Supplementary File

Photolithography fabricated spacer arrays offering mechanical strengthening and oil motion control in electrowetting displays

Yingying Dou 1,2, Lin Chen 1,2, Hui Li 1,2,3, Biao Tang 1,2,*, Alex Henzen 1,2 and Guofu Zhou 12,4,5,*

- ¹ Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.
- ² National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.
- ³ College of Mechatronics and Control Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060, P. R. China.
- ⁴ Shenzhen Guohua Optoelectronics Tech. Co. Ltd. Shenzhen 518110, China.
- ⁵ Academy of Shenzhen Guohua Optoelectronics, Shenzhen 518110, China.
- *Correspondence: tangbiao@scnu.edu.cn (B.T.); guofu.zhou@m.scnu.edu.cn (G.Z.)

Figure S1. The graphs showing the oil states of pixels with different SAs parameters with time at switching-on process. 1) Effect of spacer densities (number of spacers: number of pixels, (**a**) 1:1, (**b**) 1:4 and (**c**) 1:16) on oil motion and gathering behavior with the spacer height of 60 μ m. 2) Effect of spacer heights ((**b**) 60, (**d**) 40 and (**e**) 20 μ m) on oil motion and gathering behavior with the spacer density of 1:4. WA is the White area fraction (WA) at 300 ms, while error bar is from ~8 data.