not
only affect the structural integrity and reduce the service life of the concrete structure, but also leads to
high maintenance and repair costs.

On-demand maintenance of concrete structures ensures construction safety, prolongs the service
life, and avoids further financial loss. For a scheduled and preventive maintenance program in
concrete structure, the continuous and in-situ monitoring of parameters related to concrete durability
is crucial [11–13]. Refs [14,15] reviewed numerous existing non-destructive measurement techniques
of steel corrosion in concrete. Among them, electrochemical techniques are most appropriate to
non-destructively and in-situ monitor steel corrosion conditions in concrete structures due to the
following reasons: (i) steel corrosion is electrochemical in nature, and (ii) easily operated and costly
equipment for electrochemical measurement [14–16]. More reliable and accurate corrosion results
of steel in concrete could be obtained through the embeddable reference electrodes [17] because the
errors produced by the membrane potential and diffusion potential could be minimized [18]. In the
authors’ previous research [19,20], solid Ag/AgCl reference electrodes have been developed and this
kind of sensor was embedded in concrete to conduct electrochemical measurements of Cl− induced
steel corrosion. However, the reliability of monitoring steel corrosion parameters using embeddable
Ag/AgCl reference electrode in concrete still needs to be confirmed in the condition of F-T cycle.

Refs [21,22] reviewed tens of non-destructive measurement techniques of Cl− content in concrete
such as potentiometric measurement, electrical resistivity, impedance analysis, fiber optic sensor,
laser breakdown spectroscopy, nuclear magnetic resonance, and X-ray diffraction analysis. However,
most of them were limited to be used in the laboratory and unable to provide accurate information
about the free Cl− (Clf) content in pore solution of concrete. Compared to other techniques, the
potentiometric technique such as Ag/AgCl sensor is more appropriate conduct non-destructive and
in-situ measurement of Clf concentration due to these advantages such as accuracy and simplicity [23].
As early as the 1990s, Atkins et al. [24] and Climent-Llorca et al. [25] reported using the Ag/AgCl
sensor to detect the Clf concentration in simulated pore solution and mortar specimens. Elsener
et al. [26] found out that the calibration relation between the potential of Ag/AgCl sensor and Clf
concentration in synthetic concrete pore solution followed Nernst law. Furthermore, the Clf content
determined by the Ag/AgCl sensor correlated well with that by pore solution expression. Angst et
al. [18] suggested that the diffusion potential between the reference electrode and Ag/AgCl sensor
influenced the accuracy of measuring results and therefore the reference electrode should be positioned
as close to the Ag/AgCl sensor as possible in order to reduce these errors. Montemor et al. [27] have
embedded multiple Ag/AgCl sensors in different depths of mortar samples to monitor the Clf profiles
and concluded that the Clf diffusion in mortar specimens followed the Fick’s law. Although a large
amount of research has applied this type of potentiometric sensor to monitor the Clf content in mortar
paste and concrete, determining the critical Cl− content of steel corrosion in concrete as an expression
of Clf is scare. The critical Clf value related to the initiation of steel corrosion in concrete could be
obtained by simultaneously monitoring the steel corrosion parameters and Clf content in the vicinity
of steel in concrete using the embeddable reference electrode and Ag/AgCl sensor.

For concrete structures in the cold region, a freezing-thawing (F-T) cycle is usually the primary
cause of the deterioration of concrete. Currently, widely used methods of characterizing the damage
degree of concrete caused by F-T cycle are indirect techniques such as dynamic elastic modulus [28],
mechanical strengths [29] and transport properties [30]. However, these indirect techniques are
suitable in laboratory conditions and not applicable to detect F-T damage degree of the in-situ
concrete structure. Recently, ultrasonic imaging [31,32], X-ray computed tomography, and acoustic
emission techniques [33,34] have been applied to non-destructively and quantitatively estimate the
deterioration degree of mortar and concrete after being subjected to F-T cycle by detecting the change
on the microstructure. Although ultrasonic imaging and X-ray computed tomography implement the
visualization of the microstructure of mortar and concrete samples and detects the generation of crack,
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none of them might be suitable to real-time monitor and evaluate the F-T deterioration degree of field
concrete structure. Chung et al. [35] pointed out that the increase or decrease in temperature during the
F-T cycle changed electrical resistivity of concrete irreversibly while F-T damage increased electrical
resistivity reversibly. Nevertheless, Ding et al. [36] argued that the F-T cycle reduced the electrical
impedance of concrete and measurement of electrical impedance of concrete was a non-destructive
way of assessing the frost damage on concrete. Farnam et al. [37] suggested that the variation on
the electrical resistivity of mortar samples after F-T cycle was attributed to the cracking generated
on the microstructure. The F-T cycle damages the microstructure of concrete and thereby changes
the electrical resistivity because the electrical resistivity of concrete is dependent on the electrical
resistivity of concrete pore solution and internal microstructure with the assumption that F-T cycle
has no influence on the electrical resistivity of concrete pore solution. In refs [35,36], the method
of measuring electrical resistivity through surface wrapped electrodes is only suitable for samples
casted in the laboratory and fails in monitoring the electrical resistivity of filed concrete construction.
Thus, the real-time and non-destructive measurement of electrical resistivity of field concrete structure
demands an embeddable electrical resistivity sensor with which the F-T damage degree could be
accurately determined.

Currently, there lacks a multifunctional sensor to simultaneously detect corrosion condition of
steel and Clf content in concrete pore solution and F-T damage degree of concrete. This paper aims to
provide a design method of multi-element sensor which includes electrical resistivity probes, multiple
Cl− selective electrodes, a carbon steel electrode, an embedded solid reference electrode, and a counter
electrode. Then, embedding the multi-element sensor in concrete to monitor the internal electrical
resistivity and Clf contents at different depths of concrete and corrosion potential as well as corrosion
rate of steel in concrete. As a result, parameters closely related to concrete durability, such as F-T
damage degree, Clf diffusion coefficient, and threshold value of steel corrosion were determined. This
provides an essential reference for the prediction of the residual service life of a concrete structure,
especially in a coexisting environment of F-T cycle and Cl−.

2. Fabrication and Monitoring Principle of the Multielement Sensor

2.1. Preparation of Multielement Sensor

The multielement sensor included electrical resistivity probes, multiple Cl− selective electrodes,
a carbon steel (working electrode), a solid Ag/AgCl reference electrode and a stainless-steel electrode
(counter electrode). Figure 1 indicates the schematic diagram of fabricating the multielement sensor:
(1) PVC disk (60 mm in diameter and 5 mm in thickness) was selected as the body of the multielement
sensor where holes were drilled so that every kind of sensor could be fixed, as shown in Figure 1a; (2) Cl−

selective electrodes with different lengths and a solid Ag/AgCl reference electrode containing saturated
KCl gel electrolyte were inserted into corresponding holes (as shown in Figure 1b), the detailed
fabrication process of Cl− selective electrode and Ag/AgCl electrode was introduced in our previous
research [20,38]; (3) electrical resistivity probes, working electrode and counter electrode were mounted
in the body of sensor and fixed using plastic nuts, as shown in Figure 1c; (4) a cylindrical shield (60 mm
in diameter and 20 mm in height) was applied to cover the upper surface of the multielement sensor
and isolated the connections between electrodes and conducting wires from external environment,
then a cable protection sleeve was connected tightly to the shield to protect the conducting wires, as
shown in Figure 1d; (5) all the connections on the surface of the sensor were sealed with sealant to
prevent external liquid from entering into the sensor, the photo of prepared multielement sensors is
shown in Figure 1e.
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Figure 1. The schematic diagram and photograph of the multielement sensor. (a) top view of sensor,
the location and size of the drilled holes for every kind of electrode, (b) side view of sensor, placement
of Cl− selective electrodes and reference electrode, (c) side view of sensor, placement of electrical
resistivity probes, counter electrode and working electrode, (d) placement of cylindrical shield and
cable protection sleeve, and (e) the photo of prepared multielement sensor.
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2.2. The Multi Functions of the Prepared Multielement Sensor

2.2.1. Monitoring the Clf Content in Concrete Pore Solution

Clf content in concrete was monitored through the measurement of Cl− selective electrode
potential because there existed a linear response between the logarithmic value of Clf content in pore
solution and Cl− selective electrode potential. The potential of the Cl− selective electrode was directly
recorded using the voltmeter with respect to the embedded reference electrode. Based on our previous
research [7], the response equation between Cl− selective electrode potential and Clf content depended
on the alkalinity of pore solution and therefore three rules were set in advance for calculating Clf
content using electrode potential: (1) the response equation at pH of 13.5 was used once the pH of pore
solution exceeded 13, (2) the equation at pH value of 12.5 was used when the pH value of pore solution
was between 11 and 13, and (3) the equation at pH of 10 was used when the pH of pore solution was
lower than 11.

The pH of concrete powder around Cl− selective electrode (distance <2 mm) was determined using
the solid-liquid extraction method. Firstly, concrete power (excluding coarse aggregate) around Cl−

selective electrode (distance <2 mm) was collected, ground, and then passed through a 0.16-mm sieve.
Subsequently, 1 g of powder was soaked in 10 g of deionized water and the mixture was stood for 24 h
after a powerful stirring. Then, the mixture was filtered, and the pH of filtrate was recorded by pH meter.

2.2.2. Monitoring the Electrical Resistivity of Internal Concrete

Figure 2 illustrates the principle of measuring the electrical resistivity of internal concrete using
the electrical resistivity probes arranged in a square with a side length of 20 mm. The two electrodes
on the same side (electrode named as No. 1 and 2 in Figure 2) were passing a known input current
(I, approximately 0.5 mA) and potential difference (∆V) between the other two electrodes (No. 3 and
4 in Figure 2) was recorded. The electrical resistivity of concrete was calculated by introducing the
geometrical factor (GF) [39], as expressed in Equation (1):

ρ = GF
∆V

I
(1)

GF =
2πa

2 −
√

2
(2)

where a is the side length of the square (20 mm in this study).
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2.2.3. Monitoring Steel Corrosion in Concrete

The potential of carbon steel electrode was measured against the reference electrode using a
voltmeter. In addition, the electrochemical impedance spectroscopy (EIS) measurement was performed
by a three-electrode system in the frequency between 100 kHz and 0.1 Hz using a potentiostat (PARSTAT
2273, Princeton Applied Research, Oak Ridge, TN, USA).

3. Materials and Methods

3.1. Materials

Ordinary Portland cement and grade II fly ash were used and their oxide compositions are listed
in Table 1. Local river sand (fineness modulus is 2.6) and gravel (size between 5 mm and 20 mm)
were used. Commercial polycarboxylate high performance water reducing agent was used to modify
the working performance of concrete and air entraining agent was applied to entrain air in concrete.
The chemical composition (wt.%) of carbon steel in the multielement sensor is listed in the following:
C (0.22%), Si (0.31%), Mn (0.64%), S (0.05%), P (0.05%) and the residual Fe. Distilled water was used,
and all other reagents were analytically pure.

Table 1. Chemical compositions of ordinary Portland cement and fly ash (%).

Type SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O SO3 Ignition Loss

Cement 22.55 9.35 61.30 3.10 1.35 1.03 0.15 0.99 0.18
Fly ash 54.19 31.31 3.19 3.56 0.68 0.39 1.92 0.94 3.82

3.2. Mixture Proportions of Concrete and Concrete Specimens

Table 2 lists the mixture proportions of concrete. 0.5 was chosen as the ratio of water to binder.
40% of cement was replaced with fly ash in FC concrete and air entraining agent was added in AC
concrete. Fly ash and air entraining agent were simultaneously used in FAC concrete.

Table 2. Detailed mixture proportions of concrete.

Mix

Mixture Proportion 28 d
Compressive

Strength
(MPa)

Air
Content

(%)
Cement FAH Fine

Aggregate
Coarse

Aggregate Water W/B *
Water

Reducer
Agent

Air
Entraining

Agent (×10−2)

PC 336 / 657 1221 185 0.5 0.840 / 44.3 2.1
FC 202 135 657 1221 185 0.5 0.840 / 42.4 1.7
AC 336 / 657 1221 185 0.5 0.840 0.168 38.5 4.6
FAC 202 135 657 1221 185 0.5 0.840 0.168 36.4 3.8

Note: W/B * represents the ratio of water to binder.

The 100 × 100 × 400 mm rectangular concrete specimens were casted. During the casting,
the multielement sensor was placed in concrete and the diagram of concrete specimen containing
sensor is indicated in Figure 3. The concrete specimens were demolded after 24 h and then cured in
the curing room (20 ± 1 ◦C and 95 ± 2% RH) for 4 weeks. The air content of fresh mixed concrete
was measured using a pressure meter following the Chinese standard GB/T 50081-2002 [40] and the
compressive strength of concrete (without sensor) after curing period of 28 days was recorded. Then, 5
groups of fresh mixed concrete and 5 concrete specimens were applied to obtain the average results of
air content and compressive strength.
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Figure 3. The schematic diagram of concrete specimen embedded with a multielement sensor.

3.3. Exposure to F-T Cycle and Subsequent Cl− Penetration

After 28-day curing, concrete was subjected to the “rapid F/T testing method” introduced in the
Chinese standard GB/T 50082–2009 [41]. Firstly, concrete specimens were fully immersed in water for
4 d to ensure the sufficient saturation condition; secondly, specimens were stored in stainless steel
boxes and subsequently water was added into the stainless steel boxes until the water level was 5 mm
higher than the top face of concrete specimen; then the boxes were placed in the rapid F/T machine
(Suzhou Donghua Examination Appartus Co., Ltd. Suzhou, China) to conduct F-T experiment. In every
cycle, the concrete temperature dropped from 7.5 ◦C to −17.5 ◦C with an temperature reducing rate
of approximately 10 ◦C/h and increased from −17.5 ◦C to 7.5 ◦C with an temperature increasing rate
of approximately 25 ◦C/h. Figure 4 shows the evolution of concrete temperature with time in the
procedure of F-T cycle. During the 1st, 25th, 75th, and 125th F-T cycles, the electrical resistivity of
internal concrete was continuously monitored and recorded. Three concrete specimens were used to
obtain the average results. Furthermore, the relative dynamic modulus measurement was performed
following ASTM C597-2002 [42] after 1, 25, 75, and 125 F-T cycles and this testing was also conducted
on 3 concrete specimens to obtain the average value.Sensors 2020, 20, x FOR PEER REVIEW 8 of 28 
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After exposure to 1, 25, 75, and 125 F-T cycles, five faces of concrete specimens were totally covered
with epoxy resin and leaving one of side faces unsealed. Then concrete was soaked in 1 mol/L NaCl
solution which was updated every two weeks. The Cl− selective electrode potential was measured vs.
solid Ag/AgCl reference electrode and recorded in a total immersion period of 36 weeks. In addition,
half-cell potential and electrochemical impedance spectroscopy of carbon steel were also operated
during the immersion. 5 concrete specimens were used to obtain the average results.

4. Results and Discussion

4.1. Monitoring F-T Damage on Concrete by Monitoring Electrical Resistivity

Figure 5 indicates the electrical resistivity of concrete versus the temperature at 1st, 25th, 75th,
and 125th F-T cycles. In the freezing stage, the electrical resistivity of concrete keeps the initial value
when temperature is higher than 0 ◦C and the electrical resistivity quickly increases with the decrease
in temperature due to the ice formation [37] since the electrical resistivity of ice is greater than pore
solution [43]. Finally, the electrical resistivity of concrete reaches maximum value because the most
volume of pore solution in concrete has been changed into ice. In the thawing stage, the electrical
resistivity of concrete firstly keeps the maximum value and then drops quickly with temperature due
to the ice melting, the electrical resistivity of concrete reaches minimum value when this part of ice has
been totally melted into liquid. The temperature-dependence characteristic of electrical resistivity of
concrete has also been reported in refs [37,44]. Differing from the measurement of electrical resistivity
of whole mortar or concrete specimens in refs [37,44], the multi-element sensor developed in this work
is capable of continuously monitoring the electrical resistivity of internal concrete in the process of the
F-T cycle.
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The electrical resistivity results indicate that the electrical resistivity of concrete at the end of the
thawing stage decreases with F-T cycle. According to ref [45], the electrical resistivity of concrete
depends on the electrical resistivity of pore solution, porosity and connectivity of pores in concrete, as
expressed by Equation (3):

ρ = ρo
1
oβ

= ρo(FF). (3)

in which ρ represents the electrical resistivity of concrete, ρo represents the electrical resistivity of
concrete pore solution, o represents the total porosity of concrete and β represents the connectivity
of pores in concrete. Assuming no change in the pore solution after F-T cycle, any variation in the
electrical resistivity of concrete after exposure to F-T cycle is attributed to the change in this term
of 1

oβ , usually known as “formation factor” (FF) [46]. The F-T cycle reduces the formation factor of
concrete because damage caused by F-T cycle increases the porosity [47] and connectivity of pore
system in concrete. The reduction on formation factor of concrete due to F-T cycle has also been
reported in ref [37]: the more serious F-T damage, the larger reduction on the formation factor of
concrete. Consequently, the variation of the formation factor is closely related to the deterioration on
concrete due to F-T cycle and thereby the change on the formation factor represents the damage index
for concrete after F-T cycle, as shown in Equation (4):

(Damage index)n =

(
1 −

FFn

FF1

)
× 100% =

(
1 −

ρn

ρ1

)
× 100% (4)

where n and 1 represent n and 1 F-T cycles respectively. Generally, the damage index increases with
the increasing number of F-T cycles, as shown in Figure 6. Compared with plain cement concrete,
concrete added with fly ash has a higher damage index, but concrete supplemented with air entraining
agent has a lower damage index, revealing that the addition of fly ash reduces while air entraining age
improves concrete’s ability of resisting F-T deterioration. Furthermore, the improvement on concrete
resistance to F-T damage by air entraining agent is stronger than the reduction on concrete resistance
by fly ash since concrete with joint addition of air entraining agent and fly ash has lower damage index
compared with plain cement concrete.Sensors 2020, 20, x FOR PEER REVIEW 10 of 28 
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The relative dynamic modulus of concrete has been widely used to characterize the F-T damage
degree [9,48] and ref [28] proposed a methodology for qualitatively assessing the deterioration degree
of concrete after F-T cycle based on the relative dynamic modulus results. Figure 7a shows the
development of relative dynamic modulus of prepared concrete with F-T cycles; furthermore, Figure 7b
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indicates the damage index as a function of the relative dynamic modulus, revealing that relative
dynamic modulus decreases with the increase in damage index. The above results confirm the
reliability of evaluating F-T deterioration degree on concrete using the damage index determined by
the electrical resistivity results. Hence, the real-time and continuous monitoring of F-T damage degree
of concrete could be achieved by the multi-element sensor which contains electrical resistivity probes
by establishing the quantitative and accurate relation between the decreasing degree on the electrical
resistivity of concrete and the deterioration degree on concrete due to F-T cycle.
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4.2. Monitoring Clf Content and Clf Ciffusion Coefficient in Concrete after F-T Cycle

The potential of Cl− selective electrode is converted to the potential versus SCE to directly calculate
Clf content because in the authors’ previous research [38] the potential of Cl− selective electrode
versus SCE is applied to describe the quantitative relation between electrode potential and Clf content.
Figure 8 indicates the Cl− selective electrode potential at different immersion periods after F-T cycles.
Electrode potential increases with the increasing depth and decreases with the immersion time and F-T
cycle. This is dependent on the Clf content in concrete pore solution.

Therefore, Figure 9 indicates the Clf content at different depths of concrete after F-T cycle. The Clf
content in concrete decreases with increasing depth from the exposed surface and increases with
immersion time, this is attributed to the penetration of Clf from the external Cl− source solution
to internal concrete. After same immersion period, Clf content in same distance from the exposed
surface increases with the increasing F-T cycle, meaning that damage on concrete caused by F-T cycle
accelerates the Clf diffusion in concrete. In addition, the distribution of Clf content in concrete follows
Fick’s second law [49,50], as expressed in Equation (5):

C(x, t) = Co + (Cs − Co)

1 − er f

 x − ∆x
2
√

Dappt

 (5)

where Dapp represents the apparent diffusion coefficient of Clf, Cs represents the surface Clf content
(assumed to be the Clf concentration in the external solution, 1 mol/L), Co represents the initial Clf
content in concrete, C(x, t) represents the Clf concentration acting as a function of x (the distance from
the exposed surface) and t (the immersion period), and er f represents the error function.
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Figure 8. The potential of Cl− selective electrode at different depths in concrete at different immersion 
periods after exposed to F-T cycle: (a–d) PC, 1–125 F-T cycles;(e–h) FC, 1–125 F-T cycles; (i–l) AC, 1–
125 F-T cycles; (m–p) AC, 1–125 F-T cycles. 

Figure 8. The potential of Cl− selective electrode at different depths in concrete at different immersion
periods after exposed to F-T cycle: (a–d) PC, 1–125 F-T cycles;(e–h) FC, 1–125 F-T cycles; (i–l) AC, 1–125
F-T cycles; (m–p) AC, 1–125 F-T cycles.
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Figure 9. The Clf content in concrete at different immersion periods after F-T cycle: (a–d) PC, 6–36 
weeks;(e–h) FC, 6–36 weeks; (i–l) AC, 6–36 weeks; (m–p) FAC, 6–36 weeks. The dashed lines 
represent these fitting curves to obtain Clf diffusion coefficient in concrete. 

Table 3. Free Cl− diffusion coefficient in concrete after F-T cycle at different immersion periods (×10−11

m2/s). 

Concrete Type F-T Cycles 
Immersion Time (w) 

6 12 18 36
PC 1 2.756 2.213 1.706 1.281 
PC 25 2.857 2.079 1.943 1.432 
PC 75 3.364 2.785 2.163 2.023 
PC 125 4.000 3.365 2.960 1.801 
FC 1 1.989 1.445 1.018 0.761 
FC 25 2.129 1.544 1.102 0.841 
FC 75 2.729 2.053 1.518 1.051 

Figure 9. The Clf content in concrete at different immersion periods after F-T cycle: (a–d) PC, 6–36
weeks;(e–h) FC, 6–36 weeks; (i–l) AC, 6–36 weeks; (m–p) FAC, 6–36 weeks. The dashed lines represent
these fitting curves to obtain Clf diffusion coefficient in concrete.

Figure 10 shows the fitting curves of apparent Clf diffusion coefficient in concrete using Equation
(5). The corresponding fitting results of Clf diffusion coefficient are summarized in Table 3. Generally,
the F-T cycle increases the Clf diffusion coefficient but the increasing degree on the diffusion coefficient
depends on the concrete mixture. After exposure to small number of F-T cycles, concrete added with
fly ash has significantly lower Clf diffusion coefficient than plain cement concrete and thereby fly ash
improves the concrete resistance to Clf ingress because of the modification on concrete microstructure
by fly ash [51,52] and improvement on the binding ability of Cl− [53]; however, concrete with addition of
air entraining agent has slightly higher Clf diffusion coefficient than plain cement concrete and therefore
air entraining agent weakens the concrete resistance to Clf penetration, which is possibly ascribed
to the increase in the total porosity [47]. After a large number of F-T cycles, concrete supplemented
with air entraining agent in turn has lower Clf diffusion coefficient than both plain cement concrete
and concrete added with fly ash, indicating F-T cycle has smaller effect on the resistance of concrete
with air entraining agent to Cl− ingress but has profound effect on the resistance of concrete with
fly ash to Cl− penetration. Concrete with joint addition of fly ash and air entraining agent keeps
comparatively lower Clf diffusion coefficient after exposure to whether small or large amount of F-T
cycles. Therefore, the simultaneous addition of fly ash and air entraining agent is an effective way
of ensuring the considerable anti-chloride performance of concrete, whether in a light or severe F-T
damage environment.
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Figure 10. The Clf diffusion coefficient as a function of immersion time: (a) PC type, (b) FC type, (c) 
AC type, and (d) FAC type. 

Figure 10. The Clf diffusion coefficient as a function of immersion time: (a) PC type, (b) FC type, (c)
AC type, and (d) FAC type.

Table 3. Free Cl− diffusion coefficient in concrete after F-T cycle at different immersion periods (×10−11

m2/s).

Concrete Type F-T Cycles
Immersion Time (w)

6 12 18 36

PC 1 2.756 2.213 1.706 1.281
PC 25 2.857 2.079 1.943 1.432
PC 75 3.364 2.785 2.163 2.023
PC 125 4.000 3.365 2.960 1.801
FC 1 1.989 1.445 1.018 0.761
FC 25 2.129 1.544 1.102 0.841
FC 75 2.729 2.053 1.518 1.051
FC 125 3.789 3.003 2.457 1.615
AC 1 2.934 2.343 1.911 1.489
AC 25 2.964 2.387 1.929 1.609
AC 75 3.081 2.508 2.068 1.685
AC 125 3.384 2.827 2.327 1.860
FAC 1 2.501 1.923 1.473 1.093
FAC 25 2.573 1.992 1.534 1.222
FAC 75 2.881 2.061 1.878 1.309
FAC 125 3.311 2.643 2.265 1.589
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In order to quantitatively characterize the influence of F-T damage degree on apparent Clf diffusion
coefficient, first of all, a definition of the change in Clf diffusion rate (∆Dn) after different F-T cycles is
introduced, as expressed in Equation (6):

∆Dn = Dn − D1 (6)

where Dn and D1 represent the apparent Clf diffusion rate after n and 1 F-T cycles respectively. Note that
the diffusion rate at 6 weeks of immersion is selected to avoid the interference of immersion time
because the diffusion rate decreases with the immersion period. The change on the Clf diffusion rate
(∆D) as a function of damage index (DI) is shown in Figure 11 and there exists an exponent relation
between them, as indicated in Equation (7):

∆D = 0.0176 × (DI)1.177 (7)
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As shown in Figure 9, the apparent Clf diffusion coefficient has a reducing trend with the
immersion period. Refs. [54,55] suggested that an exponent relation was appropriate to describe
the relation between the apparent Clf diffusion coefficient and the immersion period, as expressed
by Equation (8):

Dt = Dre f

( tre f

t

)m

(8)

where t means the immersion period and m means the time-dependent reduction coefficient, Dt means
the apparent Clf diffusion coefficient at immersion period (t), tre f means the reference time (6 weeks is
chosen), and Dre f means the corresponding Clf diffusion coefficient at tre f .

The fitting curves to obtain the time-dependent reduction coefficient are also displayed in Figure 9
and the fitting results are summarized in Table 4. Concrete with the addition of fly ash shows a higher
reduction coefficient than plain cement concrete but concrete with air entraining agent has lower
reduction coefficient, meaning that fly ash reduces the decreasing rate of Clf diffusion coefficient while
air entraining agent accelerates the decreasing rate of Clf diffusion coefficient. In addition, the F-T
cycle reduces the time-dependent reduction coefficient and therefore the Clf diffusion coefficient in
concrete suffering from F-T damage decreases more quickly compared with concrete suffered from no
damage. The change in the time-dependent reduction coefficient (∆mn) is defined by Equation (9):

∆mn = m1 − mn (9)
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where mn and m1 represent the time-dependent reduction coefficient after n and 1 F-T cycles respectively.
Figure 12 illustrates the ∆mn as a function of F-T damage index and a linear equation is used to describe
the relation between them. Therefore, determination of the time-dependent reduction coefficient of
concrete before exposed to F-T cycle and F-T damage index allows prediction of the time-dependent
reduction coefficient of concrete after subjected to the F-T cycle. The multi-element sensor is able to
simultaneously monitor the F-T damage degree, the Clf contents at different depths in concrete and the
Clf diffusion coefficient, which enables the continuous evaluation of the service condition of concrete
under the joint action of the F-T cycle and Cl− penetration. In addition, the quantitative relations
between the F-T damage index and parameters related to Clf penetration in concrete such as the Clf
diffusion coefficient and the time-dependent reduction coefficient are determined, which provides new
insights into the Cl− penetration model and prediction of service life of concrete structure in the F-T
and Cl− coexisting environment.

Table 4. The time-dependent reduction coefficient of concrete after different times of F-T cycle.

Concrete Type
The Number of F-T Cycles

1 25 75 125

PC 0.412 0.389 0.353 0.325
FC 0.548 0.535 0.506 0.435
AC 0.375 0.354 0.341 0.318
FAC 0.440 0.433 0.419 0.375
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4.3. Monitoring Steel Corrosion Condition in Concrete after F-T Cycle

Figure 13 shows the development of steel potential in concrete after F-T cycles. Generally, steel
potential decreases with the immersion time since the steel transforms from passive condition to
active condition due to the continuous Cl− penetration. After exposure to small number of F-T cycles,
potential of steel in FC and FAC is more positive than that in PC while potential of steel in AC is
slightly negative than PC, which is consistent with the Clf diffusion rate in concrete because Clf content
around steel is the dominating factor of inducing the de-passivation and subsequent corrosion of steel.
In addition, potential of steel in concrete exposed to F-T cycle shows more negative compared with that
in concrete exposed to no F-T cycle, this is because higher Cl− diffusion rate in concrete after F-T cycle
which results in premature occurrence of corrosion in steel. To conclude, the multi-element sensor
could real-time and continuously monitor the half-cell potential of steel in concrete after it suffered
from F-T damage.
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with immersion time after F-T cycles. Generally, the modulus value of steel at low frequency 
decreases with the immersion time and it drops quickly after corrosion happening. In addition, the 
peak phase angle appears at the lowest frequency (0.1 Hz) at the initial immersion period and it 
shifts toward larger frequency (a few tenth of 1 Hz) in the following immersion time. These changes 
happening in modulus and phase angle curves reveal that steel experiences complicated 
electrochemical processes such as the breakdown of local passive film and the accumulation of 
corrosion product [56–58]. Then an equivalent-circuit model (indicated in Figure 15) is selected to fit 
the EIS results to obtain electrochemical parameters including charge transfer resistance according 
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Figure 14 illustrates the development of modulus (|z|) and phase angle plots of steel in concrete
with immersion time after F-T cycles. Generally, the modulus value of steel at low frequency decreases
with the immersion time and it drops quickly after corrosion happening. In addition, the peak phase
angle appears at the lowest frequency (0.1 Hz) at the initial immersion period and it shifts toward
larger frequency (a few tenth of 1 Hz) in the following immersion time. These changes happening in
modulus and phase angle curves reveal that steel experiences complicated electrochemical processes
such as the breakdown of local passive film and the accumulation of corrosion product [56–58].
Then an equivalent-circuit model (indicated in Figure 15) is selected to fit the EIS results to obtain
electrochemical parameters including charge transfer resistance according to previous research [59,60].
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Figure 16. The evolution of corrosion current density of steel after different times of F-T cycle: (a) PC 
type, (b) FC type, (c) AC type, and (d) FAC type. The grey area highlights the corrosion initiation 
stage where the corrosion current density reaches 0.1 μA/cm2. 

Figure 15. The equivalent-circuit model used to fit the electrochemical impedance spectra results.
Rs represents the electrolyte resistance in concrete, the first time constant (Qc and Rc) represents
the property of pore network of concrete, and the second time constant (Qdl and Rct) represents the
electrochemical reaction taking place on the steel.
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Consequently, the corrosion rate of steel is calculated using the charge transfer resistance through
the Stern–Geary equation, as expressed in Equation (10):

icorr =
B

Rct

1
A

(10)

where Rct and A represent the charge transfer resistance and exposed surface of steel respectively,
B represents the Stern–Geary constant: 52 mV is chosen for passive state of steel, 26 mV is for active
state [61], and icorr represents the corrosion current density.

Figure 16 indicates development of icorr of steel with the immersion time after different F-T cycles.
The icorr increases with the increasing immersion period but varies with the concrete mixture: in the
situation of slight F-T damage, steel in FC and FAC has lower icorr while steel in AC has higher icorr

than PC, this coincides with the corrosion potential results. According to refs [15,62,63], steel corrosion
is assumed to be initiated when icorr of steel exceeds 0.1 µA/cm2. The initiation of steel corrosion is also
highlighted in Figure 16 and the period needed for the initiation of steel corrosion in concrete after
suffered from slight F-T damage follows AC < PC < FAC < FC. Furthermore, F-T damage increases the
icorr of steel in concrete and shortens the period needed for the initiation of steel corrosion. Based on
the monitoring results of steel corrosion, the addition of fly ash improves the concrete resistance to
steel corrosion, but F-T damage weakens the concrete resistance.
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Figure 16. The evolution of corrosion current density of steel after different times of F-T cycle: (a) PC 
type, (b) FC type, (c) AC type, and (d) FAC type. The grey area highlights the corrosion initiation 
stage where the corrosion current density reaches 0.1 μA/cm2. 

Figure 16. The evolution of corrosion current density of steel after different times of F-T cycle: (a) PC
type, (b) FC type, (c) AC type, and (d) FAC type. The grey area highlights the corrosion initiation stage
where the corrosion current density reaches 0.1 µA/cm2.

The multi-element sensor enables the simultaneous monitoring of Clf content around steel and
corrosion rate of steel. Thus, the critical content related to the initiation of steel corrosion in concrete
could be determined. Figure 17a shows the critical content of steel corrosion as an expression of Clf
content. The addition of fly ash decreases the critical content value, but air entraining agent slightly



Sensors 2020, 20, 5607 22 of 26

increases the critical content. Furthermore, the alkaline in concrete affects the corrosion initiation of
steel [64] and the alkaline content should be considered in the expression of critical content of steel
corrosion. Figure 17b shows the critical content of steel corrosion as an expression of Clf content to
the alkaline content of concrete (in term of Clf/OH−). The OH− concentration is directly calculated
based on the pH value of concrete powder using the solid liquid extraction method [7]. From the
results in Figure 17b, the critical content (expressed as Clf/OH−) of steel in concrete with air entraining
agent is slightly higher but the same value in concrete added with fly ash is four times higher than
plain concrete. In addition, the critical content (expressed as Clf/OH−) of steel in concrete with joint
addition of fly ash and air entraining agent is seven times as high as the plain concrete. From the
viewpoint of Clf/OH−, concrete supplemented with fly ash and air entraining agent has the best
anti-corrosion performance.
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Figure 17. The critical content related to the initiation of steel corrosion measured using the 
multi-element sensor: (a) Clf content, and (b) the ratio between Clf and OH− contents. 
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using various corrosion detection techniques. Specifically, there exists large scatter in the 
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in experimental design such as composition of mixture, steel condition, inhomogeneity of mortar or 
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These literature [64–66] reviewed research on the critical Cl− content, in terms of different forms,
related to steel corrosion in simulating concrete pore solution and cement-based materials obtained
using various corrosion detection techniques. Specifically, there exists large scatter in the summarized
critical Cl− contents of steel corrosion in cement-based materials due to the differences in experimental
design such as composition of mixture, steel condition, inhomogeneity of mortar or concrete samples
and corrosion detection methods. A recent research released by Isgor et al. [67] highlighted the
importance of the standardized method to investigate steel corrosion in cement-based materials. The
multi-element sensor provides the possibility of monitoring corrosion parameters of steel and Clf
content in concrete pore solution by which critical Clf content related to the occurrence of steel corrosion
in concrete could be directly determined. To sum up, the multi-element sensor continuously monitors
the durability parameters of reinforced concrete and thereby provides data support for the evaluation
of service condition and prediction of residual life. On the other hand, the multi-element sensor has the
potential to be regarded as a standardized testing instrument for the corrosion detection in laboratory
and field studies.

5. Conclusions

This paper introduces a design scheme of multi-element sensor including electrical resistivity
probes, multiple Cl− selective electrodes, a carbon steel, an embedded reference electrode and a counter
electrode. Embedding this sensor into concrete enables continuous and non-destructive monitoring
of durability parameters of concrete, such as F-T damage degree, Cl− contents, and steel corrosion
parameters. The F-T damage degree is evaluated using the variation of electrical resistivity of internal
concrete: when the decreasing ratio of electrical resistivity is lower than 10%, concrete is in slight
deterioration state. When the decreasing ratio of electrical resistivity is between 10% and 45%, concrete
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is in medium deterioration state. When the decreasing ratio of electrical resistivity is higher than
45%, concrete is in severe deterioration state. In addition, the apparent Clf diffusion coefficient and
time-dependent reduction coefficient are determined by fitting the Clf contents at different depths in
concrete using Fick’s second law. There exists an exponent relation between the change in Clf diffusion
rate and the F-T damage degree and a linear relation between the change in the time-dependent
reduction coefficient and the F-T damage degree. Moreover, the corrosion parameters of steel, such as
potential and current density, are also directly measured using the multi-element sensor. The critical
Clf content related to the onset of steel corrosion is obtained by combining the Clf content results and
the determination of de-passivation period. Hence, the multi-element sensor provides key durability
parameters for the establishment of a Cl− diffusion model, the health risk assessment, and the residual
service life prediction of concrete under the F-T cycle and Cl− coexistence.

The addition of air entraining agent improves concrete resistance to F-T damage but weakens
the resistance to Cl− penetration. On the contrary, the addition of fly ash improves the concrete
resistance to Cl− ingress but weakens the resistance to F-T damage. However, the joint addition of
air entraining agent and fly ash ensures adequate resistance of concrete to both F-T deterioration
and Cl− penetration, and thereby the simultaneous addition of air entraining agent and fly ash is an
effective way of improving the durability of reinforced concrete structure located in coexisting F-T and
Cl− environments.
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