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Abstract: In-line anomaly detection (AD) not only identifies the needs for semiconductor equipment
maintenance but also indicates potential line yield problems. Prompt AD based on available
equipment sensory data (ESD) facilitates proactive yield and operations management. However,
ESD items are highly diversified and drastically scale up along with the increased use of sensors.
Even veteran engineers lack knowledge about ESD items for automated AD. This paper presents
a novel Spectral and Time Autoencoder Learning for Anomaly Detection (STALAD) framework.
The design consists of four innovations: (1) identification of cycle series and spectral transformation
(CSST) from ESD, (2) unsupervised learning from CSST of ESD by exploiting Stacked AutoEncoders,
(3) hypothesis test for AD based on the difference between the learned normal data and the tested
sample data, (4) dynamic procedure control enabling periodic and parallel learning and testing.
Applications to ESD of an HDP-CVD tool demonstrate that STALAD learns normality without
engineers’ prior knowledge, is tolerant to some abnormal data in training input, performs correct AD,
and is efficient and adaptive for fab applications. Complementary to the current practice of using
control wafer monitoring for AD, STALAD may facilitate early detection of equipment anomaly and
assessment of impacts to process quality.

Keywords: anomaly detection; unsupervised learning; equipment sensory data; recipe-based cycle
series; spectral transformation; stacked autoencoders; HDP-CVD; semiconductor manufacturing

1. Introduction

In-line equipment anomaly detection (AD) identifies unusual behaviors in equipment sensory
data (ESD) [1], which not only estimates the needs for equipment maintenance or repair but also affects
process control for end-of-line yield. Unusual ESD behaviors could be early signals of a downgraded
component, deviation of a factor or some unexpected external causes. Such anomalies impact equipment
performance as well as product yield and operations management. Prompt AD facilitates proactive
anomaly handling to maintain equipment performance for high product yield and productivity.

Semiconductor industry has reported that with the introduction of advanced AD, a fab could have
25% reduction in time to yield maturity, 10% increase in manufacturing capacity and 35% decrease in
number of quality problems [2]. Utilizing ESD for AD has helped improve fabrication process control
and raise quality [3]. Chien et al. research [4] indicated that with applications of big data analytics by
exploiting various data sources in semiconductor fabrication, troubleshooting time can be effectively
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reduced and the production yield largely increased. Chen et al. proposed in [5] a yield alert and
diagnostic analysis framework and showed that it helps quickly clarify the causes of abnormal product
yield. Prompt equipment AD exploiting ESD leads to proactive equipment maintenance and process
control and is of significant value to yield management of an operational fab.

AD of semiconductor tools which fabricate layers of circuitry onto silicon wafers is very challenging
because of tool diversity and process complexity. ESD items of a tool are also highly diversified,
which may involve hundreds of items, and drastically scale up along with the increased use of
sensors [6]. Even veteran engineers lack knowledge about individual ESD items. Control wafer
monitoring is a common approach to measure wafer processing effects by a tool and to evaluate
equipment conditions and performance. Control wafer monitoring incurs high costs of control
wafers and their processing, tool capacity losses from processing control wafers, and time delay
and costs of measuring control wafers. Exploiting ESD for equipment AD can provide timely and
cost-efficient identification of equipment anomalies and warnings on potential yield and productivity
losses. However, with the increasing use of sensors, the growth of equipment and process complexities,
and the high ESD sample rates, it has become formidable for equipment engineers to comprehensively
grasp detailed characteristics of all kinds of ESD.

In semiconductor fabrication, the fault detection and classification (FDC) function is a common
practice to collect ESD and organize collected data into a database. ESD consists of many sensory
data items acquired from sensors of each tool. A sensory data item collected from a tool sensor is
also called as a Status Variable Identification (SVID), for example, gas flow, power, pressure, current,
voltage, temperature, position, etc. In general, FDC periodically collects data of an SVID from the
corresponding tool, for example, one or ten data samples per second. During the processing of a wafer,
FDC acquires ESD of hundreds of SVIDs from built-in and add-on sensors of each tool [7]. There are
tens of tool groups with various functionality and tens of tools in each tool group. Therefore, ESD data
rate to FDC is millions of data samples per second. Both historical and real-time ESD are stored in the
form of time series in FDC for further AD analyses.

ESD is useful for monitoring the condition of a tool and for inferring how the tool performs in
processing wafers. A semiconductor fabrication process consists of hundreds of processing steps.
Each processing step requires processing by a tool of specific functionality including deposition,
removal, patterning, and modification of electrical properties [8]. The set of tool instructions which
specify how a processing step is to be performed is called a recipe [9]. The time a tool takes to process
a recipe on a wafer is a cycle since the processing is repetitive for wafers of the same product. The ESD of
an SVID collected by FDC in a cycle forms a sample sequence, which is a time-stamped series of sampled
sensory data values from the SVID. Sample sequences of one SVID resulted from processing one same
recipe by a tool should have very similar patterns or features when the tool is normal. Although
sample sequences of various SVIDs differ in time series patterns or features, they are generated during
tool processing of one same recipe. Thus sample sequences are highly correlated among SVIDs of the
tool. Equipment engineers can monitor sample sequences from various SVIDs of individual tools for
anomaly detection. However, semiconductor tool complexity and ESD data volume and rates are so
high that an engineer can easily be overwhelmed.

Take a high density plasma chemical vapor deposition (HDP-CVD) tool for example [10].
It performs an enhanced CVD gap-fill process. An HDP-CVD recipe basically consists of wafer
allocation, chamber evacuation, plasma generation, electric bias construction, ion bombardment,
and end recovery. High density plasma is generated in the chamber with very low chamber pressure.
Electric bias forces ions in plasma to bombard the wafer and leave reactants on the surface which fills
the gap. Sophisticated physics involve plasma, electric field, chemical reactants, and their interactions.
Typically, there are more than 400 SVIDs and the sampling time of an SVID is 1 s. So, the ESD rate
is more than 400 samples per second per tool. Sophisticate physics of an HDP-CVD tool further
complicate its anomaly detection.



Sensors 2020, 20, 5650 3 of 27

There has been research work on general equipment AD by using ESD in time series [11] and some
on semiconductor manufacturing tools in specific [12]. Machine learning-based methods have been
popular solutions. Fan and Hsu [13] proposed an equipment AD framework which first identifies key
SVIDs, and then trains multiple classifiers for determining if sample ESD is abnormal. Iqbal et al. [14]
applied a moving window principal component analysis model with recipe information to capture
the normal model of ESD and detect potential tool anomalies. Liu et al. [15] exploited knowledge
about event ordering relationship to structure neural networks, improve equipment anomaly detection
accuracy and reduce computational complexity. For time series data, Hsu and Liu [16] proposed
a multiple time-series convolutional neural network model trained by labeled normal and abnormal
ESD for equipment AD. To identify the normality and/or anomaly, all these AD methods require
sufficient prior knowledge about ESD used and the corresponding tool such as labeled normal and
abnormal ESD, recipe information related to ESD features, and the ordering of tool events.

Some state-of-the-art studies of equipment AD in other problem domains than semiconductor
manufacturing do not require much prior knowledge. To minimize the requirement of prior knowledge,
machine learning techniques, especially autoencoder-based architectures, are widely applied to
equipment AD for machines in various domains. Borghesi et al. [17] adopted a set of general
autoencoders to learn normal behaviors of high performance computing systems and exploits learned
autoencoders to identify abnormal behaviors. Oh and Yun [18] specifically used the residual error
of a general autoencoder to identify the anomaly in a surface-mounted device (SMD) machine.
Kim et al. [19] applied a variational autoencoder to capture the distribution of healthy state data of
a linear motion guide. Park and Yun [20] proposed an AD scheme using recurrent neural network
encoder-decoder that significantly speeds up computation for fast anomaly detection of an SMD
machine. These methods efficiently capture normality by training on normal ESD, which may often be
difficult to obtain.

Spectral analysis-based AD approaches are also commonly adopted for equipment involving
vibrations, rotating, or periodic signals [21], and have achieved successes in various domains.
Taylor et al. [22] applied frequency transformation and analyzed frequency features of network data for
AD in the automotive controller area network bus. Liu et al. [23] developed a new AD algorithm that
combines time-frequency domain analysis and artificial intelligence technology for detecting abnormal
vibrations in a large power transformer. Rajendran et al. [24] exploited power spectral density data to
detect abnormal behavior in wireless spectrum. Frequency components of a vibration signal are often
useful for anomaly analysis of a vibrating or rotating machinery [25,26]. In semiconductor equipment
AD, there have been only few spectral-analysis related approaches. Liao et al. [27] considered the
spectral transformation of ESD cycles and preliminarily investigated the value of spectral analysis for
semiconductor AD. Chen et al. [28] further indicated how spectral analysis helps detect a drift in ESD
anomaly at very low frequencies.

Liao et al. [27] assessed the feasibility of using a Stacked AutoEncoder (SAE) for unsupervised
learning of normal features for AD from semiconductor tool ESD. An SAE contains multiple hidden
layers of nodes in addition to the input and output layers and can be viewed as the “stacking” of
multiple general autoencoders [29]. Preliminary results show that an SAE is capable of learning both
the temporal and spectral features of ESD among cycles of each recipe [28] and that a simple test on
the difference between the learned features and the tested achieves AD over a small data set.

The Numenta Anomaly Benchmark (NAB) [30] is an open-source framework for evaluating
the unsupervised real-time anomaly detection approaches. Some public datasets and benchmarks
are provided in NAB. However, these datasets do not contain data with characteristics similar to
semiconductor ESD.

In this paper, on top of the preliminary design and insights achieved by Liao et al. [27] and Chen,
Chang and Liao [28], we shall further define four design problems of semiconductor equipment AD
exploiting ESD. To address the four problems and resolve their challenges, we shall propose a novel
framework of spectral and time autoencoder learning for anomaly detection (STALAD). STALAD
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design has four innovations: (1) identification of cycle series and spectral transformation (CSST) from
ESD, (2) unsupervised learning from CSST of ESD by exploiting Stacked AutoEncoders, (3) hypothesis
test for AD based on the difference between the learned normal data and the tested sample data,
(4) dynamic procedure control enabling periodic and parallel learning and testing. Applications to ESD
of an HDP-CVD tool demonstrate that STALAD learns normality without engineers’ prior knowledge,
is tolerant to up to 30% of abnormal data in training input, performs correct AD, and is efficient and
adaptive for fab applications. Complementary to the current practice of using control wafer monitoring
for AD, STALAD may facilitate early detection of equipment anomaly and give warning to yield
management up to two weeks in advance according to our case study.

The remainder of this paper is organized as follows: Section 2 describes the equipment anomaly
detection problems and challenges. Section 3 presents the framework design and operation procedure
of the two-phased STALAD. Section 4 is the detailed design of learning phase, where STALAD learns
normality from ESD and outputs learned features. Section 5 describes the testing phase design,
where STALAD detects anomaly based on the difference from the learned normality and a hypothesis
test. Section 6 evaluates the performance of STALAD with case studies by using ESD collected from
an HDP-CVD tool. Finally, Section 7 concludes the paper.

2. Anomaly Detection Problems and Challenges

Abundant equipment sensory data (ESD) is ready for use in most of the modern semiconductor
fabs. As has been described in the Introduction, making effective use of ESD for AD is challenging.
This section will describe ESD characteristics with ESD of an HDP-CVD tool as an example, define the
problems and describe the challenges of exploiting ESD for equipment AD.

2.1. ESD Characteristics

A recipe-based cycle, called a cycle hereafter, is the time period of ESD collected from processing
a specific recipe over a wafer by a tool. A sample sequence is a time-stamped series of sampled sensory
data values from the SVID of a cycle. Figure 1 shows an exemplary sample sequence from an SVID
collected from an HDP-CVD tool, where the sampling rate is one sample per second and the cycle
consists of 189 time samples. In semiconductor manufacturing, most of ESD time series when plotted
over time axis approximately show piecewise linear value curves [31]. For example, the sample
sequence of the cycle depicted by Figure 1 starts at value 250, rises to a range between 325 and 375
after 30 s, and drops back to 250 at 180 s [27,28].
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Figure 1. A cycle of sample sequence from an SVID collected from an HDP-CVD tool.

This paper further defines the notion of recipe-based cycle series (CS), which is composed of sample
sequences of some concatenated sequential cycles of an SVID. Figure 2 gives exemplary CSes from
3 different SVIDs collected synchronously from an HDP-CVD tool processing over 10 wafers. The three
CSes are composed of 10 continuous cycles each. Since each cycle contains 189 time samples, one sample
per second, Figure 2 depicts the three CSes over 1890 s. Although the three CSes belong to 3 different
SVIDs, they all show the same and apparent periodicity because of the repetitive processing of one
same recipe by the tool.
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A normal sequence is a sample sequence representative of all sample sequences of cycles in
a CS. Figure 3 depicts a CS of 4 cycles. The sample sequences of the first three cycles are quite
similar and variations among them are small. The variations may be caused by (1) processing noises,
(2) switching from one recipe to another and equipment tuning or maintenance [7], and (3) sensing
noises. With existence of these variations, even veteran engineers often cannot easily identify whether
a sample sequence can be considered as a normal sequence.
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An abnormal sequence is a sample sequence which significantly differs or deviates from the normal
sequence. How much difference is significant depends on the characteristics of an SVID and requires
a careful analysis. For example, in Figure 3, the beginning part of the sample sequence of the 4th
cycle has a slightly upward trend, which differs from the downward pattern in the other three sample
sequences. Significant differences may be rooted in (1) failures of equipment parts, (2) malfunction of
sensors, (3) malicious activities by intruders, or even combinations of the above. Since the difference
between normal variations and abnormal deviations may very often be subtle, anomaly is very
challenging when AD is further complicated by ESD generation in very high volume and rates [28].
In general, even veteran engineers may not have sufficient knowledge to identify whether a sample
sequence is abnormal.

2.2. Problems and Challenges

To achieve early AD, we exploit the available ESD in FDC, as characterized in Section 2.1. There are
four research problems, each corresponding to a design issue. Problem definitions and descriptions of
their respective challenges are as follows:

P1. Exploitation of characteristics of CSes with limited knowledge about ESD

With limited knowledge about ESD, how do we make good exploitations of characteristics of
CSes to support equipment AD for semiconductor tools?
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Challenge 1

Characteristics of CSes from different SVIDs are diversified and complex and vary with tools.
There is little known knowledge about ESD that can be directly applied for anomaly detection.

P2. Learning of normal features from a CS possibly containing some abnormal sequences

How do we design a methodology to efficiently learn normal features from a CS that may contain
unknown amount of abnormal sequences?

Challenge 2

Input data may consist of some abnormal sequences. Learned features are thus not guaranteed to
be normal features.

P3. Anomaly detection in a sample sequence by learned normal features

With learned normal features, how do we design a test to decide whether a sample sequence
is abnormal?

Challenge 3

Measuring the deviation of a sample sequence from the representative sequence with the learned
normal features is difficult because normality may not be fully described by learned normal features
only. The other difficulty is to quantitatively define the deviation of two sample sequences. How much
deviation normality will a sample sequence be considered as abnormal is also challenging.

P4. Fast and adaptive detection for proactive yield improvement

How do we make AD efficient in computation and adaptive to fab status so that early AD by
using ESD may contribute to proactive yield and productivity improvements?

Challenge 4

High ESD volume and rates pose the need for a time-efficient detection methodology. Moreover,
the change of the tool normality over time as fab status evolves restricts the applicability of the learned
normality features; they have to be updated from time to time but when?

3. STALAD Framework Design

This section proposes an innovative design for AD, the Spectral and Time Autoencoder Learning
for Anomaly Detection (STALAD) framework, which exploits unsupervised learning techniques to
learn features of sample sequences and test anomalies for individual SVIDs. The STALAD framework
has four innovations:

I1. Identification of cycle series hidden in ESD and spectral transformation of cycle series,
I2. Unsupervised learning of normal features from cycle series and their spectral transformation by

exploiting Stacked AutoEncoders,
I3. One-tail hypothesis test for anomaly detection based on the difference between the learned normal

sequence and the tested sample sequence, and
I4. Dynamic procedure control which coordinates both learning and testing phases to enable periodic

and parallel executions of learning and testing.

These innovations in STALAD provide solutions to challenges 1–4 of problems P1-P4 described in
Section 2.

3.1. Framework Overview

Figure 4 depict the STALAD framework and its interactions with the FDC database and data
cleansing modules. The FDC database constantly collects ESD from individual tools and stores it in
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a time series form for further access. When STALAD requests for data, the FDC database will pass
the requested data to a data cleansing module first. A data cleansing module cleanses data by some
presetting rules automatically with engineers’ review and some manual adjustments. The cleansed
data is input to STALAD.
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There are two phases in STALAD: (1) the unsupervised normal feature learning phase (Learning
phase for short) that requires a batch of cleansed historical data, and (2) the real-time feature testing
phase (Testing phase for short) that requires cleansed per-wafer data. An AD procedure controller
controls operations of the two phases. In more details, STALAD consists of six functional modules as
shown in Figure 4, where the four novel modules corresponding to the four innovations are marked
in red. Either phase contains a data preprocessing module, which identifies CSes hidden in the
input ESD, computes spectral transformation (ST) of sample sequences of CSes, and outputs sample
sequences of CSes and their STs together, denoted as CSSTs. In the Learning phase, the unsupervised
normal feature learning module learns normal features, by exploiting SAEs, from the preprocessed
historical CSST, and outputs learned SAEs weights and corresponding test thresholds. In Testing
phase, the time/frequency SAE-based feature testing module takes the learned SAEs weights and
corresponding test thresholds as inputs, performs one-tail hypothesis test on the preprocessed test
data of per wafer CSST, and outputs per wafer test result labeling as an AD result of the tested wafer.
An equipment health dashboard collects per wafer test labels and visually displays them in lights for
engineers’ further analyses.

The AD procedure controller starts with notifying Learning phase and Testing phase, and ends
with the finish signals sent from Learning phase and Testing phase, respectively. Figure 4 also depicts
all control signal flows and data flows among modules. In the figure, a solid arrow line represents
a control signal flow and its direction, and a dash arrow line represents a data flow and its direction.
The pairs of learned SAE weights and test thresholds of all SVIDs are defined as the learned normality.
Once a learned normality is computed, it will be transmitted to Testing phase by the AD procedure
controller to detect anomalies by the latest learned normality. The procedure design is based on the
following four principles:

1. Batch processing in the Learning phase: To ensure the success of normality learning, sample
sequences of ESD from a batch of many processed wafers are used for training.
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2. Per wafer processing in the Testing phase: To detect as early as possible, once available from the
tool, per wafer sequence is used for testing against the learned normality.

3. Regular activation of Learning phase: To deal with the change of the normality of the tool,
the Learning phase will be activated regularly after a period of time, which is typically a week,
to learn the new normality of the tool.

4. Parallel execution between phases: To handle the high-rate coming of ESD, the Testing phase
keeps the previous learned normality so that it can remain per wafer testing while the Learning
phase is computing the new learned normality.

The detailed procedure controls consist of three stages as follows:

Initialization and training stage: having no learned normality

(1) The AD procedure controller activates the Learning phase when the STALAD begins to run.
(2) The data-preprocessing-into-CSST (batch wafers) module queries a batch of historical ESD from

the FDC database.
(3) The FDC database responds with the batch of historical ESD and sends the batch to data cleansing

and then to the data-preprocessing-into-CSST (batch wafers) module.
(4) After preprocessing, the data-preprocessing-into-CSST (batch wafers) module sends the batch of

CSSTs to the unsupervised-normal-feature-learning module for training.
(5) After training, the unsupervised-normal-feature-learning module sends a finish signal together

with the learned normality to the AD procedure controller.

Testing stage: having a learned normality

(6) When a learned normality is available from Learning phase, the AD procedure controller activates
the Testing phase, and sends the learned normality to the time/frequency SAE-based feature
testing module.

(7) The data-preprocessing-into-CSST (per wafer) module queries the FDC database for per wafer
ESD just generated by a tool.

(8) The FDC database responds with the requested per wafer ESD and sends the per wafer data to
cleansing and then to the data-preprocessing-into-CSST (per wafer) module.

(9) After preprocessing, the data-preprocessing-into-CSST (per wafer) module sends the converted
per wafer test CSSTs to the time/frequency-SAE-based-feature-testing module for testing.

(10) After testing, the time/frequency SAE-based feature testing module sends a finish signal to
the procedure controller and displays the test results on the equipment health dashboard.
The equipment health dashboard displays detection results of all SVIDs by a list of lights
indicating normal or abnormal.

(11) Once the next per wafer ESD comes, the AD procedure controller activates the Testing phase
again, repeat steps 6 to 10 using the current available learned normality to test it.

Update stage: updating the learned normality

(12) If an anomaly is detected and the corresponding tool maintained, or if equipment engineers
notify tool adjustments, the AD procedure controller will activate the Learning phase to restart
learning, and repeat steps 2 to 5 for learning the new normality.

The following Section and Sections 4 and 5 will present detailed designs of STALAD. To provide
quantitative descriptions, let us first define some notations to be used. Table 1 lists notations of
constants and given sets. Table 2 defines a few functions. Table 3 denotes indices. Table 4 lists variable
and vector notations. For a test threshold, learned SAE weights, and the learned normality, we may
omit the superscript t or s in their expressions if they are applicable for both time series and spectra.
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Descriptions of AD procedure in STALAD will be focused on AD of single SVID, say SVID j. The same
procedures apply to all SVIDs.

Table 1. Notations of constants or given sets.

Notation Definition

N the total number of wafers in the batch;

J the total number of SVIDs in the batch;

K the total number of sampling points in a cycle;

i the imaginary unit;

r the ratio of number of cycles in the training data, 0 ≤ r ≤ 1;

Dvalid the set of validation data;

Dtrain the set of training data;

α a coefficient that can tune the sensitivity of the anomaly test.

Table 2. Notations of functions.

Notation Definition

f t : Rm
→ Rm an SAE architecture for time series;

f s : Rm
→ Rm an SAE architecture for spectra;

len(·) : Rm
→ Z number of elements in a m-dimensional vector;

h(·) : Z→ Z the dimensional reduction function, which yields the reduced
dimension. h(m) = dm

2 e, where de is the upper Gauss bracket;

hm(·) : Z→ Z the iterated dimensional reduction function, i.e., hm , h ◦ hm−1.

Table 3. Notations of indices.

Notation Definition

n index of a wafer, n = 1, . . . , N;

j index of an SVID, j = 1, . . . , J;

k index of a sampling point in a cycle, k = 1, . . . , K.

Table 4. Notations that are expressed by indices.

Notation Definition

ynjk a sensor reading of SVID j of wafer n at time index k, after cleansing;

ynj a sample sequence of SVID j of wafer n, and ynj =
[
ynj1, ynj2, . . . , ynjK

]
;

y j a CS of SVID j, and y j =
(
y1 j, y2 j, . . . , yN j

)
;

νnj the magnitude spectrum of ynj after FFT;

νnjk the k-th value in νnj, and νnj =
[
νnj1, νnj2, . . . , νnjK

]
;

ν̃nj the one side magnitude spectrum of ynj;

ν̃ j all one side magnitude spectra ν̃nj of SVID j;

θt
j a test threshold of SVID j for time series;

θs
j a test threshold of SVID j for spectra;

Wt
j learned SAE weights of SVID j for time series;

Ws
j learned SAE weights of SVID j for spectra;
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Table 4. Cont.

Notation Definition(
θt

j, Wt
j

)
the learned normality of SVID j for time series;(

θs
j, Ws

j

)
the learned normality of SVID j for spectra.

3.2. Data Preprocessing into Cycle Series and Spectral Transformation

In STALAD, there are two data preprocessing modules–one for the Learning phase of batch wafer
data, and the other for the Testing phase of per wafer data. The major difference between these two
parts is the number of cycles in its output CS, while their preprocessing procedures are the same. In this
Section, only the preprocessing design for batch wafer data is described.

The apparent periodicity shown in a CS inspires two innovative designs of the data preprocessing
module: (1) identifications of CSes hidden in ESD, and (2) spectral transformation of sample sequences
in a CS to characterize its periodic features. Since the spectral transformation has been proven
an effective way to analyze a periodic signal [22], we also exploit spectral transformation and take
spectral features of CSes into consideration.

Figure 5 depicts the data preprocessing module for each SVID in STALAD. The following
descriptions focus on ESD from only single SVID j, single recipe, and single tool. It takes cleansed ESD{
ynjk, n = 1, . . . , N, k = 1, . . . , K

}
as input and outputs a CSST

(
y j, ν̃ j

)
. First, the cycle identification

submodule groups cleansed ESD into all sample sequence
{
ynj, n = 1, . . . , N

}
. Each sample sequence

ynj is a vector composed of ordered ESD of the wafer n:

ynj =
[
ynj1, ynj2, . . . , ynjK

]
(1)

The CS concatenation submodule concatenates all sample sequences into a CS y j by the ordering
of processing wafers:

y j =
(
y1 j, y2 j, . . . , yN j

)
(2)

Each sample sequence in the CS is transformed into a magnitude spectrum by the spectral
transformation submodule performing FFT. That is, given ynj, its magnitude spectrum νnj is:

νnj =
[
νnj1, νnj2, . . . , νnjK

]
, where νnjk =

∣∣∣∣∣∑K

m=1
ynjme−i 2π

K km
∣∣∣∣∣. (3)

Because certain symmetries in the magnitude spectrum exist for a real-valued ynj, the one-side
magnitude spectrum is sufficient to express the magnitude spectrum [32]. The spectral transformation
submodule also computes the one side magnitude spectrum ν̃nj of νnj:

ν̃nj =
[
νnj1, νnj2, . . . , νnjK̃

]
, where K̃ = h(K) (4)

Finally, the spectral transformation submodule collects all magnitude spectra as a collection ν̃ j,

ν̃ j =
(
ν̃1 j, ν̃2 j, . . . , ν̃N j

)
, (5)

and outputs a CSST
(
y j, ν̃ j

)
, the pair of the CS and all magnitude spectra with respect to the SVID j.
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4. Unsupervised Feature Learning and Validation

We design the unsupervised normal feature learning phase in STALAD to find normal features
from CSSTs of individual SVIDs. SAE-based feature learning makes it able to perform unsupervised
feature learning for all kinds of SVIDs. Learning phase is initiated by the AD procedure controller,
takes historical ESD as input, and outputs the learned normality of each SVID. Learning phase exploits
SAEs for unsupervised learning of the salient features of CSSTs. It also leaves part of input historical
ESD as validation data to generate test thresholds for Testing phase. Functionality evaluation suggests
effective normality learning by the learning phase design.

4.1. Normal Feature Learning Design

Figure 6 depicts the unsupervised normal feature learning module which consists of 3 submodules:
(1) data splitter, (2) SAE training, and (3) threshold generator. The module takes CSSTs

(
y j, ν̃ j

)
of SVID

j as input. The modules outputs learned SAE weights Wt
j and Ws

j and test thresholds θt
j and θs

j for

time series and spectra respectively. Namely, the module outputs the learned normality
(
θt

j, Wt
j

)
for

time series and
(
θs

j, Ws
j

)
for spectra.Sensors 2020, 20, x FOR PEER REVIEW 11 of 26 
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The data splitter splits CSSTs
(
y j, ν̃ j

)
into two parts by their ordering of cycles. Let r be

a user-specified ratio. Suppose a CSST contains N cycles, the former rN cycles are split into training
data Dtrain =

{(
ynj, ν̃nj

)
, n = 1, . . . , rN

}
for the SAE training, and the latter N − rN cycles are split into

validation data Dvalid =
{(

ynj, ν̃nj
)
, n = rN + 1, . . . , N

}
for the threshold generator. We suggest r to be

around 0.75, which follows the tradition of splitting training and validation data [33].
The SAE training submodule contains one SAE f t for learning from time series data ynj and the

other SAE f s for learning from spectra input ν̃nj. We exploit the property of SAEs [34] to learn normal
features of sample sequences in Dtrain. Let len

(
ynj

)
= K. The SAE for time series ynj consists of 2M + 1
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fully-connected layers sequentially with dimensions K, h(K), . . . , hM−1(K), hM(K), hM−1(K), . . . , h(K),
and K, where:

M , min
{
M ∈ N

∣∣∣hM(K) ≤ β
}

(6)

and β is a user-defined maximum number of the learned features. Therefore, the SAE for time series
ynj contains 2M + 1 layers with the former M + 1 layers being the encoder part, and the latter M + 1
layers being the decoder part. Each layer in the encoder part halves the dimension. Equation (6) tells
how many dimensional reduction layers are needed. We suggest 5 ≤ β ≤ 10 so that the number of the
learned features are enough to characterize a CSST well. According to Equation (4), len

(
ν̃nj

)
= h(K).

The SAE for frequency spectra ν̃nj consists of 2M− 1 layers with dimensions h(K), h2(K), . . . , hM−1(K),
hM(K), hM−1(K), . . . , h2(K), h(K).

All cycles in data set Dtrain are used as training samples to train SAEs. We define the n-th decoded

sequence outputted by the SAEs as
(
y′nj, ν̃

′

nj

)
, where:

y′nj , f t
(
ynj; Wt

j

)
(7)

ν̃′nj , f s
(
ν̃nj; Ws

j

)
(8)

We define the difference value of the n-th cycle as the mean square error between the input sample
sequence and its decoded sequence:

dt
nj ,

1

len
(
ynj

) ∣∣∣∣∣∣∣∣ynj − y′nj

∣∣∣∣∣∣∣∣2, and (9)

ds
nj ,

1

len
(
ν̃nj

) ∣∣∣∣∣∣∣∣̃νnj − ν̃
′

nj

∣∣∣∣∣∣∣∣2. (10)

We define the loss function of the SAE as the sum of difference values of all cycles in Dtrain.
We minimize SAE loss by the Adam optimization method with its suggested settings [35]. The training
iteration terminates when exceeding a predefined maximum iteration number, which is set around
10,000 to prevent the SAE from overfitting.

The threshold generator submodule determines the test thresholds based on the learned SAE W j
and the validation data set Dvalid. The validation difference values over Dvalid have sample mean µ j
and sample variance σ2

j as follows:

µ j =
1

N − rN

N∑
n=rN+1

dnj (11)

σ2
j =

1
N − rN − 1

 N∑
n=rN+1

d2
nj

− µ2
j (12)

Since the difference value is essentially the sample mean of
{(

ynjk − y′njk

)2
, k = 1, . . . , K

}
, we assume

that difference values of normal sequences follow a normal distribution according to the central limit
theorem [36]. Therefore, we define the test threshold θ j as the following:

θ j , µ j + ασ j (13)

Typically α is chosen to be 3, while the larger the α is, the looser the threshold of normality is.
The submodule pairs the learned SAE weights W j with the test thresholds θ j of individual SVIDs,
and outputs the learned normality

(
θ j, W j

)
.
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4.2. Functionality Evaluation

Two functionalities of the learning phase should be evaluated: (1) computational time, and (2)
representativeness of the learned normality—how much representativeness a sample sequence has to
be a normal sequence. A simple HDP-CVD anomaly case is considered, where veteran engineers can
easily identify normal and abnormal sequences. Computational time is measured, and the learned
normality is validated by engineers.

4.2.1. Evaluation Dataset

The dataset contains 97 cycles collected from 8 SVIDs of an HDP-CVD tool. Each cycle lasts
for 218 s and therefore has 218 data points. The first 58 cycles are used as training data, the middle
19 cycles as validation data, and the last 20 cycles as testing data.

4.2.2. Settings

We run STALAD using Python on a WindowsTM (Microsoft, Redmond, WA, USA) platform,
and train SAEs with the help of an NVIDIA GTX 1060 GPUTM (NVIDIA, Santa Clara, CA, USA) using
the TensorFlowTM (Google Brain Team, Mountain View, CA, USA) module. The computational time
is measured using the “time” built-in Python module. The hyperparameter settings of SAEs are
summarized in Table 5.

Table 5. The hyperparameter settings for the experiment in Section 4.2.

Hyperparameter Setting Reasoning

Dimensions of each layer of
time SAE

218, 109, 55, 28, 14, 7, 14, 28, 55,
109, 218

The determination of layer dimensions is
described in Section 4.1. We set β = 10.

Dimensions of each layer of
spectral SAE 109, 55, 28, 14, 7, 14, 28, 55, 109 Same as the above.

Activation function Leaky ReLU (leaky rate = 0.2)
for all layers

Experiments show that leaky ReLU [37] can
reach the lowest training error among various

activation functions.

Initial weights Normal distributionN
(
0, 0.12

) We randomly initialize the weights, which is
the usual choice described in [38].

Loss function
∑

n∈Dtrain

dnj Described in Section 4.1.

Optimizer Adam with default settings
suggested in [35]

[35] suggests Adam that is good for
general problems.

Maximum training iterations 10,000

We apply the early stopping technique to
prevent from overfitting. Investigations

suggest that the iterations should stop around
5000 to 15,000.

4.2.3. Evaluation Metrics

Let dt j be a difference value of a testing cycle t. Define the identification factor αt j to the cycle t as
the following:

αt j ,
dt j − µ j

σ j
(14)

where µ j and σ j are calculated by using Equations (11) and (12). A small αt j value means that the
sample sequence is likely to be considered normal, and vice versa.

4.2.4. Expected Results

Due to relatively deep architecture of an SAE and ten thousand iterations for the training procedure,
a few minutes are expected to train an SAE. We expect a STALAD time SAE or spectral SAE can learn
normal sequences due to the dominant amount of normal sequences in the training data which contains
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57 normal sequences and only one abnormal sequence. If we pick a normal sequence in the test data,
we expect αt j < α, which means this normal sequence is similar to a normal sequence.

4.2.5. Evaluation Results and Discussions

The computational time of the learning phase on 58 cycles of the 7th SVID in the training data is
47.966 s for time series input and 40.453 s for frequency spectra input. Time series learning takes more
time for training since its SAE has two more layers than a spectral SAE. Since the idle time between
two adjacent wafer cycles is generally more than 1 min, the learning phase, which takes only 47.966 s,
is able to finish before the processing of the next wafer. For the case that the batch data for training is
58 wafer cycles, the learned normality should be ready for AD on the next wafer.

Figure 7a depicts the difference value for a normal sequence in time series. The left part shows the
normal sequence input (in blue) only and the right part shows the SAE decoded sequence (in orange)
as well as the normal sequence. As the sensory values range from 2500 to 6000 and the difference
between two sensory values on a sample time point is generally less than 100, little difference can be
identified visually on the figure. The difference value is dt j = 480.200, and µ j = 1276.024, σ j = 1732.268.
The relative magnitude of difference

∣∣∣αt j
∣∣∣ is about 0.459, which is much smaller than 3. This demonstrates

that Learning phase successfully learns the normal sequence.
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Figure 7. Low difference values of a normal sequence comparing to its decoded sequence: (a) in time
series forms; (b) in frequency spectra forms.

Figure 7b depicts the difference value for the normal sequence in frequency spectra. The difference
value is dt j = 6.186, and µ j = 10.177, σ j = 16.427. Thus

∣∣∣αt j
∣∣∣ is about 0.243, which is also much smaller

than 3. Again, this demonstrates that the learning phase successfully learns the spectrum of the
normal sequence.

5. Feature Testing for Real-time Anomaly Detection

Once the normality features of each SVID are available by using the SAE-based learning, the AD
procedure controller then runs the testing phase of STALAD. Whenever a tool completes processing
a recipe over a wafer, the testing phase takes the preprocessed ESD of individual SVIDs of the wafer as
input and tests if the SVID data sequence of the recipe cycle is close to the learned normality or not.
The test phase design consists of SAE-based encoding and decoding of the input data for comparison
with the learned normality and a one-tail hypothesis test to determine if the difference is significant.
Detailed descriptions of the designs are as follows.

5.1. SAE-Based Feature Testing Design

Figure 8 depicts the time/frequency SAE-based feature testing module. Inputs to the module are
the learned normality of individual SVIDs

{(
θ j, W j

)
, j = 1, . . . , J

}
and the CSSTs

{(
yt j, ν̃t j

)
, j = 1, . . . , J

}
of a wafer for test, where the subscript t indicates data to test. The module outputs AD test labels
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of the wafer. The module is composed of SAE testing and one-tail hypothesis test submodules to
determine if the CSSTs

{(
yt j, ν̃t j

)
, j = 1, . . . , J

}
of the wafer for test has a significant difference with the

learned normality.
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The SAE testing submodule exploits learned SAEs to encode and decode the CSSTs for test.
It accepts CSSTs

{(
yt j, ν̃t j

)}
of a wafer for test and SAE weights

{
W j

}
of the learned normality.

The decoded sequences y′t j and ν̃′t j are computed according to Equations (7) and (8). Then it outputs

the decoded test CSSTs,
{(

y′t j, ν̃
′

t j

)}
, where each pair consists of the SAE-decoded time series and the

frequency spectral sequences. The submodule keeps SAE weights
{
W j

}
of the learned normality for

testing CSSTs of the next wafer until the learning phase updates the learned normality.
The one-tail hypothesis test submodule accepts as inputs

{(
yt j, ν̃t j

)}
, the decoded test CSSTs of

a wafer. The submodule then computes the difference values dt
t j and ds

t j by using Equations (9) and (10)

and the test thresholds
{
θ j

}
of the learned normality for hypothesis test. The submodule keeps

{
θ j

}
of the learned normality for testing

{(
yt j, ν̃t j

)}
of the next wafers until the learning phase updates the

learned normality.
In the one-tail hypothesis test, the null hypothesis H0 is “the test sample sequence is normal”,

which is equivalent to “the difference value is close to 0”. The alternative hypothesis H1 is “the
test sample sequence is abnormal”, which is equivalent to “the difference value is far larger than
0”. Under the assumption that difference values of normal sequences follow a normal distribution,
the one-tail hypothesis test submodule will reject H0 when the difference value of the tested sample
sequence is higher than the test threshold θ j (Equation (13)). The output test label of SVID j of the
wafer for test will thus be “abnormal” if dt j > θ j, and “normal” if dt j ≤ θ j.

5.2. Functionality Evaluation

To preliminarily evaluate computational time and effectiveness in detecting abnormal sequences
by the Testing phase, we use the same dataset, settings, and evaluation metrics as described in
Sections 4.2.1–4.2.3 The CSST data sequence for test is known abnormal.

5.2.1. Expected Results

We expect the testing phase finish its computation in just seconds since the SAE testing basically
performs matrix multiplications and function substitutions. We expect a tested abnormal sequence
has αt j > α, i.e., its identification factor is larger than α standard deviation from the mean, say α = 3.
We thus expect the testing phase to be effective.
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5.2.2. Evaluation Results and Discussions

The computation time of the testing phase over 20 cycles of the single SVID test data is 0.00204 s
for time series and 0.00199 s for frequency spectra. This demonstrates that the testing phase can finish
its computation in few seconds for hundreds SVIDs of a wafer. It is efficient enough for practical
applications since CSSTs come in once a wafer finishes the recipe, which is 2 or 3 min in general.

Figure 9a depicts the difference value for an abnormal sequence in time series. The left part
shows the abnormal sequence (in blue) and the right part the decoded sequence (in orange) as well
as the blue sequence. Significant differences between two sequences can be seen in the right part.
For example, in time period of 50 to 80 s, the abnormal sequence stays around 2900, while the decoded
sequence stays around 3200. The difference value of this cycle is dt j = 45, 073.648, while the learned
normality has µ j = 1276.024 and σ j = 1732.268. Thus αt j is about 25.283, which is 7.4 times larger than
3. This demonstrates a successful anomaly detection.
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Figure 9. High difference values of an abnormal sequence comparing to its decoded sequence: (a) in
time series forms; (b) in frequency spectra forms.

Figure 9b depicts the difference value for an abnormal sequence on frequency spectra.
Low frequency components (under 0.02 Hz) dominate both spectra, which makes differences at other
frequencies relatively minor. Although the difference between two spectra are not easily identified
visually, the computed difference is significant, where dt j = 110.264, and the learned normality has
µ j = 10.177, σ j = 16.427. Thus αt j is about 6.093 according to Equation (14), which doubles the value
3. Again, this demonstrates that the testing phase can successfully detect this abnormal sequence in
frequency spectra.

6. Correctness, Efficiency, and Robustness

This section studies the correctness, efficiency and robustness of STALAD. In Figure 4, STALAD
provides detection results and the computation time in the equipment health dashboard from which
engineers validate the correctness of the detections. Both the performance measures of correctness and
efficiency are used to evaluate the ability of STALAD to deal with the challenges to identify anomaly
from normal and high-rate ESD as stated in Section 2.2.

We then explore the robustness (tolerance to data) of STALAD to evaluate the effects of abnormal
sequences that may appear in training and/or validation data of STALAD. As we have only limited
knowledge about normal versus abnormal ESD, we may have no idea whether abnormal sequences
appear in training or validation data. Note that, in Figure 4, an unsupervised learning scheme is
adopted in the learning phase. The inputs to the unsupervised normal feature learning module could
include biased data of abnormal sequences in historical CSST, which may lead to biased SAE weights
and test thresholds, and further the biased AD results.
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6.1. Anomaly Detection Correctness

Since engineers know the features of normal and abnormal sequences in the dataset described
in Section 4.2.1, we use the same dataset to test the correctness of anomaly detection. In the dataset,
its ESD of 7th and 8th SVIDs show obvious deviations from normal sequences, which are quite typical
indicators to detect anomalies in an HDP-CVD tool. Engineers could easily validate the detection
results of this dataset.

The results of STALAD are validated by engineers after STALAD executes on the dataset for
20 testing cycles. The settings of STALAD are the same as described in Section 4.2.2. We plot
comparisons of testing cycles to visualize normal versus abnormal sequences of the testing cycles.
The correctness of STALAD is defined as the percentage of correctly identified cycles in the overall
20 testing cycles.

Figure 10 shows four plots of difference values against time-series and spectral cycles between the
sample sequence and its decoded sequence by time and spectral SAEs (Equations (9) and (10)) from two
different SVIDs. In the plots, all the x-axes represent cycle counts, and the y-axes the difference values.
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Figure 10. Detection of abnormal sequences by difference values from two different SVIDs: (a) the
sample sequences of 7th SVID; (b) the sample sequences of 8th SVID; (c) ST of the sample sequences of
7th SVID; (d) ST of the sample sequences of 8th SVID.

In each plot of Figure 10, the two red vertical dashed lines divide cycles into three groups. From the
lower to higher cycle counts, they are groups of training, validation, and testing data, respectively.
In each plot of Figure 10, a green horizontal line indicates its test threshold. Sample sequences in the
testing data that exceed the test threshold will be identified as abnormal sequences. Note that in testing
data of all plots, only cycles 78 and 97 exceed the test thresholds. This indicates STALAD identifies
cycles 78 and 97 as abnormal, and the other 18 testing cycles as normal, regardless of the SVIDs and
the aspects of analyses.
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Figure 11 depicts abnormal sequences in identified abnormal time-series cycles—cycles 78 and
97, from two different SVIDs. The x-axis represents the sampled time, and the y-axis the ESD value.
Cycle 79, marked as green curve, is normal and validated by engineers. We plot cycle 79 as a standard
and benchmark to identify abnormal sequences. In (a) of Figure 11, cycle 78, marked in blue, rises in
5 s earlier than the normal sequence; and in (b) of Figure 11, the same cycle drops earlier than the
normal sequence. Both phenomena indicated by blue arrows in Figure 11 are confirmed by engineers
as anomalies. Similarly, cycle 97, marked in orange, deviates from values of the normal sequence
during time from 50 to 90 s, indicated as orange arrows. Such phenomena are also confirmed by
engineers as anomalies. Figure 11 demonstrates the use of time series analysis of STALAD to correctly
identify the 2 abnormal sequences among the 20 testing sample sequences.
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Figure 11. Two abnormal sequences identified against a normal sequence in time series of two SVIDs:
(a) 7th SVID; (b) 8th SVID.

Figure 12 depicts normal sequences in cycles 79 to 96 from two SVIDs. We plot cycle 79, marked
in green, as a standard and benchmark. Cycles 80 to 96 that are confirmed by engineers as normal are
all marked in orange. Note that almost all the trajectories in orange fit the green one, which implies the
normal sequences are all similar. Figure 12 demonstrates the ability of time series analysis of STALAD
to correctly identify these 18 normal sequences. In summary, the time series analysis of STALAD
achieves 100% of AD correctness in 20 test cycles.
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Figure 12. Normal sequences in time series from two SVIDs: (a) 7th SVID; (b) 8th SVID.

Figure 13 depicts abnormal sequences from 2 SVIDs. The x-axis represents the frequency, and the
y-axis the magnitude. We plot cycle 79, marked in green, as a standard normal sequence comparing to
abnormal sequences. Note that cycles 78 and 97, marked in blue and orange curves, show different
fluctuations of magnitude from the normal sequence, especially at the part of frequencies at 0.15 Hz
and lower, as shown in the red boxes in the figure. This implies that the spectral analysis of STALAD
correctly identifies two abnormal sequences in 20 testing cycles with observations on obvious magnitude
fluctuations at low frequency of 0.15 Hz and below.

Figure 14 depicts normal sequences from two SVIDs. We plot cycle 79, marked in green,
as a standard and benchmark comparing to other normal sequences. Cycles 80 to 96 that are confirmed
by engineers as normal are all marked in orange. Note that almost all the trajectories in orange fit the
green one, especially at low frequencies of 0.15 Hz and below, which implies the spectral analysis of
STALAD correctly identifies the 18 normal sequences among 20 testing cycles.
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In summary, the spectral analysis of STALAD also achieves 100% of AD correctness on 20 testing
cycles, and anomalies are identified in magnitude fluctuations at low frequency under 0.15 Hz.

6.2. Anomaly Detection Efficiency

In this Section, we use a dataset which contains cycles of data from 30 SVIDs in 5 days of wafer
processing. Table 6 provides a property summary of the dataset. In addition to the same settings
described in Section 4.2.2, Table 7 provides the settings for the experiments. As in real fab operations,
there are tens to hundreds of SVIDs sensed and reported from a tool, this dataset is more realistic for
study of efficiency.

Table 6. Dataset properties in Section 6.2.

Property Value

# of cycles in the dataset 700
# of SVIDs in the dataset 30
# of data points in a cycle 189
Idle time between cycles 1–3 min

# of cycles collected in a day About 140

Table 7. The experiment settings for the experiment in Section 6.2.

Item Setting

# of cycles used in the training data 420
# of cycles used in the validation data 140

# of cycles used in the testing data 140
Dimensions of each layer of time SAE 189, 95, 48, 24, 12, 6, 12, 24, 48, 95, 189

Dimensions of each layer of spectral SAE 95, 48, 24, 12, 6, 12, 24, 48, 95

Table 8 shows the statistics of computation times of STALAD on this dataset. As shown in the
table, in the learning phase, it takes 1586 + 1331 = 2917 s (or 48.6 min) for both time and spectral SAEs.
This is equivalent to about 16 wafers of processing, provided that each wafer cycle takes 3 min to
process. On the other hand, in the testing phase, it takes 6.159 + 5.858 = 12.017 s for both time and
spectral SAEs of 140 testing wafers. That is, each testing needs only 0.09 s (=12.017/140) in average,
which is easy to handle the data inflow of 30 ESD points per second. Therefore, our STALAD can
complete normality learning within processing time of 16 wafers and achieve real-time testing.
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Table 8. Computation time of STALAD phases over 30 SVIDs for the experiment in Section 6.2.

Time Statistics Learning Phase
for Time SAE (s)

Testing Phase for
Time SAE (s)

Learning Phase for
Spectral SAE (s)

Testing Phase for
Spectral SAE (s)

Total 1585.552 6.159 1330.818 5.858
Average 52.852 0.205 44.361 0.195

Standard Deviation 0.785 0.007 0.693 0.060

Note that in Table 8, the average learning time for spectral SAE (44.361 s) is 17% shorter than
that for time SAE (52.852 s). This is because a spectral SAE has two less layers than a time SAE,
and frequency transformation is relatively fast. Therefore, training of spectral SAEs is faster than
training of time SAEs, which implies a benefit of using spectral analysis against traditional time
series analysis.

Figure 15 depicts the difference values of each time series cycle in this dataset, which can be used
to estimate the detection speed of STALAD. Note that the difference values significantly increase from
25 to 150 after 600th cycle, which is exactly the time when the anomaly happened. The difference values
stay much higher than the threshold after cycle 610, which indicates STALAD can detect the anomaly
in about 10 cycles. Given that a cycle takes 189 s to process, 10 cycles are equivalent to 31.5 min of
processing time. That is, the detection speed of STALAD is 31.5 min, which is relatively fast for most of
the operational fabs.
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Figure 15. Difference values related to time series for estimating detection speed for the experiment in
Section 6.2.

Figure 16 depicts the same dataset from the view of control wafer monitoring, which reveals
potential benefits resulting from the fast computation time and detection speed of STALAD. The red
line depicts the threshold, where the tool is considered abnormal when the readings are above the
threshold. The green box ranged from days 20 to 25 shows the corresponding time of the dataset
described in Table 6, where the tool went through an anomaly event. Note that there is another anomaly
happening around day 38 while no any readings during days 25 to 38. Based on the interpolation
of readings of days 25 and 38, the tool may have already shown a trend going towards abnormality
before day 30. Given that STALAD can detect the normality change in half an hour, STALAD may
help engineers figure out the anomaly at day 30. This indicates that STALAD may achieve up to two
weeks advancement to AD complementary to the control wafer reading monitoring, which could have
significant potentials for both process control and yield improvement.



Sensors 2020, 20, 5650 23 of 27

Sensors 2020, 20, x FOR PEER REVIEW 22 of 26 

 

 
Figure 16. Advancement to anomaly detection by STALAD comparing to the control wafer reading 
monitoring for the whole anomaly event described by Table 6. 

6.3. Robustness 

In this section, we discuss the effects of abnormal cycles of data contained in training and/or 
validation data with the analysis of the effects to test thresholds and the ability of identifying 
anomalies. We use the same dataset described by Table 6 due to its known boundary between normal 
and abnormal data. In specific, cycles before cycle 600 are normal, and cycles after cycle 600 abnormal. 
Among SVIDs, time series cycles of 28th SVID and spectral cycles of 29th SVID show significant 
changes around cycle 600 in their plots of difference values versus cycles. These provide a good fit 
since we can focus around cycles 600 to simulate the case that the data combine normal and abnormal 
sequences. 

We pick various periods of the dataset to study effects of abnormality ratios in training and 
validation data. The abnormality ratio of data is defined as the percentage of the number of abnormal 
sequences in the data. To preserve the process order among cycles, the end cycles of periods are 
always cycle 700, while the start cycles of periods can vary. After the period is picked, earlier data of 
60% of cycles are selected as the training data, intermediate data of 20% as the validation data, and 
remaining data of 20% as the testing data. We consider 10 cases of various abnormality ratios in 
training and validation data. All other experiment settings are the same as those in Table 7. 
Abnormality ratios in testing data of all experiment cases are set to 100%. We estimate the effect to 
the ability of STALAD by the anomaly ratio, which is defined as the percentage of the number of cycles 
in the testing data exceeding the test threshold. 

Since STALAD relies on unsupervised learning to extract normality, too many abnormal 
sequences in training or validation data will be treated as “normal” and affect the robustness of 
STALAD. First, abnormal sequences in validation data will lead to high difference values and 
increase the test threshold. On the other hand, abnormal sequences often have high difference values 
away from the threshold, so the increase of the threshold may not affect testing results. Second, more 
than half abnormal sequences in training data will make them to dominate and reverse all the testing 
results. The effects should be observed from the change of anomaly ratio and test threshold as the 
abnormality ratio increases. We expect STALAD has some tolerance to the increase of abnormality 
ratio in validation data, and less than 50% toward the abnormality ratio in training data. 

Table 9 shows all experiment results of 10 experiment cases. For cases 1 to 4 in Table 9, the 
abnormality ratios in validation data gradually increase from 0% to 33%. The time and spectral test 
thresholds gradually increase. The anomaly ratio, however, stays above 14.4% to 22.7%. This implies 
abnormal sequences in testing data often have enough high difference values. Thus the increase of 
the threshold doesn’t affect testing results too much. As a consequence, we conclude that time series 
and spectral analyses of STALAD are robust enough to the cases whose abnormality ratio in 
validation data is below 33%. 

For cases 4 to 7 in Table 9, the abnormality ratios in validation data gradually increase from 33% 
to 100%. Notice that the anomaly ratios of both time series and spectral analyses of STALAD decrease 

Figure 16. Advancement to anomaly detection by STALAD comparing to the control wafer reading
monitoring for the whole anomaly event described by Table 6.

6.3. Robustness

In this section, we discuss the effects of abnormal cycles of data contained in training and/or
validation data with the analysis of the effects to test thresholds and the ability of identifying anomalies.
We use the same dataset described by Table 6 due to its known boundary between normal and abnormal
data. In specific, cycles before cycle 600 are normal, and cycles after cycle 600 abnormal. Among SVIDs,
time series cycles of 28th SVID and spectral cycles of 29th SVID show significant changes around cycle
600 in their plots of difference values versus cycles. These provide a good fit since we can focus around
cycles 600 to simulate the case that the data combine normal and abnormal sequences.

We pick various periods of the dataset to study effects of abnormality ratios in training and
validation data. The abnormality ratio of data is defined as the percentage of the number of abnormal
sequences in the data. To preserve the process order among cycles, the end cycles of periods are always
cycle 700, while the start cycles of periods can vary. After the period is picked, earlier data of 60% of
cycles are selected as the training data, intermediate data of 20% as the validation data, and remaining
data of 20% as the testing data. We consider 10 cases of various abnormality ratios in training and
validation data. All other experiment settings are the same as those in Table 7. Abnormality ratios in
testing data of all experiment cases are set to 100%. We estimate the effect to the ability of STALAD
by the anomaly ratio, which is defined as the percentage of the number of cycles in the testing data
exceeding the test threshold.

Since STALAD relies on unsupervised learning to extract normality, too many abnormal sequences
in training or validation data will be treated as “normal” and affect the robustness of STALAD.
First, abnormal sequences in validation data will lead to high difference values and increase the test
threshold. On the other hand, abnormal sequences often have high difference values away from
the threshold, so the increase of the threshold may not affect testing results. Second, more than half
abnormal sequences in training data will make them to dominate and reverse all the testing results.
The effects should be observed from the change of anomaly ratio and test threshold as the abnormality
ratio increases. We expect STALAD has some tolerance to the increase of abnormality ratio in validation
data, and less than 50% toward the abnormality ratio in training data.

Table 9 shows all experiment results of 10 experiment cases. For cases 1 to 4 in Table 9,
the abnormality ratios in validation data gradually increase from 0% to 33%. The time and spectral test
thresholds gradually increase. The anomaly ratio, however, stays above 14.4% to 22.7%. This implies
abnormal sequences in testing data often have enough high difference values. Thus the increase of the
threshold doesn’t affect testing results too much. As a consequence, we conclude that time series and
spectral analyses of STALAD are robust enough to the cases whose abnormality ratio in validation
data is below 33%.
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Table 9. The effects of abnormality ratio to the anomaly ratio and the test thresholds of time series and
spectral analysis STALAD.

Case
Index

Abnormality
Ratio

(Training)

Abnormality
Ratio

(Validation)

Anomaly Ratio
(Time)

Test
Threshold

(Time)

Anomaly Ratio
(Spectral)

Test
Threshold
(Spectral)

1 0/300 = 0% 0/100 = 0% 22/100 = 22.0% 84.56 16/100 = 16.0% 1.440
2 0/270 = 0% 10/90 = 11% 13/90 = 14.4% 39.41 15/90 = 16.7% 1.516
3 0/240 = 0% 20/80 = 25% 12/80 = 15.0% 74.07 18/80 = 22.5% 2.952
4 0/225 = 0% 25/75 = 33% 16/75 = 21.3% 104.72 17/75 = 22.7% 3.284
5 0/201 = 0% 33/67 = 49% 7/67 = 10.4% 132.12 7/67 = 10.4% 3.498
6 0/180 = 0% 40/60 = 67% 0/60 = 0.0% 168.10 0/60 = 0.0% 43.230
7 0/150 = 0% 50/50 = 100% 0/50 = 0.0% 205.68 0/50 = 0.0% 60.063
8 34/99 = 34% 33/33 = 100% 0/33 = 0.0% 438.85 0/33 = 0.0% 93.109
9 50/75 = 67% 25/25 = 100% 0/25 = 0.0% 96.30 1/25 = 4.0% 3.692

10 60/60 = 100% 20/20 = 100% 10/20 = 50.0% 14.07 1/20 = 5.0% 3.309

For cases 4 to 7 in Table 9, the abnormality ratios in validation data gradually increase from
33% to 100%. Notice that the anomaly ratios of both time series and spectral analyses of STALAD
decrease linearly from about 22% to 0%, while the abnormality ratios increase from 33% to 67%. On the
other hand, the test thresholds show significant increases. This coincides with our expectation where
the threshold increases too much such that the testing results are affected. We conclude that the
detection ability of both time series and spectral analyses of STALAD starts to decrease linearly when
the abnormality ratio in validation data increases from 33% to 67%.

For cases 7 to 10 in Table 9, the abnormality ratios in training data gradually increase from 0
to 100%. Notice that the test thresholds significantly drop after the abnormality ratio is more than
50%. This implies abnormal sequences become dominant in training data, and the learned normality
is “flipped”. The drop of the thresholds also leads to emergence of anomaly ratios, since now the
features of abnormal sequences are learned as the representative and used to identify testing cycles.
As a consequence, we conclude that STALAD starts to treat abnormal sequences as “normal” when the
abnormality ratio in training data is beyond 50%.

7. Conclusions

This paper proposes the Spectral and Time Autoencoder Learning for Anomaly Detection
(STALAD) framework to exploit unsupervised learning by Stacked AutoEncoders (SAEs) on high
volume, high rate, and diversified ESD for in-line equipment anomaly detection (AD). STALAD is
capable of learning normal features in data with some tolerance to abnormal data. Dynamic procedure
control allows STALAD to achieve efficient testing for AD and regular learning for adaptation, which are
suitable for practical fab applications. To fully utilize features of ESD and extract normal features,
STALAD preprocesses ESD into cycle series and their spectral transformation (CSST), and exploits SAEs
for learning salient features of CSST with some tolerance of abnormal data. To identify anomalies by the
learned normality, STALAD exploits the hypothesis test on the difference values of tested ESD. ESD of
an HDP-CVD tool is used as the case study to evaluate the performance of the AD correctness, tolerance
to abnormal data, efficiency and adaption, and proactive benefits for fab applications. Numerical
results indicate that 100% AD correctness is achieved on 20 testing wafer data, given 77 wafer data for
learning. The spectral analysis gets 17% faster in computation than time series analysis. STALAD has
33% tolerance for abnormal data in the validation data when determining the hypothesis test threshold.
For the case study of 30 ESD items from a real fab, STALAD is capable of performing real-time AD
immediately after the completion of processing of a wafer lot. Complementary to the current practice
of using control wafer monitoring for process control, the STALAD framework can gain up to 8 days’
advancement earlier for AD.

During the semiconductor equipment production cycle, an equipment often stays online to
maximize its throughputs. The procedure controller in STALAD is designed to accommodate STALAD



Sensors 2020, 20, 5650 25 of 27

to the equipment production cycle via the initialization and training, testing, and update stages.
The initialization and training stage is the only stage that cannot do anomaly testing, while it will
never be entered again as long as STALAD is not shutdown. The testing stage allows STALAD doing
real-time testing constantly. The update stage allows STALAD to learn new normality after some
equipment events, and it doesn’t interrupt the testing stage. Therefore, STALAD can adapt to new
normality while not interrupt the anomaly testing. With stages controlled by the procedure controller,
STALAD could be a compatible, efficient, and adaptive AD decision support for equipment engineers.

Semiconductor manufacturing AD methods demand high reliability and accuracy. Expert
knowledge from equipment engineers is often used for developing an AD method. However,
existing literatures do not deal with the problems of lacks of expert knowledge in ESD. As the rapid
increases in tool and process complexities, big data in both rates and volumes, ESD knowledge about
their characteristics and normality will become more and more indescribable. Future work includes
a theoretical approach to both performance evaluation and reliability analysis of STALAD. Error rate,
false alarm ratio, and confusion matrix are some common approaches to evaluate an AD framework,
while they need ground truth for evaluation. Reliability analysis without the need of ground truth has
to be developed. Effects to SAE weights are left to be future work since it is hard to define a metric to
quantitatively measure the change of SAE weights.

Author Contributions: Conceptualization, D.-Y.L., C.-Y.C., and S.-C.C.; methodology, C.-Y.C., S.-C.C., and D.-Y.L.;
software, C.-Y.C.; validation, C.-Y.C., S.-C.C., and D.-Y.L.; formal analysis, C.-Y.C. and S.-C.C.; investigation,
C.-Y.C., S.-C.C., and D.-Y.L.; resources, S.-C.C. and D.-Y.L.; data curation, C.-Y.C. and D.-Y.L.; writing—original
draft preparation, C.-Y.C. and S.-C.C.; writing—review and editing, C.-Y.C., S.-C.C., and D.-Y.L.; supervision,
S.-C.C.; funding acquisition, S.-C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science and Technology, Taiwan, R.O.C.: MOST 107-
2221-E-002-184, MOST 108-2221-E-002-038.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58.
[CrossRef]

2. Case Study: Micron Uses Data and Artificial Intelligence to See, Hear and Feel. Available online:
https://sg.micron.com/insight/micron-uses-data-and-artificial-intelligence-to-see-hear-and-feel (accessed on
12 September 2020).

3. Makhlouk, O. Time Series Data Analytics: Clustering-Based Anomaly Detection Techniques for Quality
Control in Semiconductor Manufacturing. Master’s Thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2018.

4. Chien, C.-F.; Liu, C.-W.; Chuang, S.-C. Analysing semiconductor manufacturing big data for root cause
detection of excursion for yield enhancement. Int. J. Prod. Res. 2017, 55, 5095–5107. [CrossRef]

5. Chen, Y.-J.; Lee, Y.-H.; Chiu, M.-C. Construct an intelligent yield alert and diagnostic analysis system via
data analysis: Empirical study of a semiconductor foundry. In Advances in Production Management Systems.
Smart Manufacturing for Industry 4.0; Springer International Publishing: Berlin/Heidelberg, Germany, 2018;
pp. 394–401.

6. Chien, C.-F.; Hsu, C.-Y.; Chen, P.-N. Semiconductor fault detection and classification for yield enhancement
and manufacturing intelligence. Flex. Serv. Manuf. J. 2013, 25, 367–388. [CrossRef]

7. Rostami, H.; Blue, J.; Yugma, C. Equipment condition diagnosis and fault fingerprint extraction in
semiconductor manufacturing. In Proceedings of the 15th IEEE International Conference on Machine
Learning and Applications, Anaheim, CA, USA, 18–20 December 2016; pp. 534–539.

8. Semiconductor Processing Steps. Available online: https://www.professionalplastics.com/SemiconductorProcessing
(accessed on 13 September 2020).

9. What’s A Recipe Management System and What’s Its Purpose? Available online: https://criticalmanufacturing.
com/en/newsroom/blog/posts/blog/rms-38#.X13TSWgzZPY (accessed on 13 September 2020).

http://dx.doi.org/10.1145/1541880.1541882
https://sg.micron.com/insight/micron-uses-data-and-artificial-intelligence-to-see-hear-and-feel
http://dx.doi.org/10.1080/00207543.2015.1109153
http://dx.doi.org/10.1007/s10696-012-9161-4
https://www.professionalplastics.com/SemiconductorProcessing
https://criticalmanufacturing.com/en/newsroom/blog/posts/blog/rms-38#.X13TSWgzZPY
https://criticalmanufacturing.com/en/newsroom/blog/posts/blog/rms-38#.X13TSWgzZPY


Sensors 2020, 20, 5650 26 of 27

10. Cote, D.R.; Nguyen, S.V.; Stamper, A.K.; Armbrust, D.S.; Tobben, D.; Conti, R.A.; Lee, G.Y. Plasma-assisted
chemical vapor deposition of dielectric thin films for ULSI semiconductor circuits. IBM J. Res. Dev. 1999, 43,
5–38. [CrossRef]

11. Lazarevic, A.; Banerjee, A.; Chandola, V.; Kumar, V.; Srivastava, J. Data mining for anomaly detection.
In Tutorial at the European Conference on Principles and Practice of Knowledge Discovery in Databases; Antwerp,
Belgium, 19 September 2008. Available online: http://www.ecmlpkdd2008.org/files/pdf/tutorials/dmad.pdf
(accessed on 2 October 2020).

12. Susto, G.; Terzi, M.; Beghi, A. Anomaly detection approaches for semiconductor manufacturing. Procedia
Manuf. 2017, 11, 2018–2024. [CrossRef]

13. Fan, S.S.; Hsu, C.; Tsai, D.; He, F.; Cheng, C. Data-driven approach for fault detection and diagnostic in
semiconductor manufacturing. IEEE Trans. Autom. Sci. Eng. 2020, 1–12. [CrossRef]

14. Iqbal, M.R.A.; Vargas, A.; Erickson, J.S.; Bennett, K.P. Automated diagnosis of anomalies via sensor-step data
outlier detection: An application in semiconductors. Sigkdd Odd. Workshop 2018. [CrossRef]

15. Liu, J.; Guo, J.; Orlik, P.; Shibata, M.; Nakahara, D.; Mii, S.; Takáč, M. Anomaly detection in manufacturing
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