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Abstract: Aiming at the requirement of rapid recognition of the wearer’s gait stage in the process
of intelligent hybrid control of an exoskeleton, this paper studies the human body mixed motion
pattern recognition technology based on multi-source feature parameters. We obtain information on
human lower extremity acceleration and plantar analyze the relationship between these parameters
and gait cycle studying the motion state recognition method based on feature evaluation and neural
network. Based on the actual requirements of exoskeleton per use, 15 common gait patterns were
determined. Using this, the studies were carried out on the time domain, frequency domain, and
energy feature extraction of multi-source lower extremity motion information. The distance-based
feature screening method was used to extract the optimal features. Finally, based on the multi-layer
BP (back propagation) neural network, a nonlinear mapping model between feature quantity and
motion state was established. The experimental results showed that the recognition accuracy in
single motion mode can reach up to 98.28%, while the recognition accuracy of the two groups of
experiments in mixed motion mode was found to be 92.7% and 97.4%, respectively. The feasibility
and effectiveness of the model were verified.

Keywords: motion pattern recognition; plantar pressure; inertial sensor; neural network; lower limb
assisted exoskeleton

1. Introduction

In order to achieve compliant human computer interaction and coordinated motion, the exoskeleton
control strategy develops from a passive position control mode to a mixture of multiple control modes,
and the correct recognition of the gait is the basis of the hybrid control of the exoskeleton robot. As a key
technical link in the flexible motion control of exoskeleton robots, gait analysis is a technique based on
the acquisition, description, and analysis of human kinematics, dynamics and physiological information
to understand the laws of human motion and walking mechanism [1]. In indoor environments, motion
state recognition based on the pictures and videos [2,3], and the force platform are the most accurate
systems for gait analysis. Wearable gait systems are comparably small, durable, flexible and adaptable,
capable of being used in complex outdoor environments [4]. The data acquisition method of the

Sensors 2020, 20, 537; doi:10.3390/s20020537 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6436-1775
https://orcid.org/0000-0002-6346-4932
https://orcid.org/0000-0002-5595-7155
http://www.mdpi.com/1424-8220/20/2/537?type=check_update&version=1
http://dx.doi.org/10.3390/s20020537
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 537 2 of 18

wearable gait analysis system is simple and environment-free, and is easy to integrate with the
exoskeleton. During the interactive control, the dynamic measurement results of the human lower
limb motion posture data are provided in real time, and the exoskeleton is assisted to obtain more gait
learning samples to decode, quickly and accurately, the collected lower extremity motion information
for obtaining the current motion state of the wearer. The exoskeleton can be trained to switch the
movement mode autonomously according to the recognized posture or movement pattern of the
human body, making its movement more flexible to adapt to more application scenarios, and the
obtained human motion information can also be used to rectify the results of other perception methods
of motion intentions (such as EEG and EMG). In addition, gait phase division is also important in
the diagnosis and prevention of pathological gait [5], medical monitoring [6,7], and of rehabilitation
effect evaluation [8]. The key to the feat of motion state identification is the feature extraction and the
expression of the lower limb motion information, and the realization of multi-pattern classification
algorithm [9]. A good recognition model can obtain higher recognition with lower computational load
in a shorter time with better precision.

A.M. Khan et al. [10] used accelerometers to collect data, using the autoregressive coefficients
of motion signals as key features, and achieved 99% accuracy for the four movements of standing
and lying. Baojun Chen et al. [11] studied discrete the application of the plantar pressure distribution
signal in motion pattern recognition; Andrea Parri et al. [12] proposed a hybrid classification method
mainly used for real-time motion pattern recognition of lower extremity wearable exoskeleton robots.
Trung Thanh Ngo et al. [13] performed a pattern recognition experiment of continuous motion signals
obtained from the waist of the subjects using tri-axial accelerometer. Liu Lei et al. [14] used the
foot pressure information to decompose the lower limbs of the human body and identified three
kinds of movements, namely: flat walking, upstairs and downstairs, by employing the generalized
regression neural network (GRNN). Tkach et al. [15] and Hargrove et al. [16] combined surface
electromyography (sEMG) and mechanical sensor, used pattern recognition algorithm to decode EMG
signal, and combined with data from prosthesis sensor, realized seamless transition between walking
on flat ground, stairs, and ramps.

We chose gyroscope and force sensor to collect human motion data because they are smaller
and easier to integrate with exoskeleton compared with image acquisition equipment and EMG
acquisition equipment. In general, data related to acceleration, angular velocity, and plantar pressure
are most commonly used for gait phase segmentation. At present, the related research mainly focuses
on a single movement or posture scene of the human body. In order to improve the flexibility of
exoskeleton movement, increasing the number of scene recognition categories and the correct rate is
still the key to motion state recognition. In this paper, we first determined the 15 most common gait
patterns; such as standing still, standing with weight, sitting, one knee down, fast walking, constant
speed walking, slow walking, walking in place, running, stepping up continuously, stepping down
continuously, single step stepping up, single step stepping down, uphill and downhill; based on
the actual application requirements of an exoskeleton. Then, a study of the feature extraction and
feature screening methods of multi-source motion information fusion was carried out, and analyzed
various motion behavior characteristics from various original motion data. A high-dimensional feature
vector matrix was constructed by extracting motion features that can describe and distinguish various
motions. Then, based on the distance-based feature selection method, the high-dimensional feature
vector matrix obtained from the acquired high-dimensional feature vector matrix is selected. Based on
the multi-layer BP neural network, a nonlinear mapping model between feature quantity and motion
state was established. Finally, the feasibility and effectiveness of the model to accurately identify the
motion state were verified by experiments.
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2. Materials and Methods

2.1. Experimental Principles and Systems

The hip, knee, and ankle joints are the pivots of the lower extremity limbs, mainly in the sagittal
plane, and it is important to quantify these joint angles. The foot is the end of the limb, and the
foot movement is the result of the joint movement of the lower limbs. Therefore, the foot pressure
information, which is one of the main components of the walking parameters, has important research
value. In order to fully describe the movement of the lower limbs, a gait analysis system is proposed
to combine the inertial sensor and the pressure sensor to perform the synchronous acquisition of the
motion information of the thigh, the calf and the foot and the pressure information of the sole.

θhip = θthigh
θknee = θshank − θthigh
θankle = θ f oot − θshank

(1)

Inertial measurement unit (IMU), including accelerometers, gyroscopes, and magnetometers, is the
most widely used wearable sensors in clinical research and are often used in place of professional optical
motion capture systems [17–20]. The principle of measuring the hip and knee angle corresponding to
the inertial sensor arrangement is shown in Figure 1 and Formula (1).
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Figure 1. Leg inertial sensor arrangement.

The wearable insole, with built-in pressure sensors, is designed to easily measure the interaction
between the sole and the ground and is used to detect foot events and body weight distribution [21–24].
The pressure distribution of the foot region measured by the Novel Pedar-X insole foot pressure
distribution measurement system is shown in Figure 2a. Taking the 65 kg subject as an example, the
pressure curve of each region during a gait cycle is plotted, as shown in Figure 2b. The main focus is
on the thumb area (T area), the first metatarsal area (M1 & M2 areas), and the heel area (HM, HL & HC
areas), so we arrange the pressure sensors for these three areas. As shown in Figure 3, the positions of
the force sensors, we chose, for the left foot are a, b, and c, while that for the right foot are e, f, and g.
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Figure 3. Design of wearable gait analysis system.

The overall design of the wearable gait analysis system is shown in Figure 3. It includes a total
of 3 IMUs at the thigh, calf and foot of each leg, and 3 force sensors at the sole of each foot. The foot
used in our system is flexible as, it is part of an exoskeleton [25]. We transformed and corrected the
data collected by the sensor, which is very accurate compared with the data collected by Vicon motion
capture system. This is explained in detail in the results section, which proves the effectiveness and
validity of our research tools.

2.2. Selection of Common Gait Patterns

According to our common use of exoskeleton, in this paper we refer to the assisted exoskeleton
challenge program, we selected 15 common human lower limb movement modes, including 4 static
modes and 11 dynamic modes, covering three environments of the road surface i.e., flat roads, stair
surfaces, and slopes. The specific action points of various motion states are described in detail in
Table 1.

2.3. Feature Parameter Extraction

2.3.1. Time Domain Features and Frequency Domain Characteristics

The walking motion of the human body is usually a quasi-periodic process. Therefore, by
calculating the frequency domain characteristics of the signal to obtain the frequency components
in the motion signal and the energy level of each frequency component, it is helpful to realize the
accurate recognition of the human motion behavior. Feature extraction is an extremely important
part of pattern recognition. The quality of feature extraction will have direct consequence on the
accuracy and computational complexity of recognition. This paper has integrated time domain feature
parameters, frequency domain feature parameters and energy feature parameters with motion data;
performing an accurate and comprehensive description to reflect the changes in the state of motion of
the human body. The mean, variance, minimum value, correlation coefficient, and Fourier series are
selected from the time domain and the frequency domain features.
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Table 1. Selected gait patterns.

Category Condition Gait Patterns Detailed Descriptions State Graph Label

Static posture Flat road

Standing still Standing vertically
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calculating the frequency domain characteristics of the signal to obtain the frequency components in 

the motion signal and the energy level of each frequency component, it is helpful to realize the 

accurate recognition of the human motion behavior. Feature extraction is an extremely important part 

of pattern recognition. The quality of feature extraction will have direct consequence on the accuracy 

and computational complexity of recognition. This paper has integrated time domain feature 

parameters, frequency domain feature parameters and energy feature parameters with motion data; 

performing an accurate and comprehensive description to reflect the changes in the state of motion 

of the human body. The mean, variance, minimum value, correlation coefficient, and Fourier series 

are selected from the time domain and the frequency domain features. 
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2.3. Feature Parameter Extraction 

2.3.1. Time Domain Features and Frequency Domain Characteristics 

The walking motion of the human body is usually a quasi-periodic process. Therefore, by 

calculating the frequency domain characteristics of the signal to obtain the frequency components in 

the motion signal and the energy level of each frequency component, it is helpful to realize the 

accurate recognition of the human motion behavior. Feature extraction is an extremely important part 

of pattern recognition. The quality of feature extraction will have direct consequence on the accuracy 

and computational complexity of recognition. This paper has integrated time domain feature 

parameters, frequency domain feature parameters and energy feature parameters with motion data; 

performing an accurate and comprehensive description to reflect the changes in the state of motion 

of the human body. The mean, variance, minimum value, correlation coefficient, and Fourier series 

are selected from the time domain and the frequency domain features. 

2.3.2. Energy Domain Characteristics 

15

2.3.2. Energy Domain Characteristics

In the energy characteristic parameters, we selected the magnitude of the acceleration signal and
the wavelet energy entropy. The integral of the triaxial acceleration vector with respect to time, SMA
(the magnitude of the acceleration signal), in a certain period of time can indirectly reflect the energy
consumption of the human body during the period of time, which is very different in various types
of activities of the human body and act as a parameter to distinguish between human activity and
static state. Wavelet analysis is a commonly used time-frequency analysis tool in the field of pattern
recognition. The feature signal obtained after wavelet decomposition contains more time domain
information in addition to frequency domain information. The wavelet entropy can detect the motion
mutation point well and can be used as a feature for classification.

2.4. Distance-Based Feature Evaluation Method and Selection

For the eigenvalues extracted based on experience, the extracted feature quantities are not sensitive
to the motion patterns. In order to simplify the model structure, improve the computing speed and



Sensors 2020, 20, 537 6 of 18

generalization ability, we need to further filter the feature values for the classification. The result is a
sufficiently necessary subset of features.

For the high-sensitivity feature, the distance between sample points of different categories in the
feature space is as large as possible, and the distance between sample points within the same category is
as small as possible [26]. Using this as a criterion, the ratio of the average distance between the classes
in the training sample set and the average distance within the class can be calculated. The calculation
process is shown in Figure 4. The large evaluation factor means a more dense intra-group distribution
and a more discrete group distribution, and the trained classifier makes it easier to distinguish between
multiple categories.
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Suppose that the number of categories is C and the number of features is J’s feature set q.{
qm,c, j, m = 1, 2, . . .Mc; c = 1, 2 . . . , C; j = 1, 2, . . . J

}
(2)

where: qm,c, j refers to —The jth feature of the mth sample of class C; Mc—The total number of samples
of class C; J—The number of samples for each class.

Calculating the intra-class average distance of all samples in each category, and then determining
the average of the distances within C classes:

dc, j =
1

Mc × (Mc − 1)

Mc∑
m=1

Mc∑
l=1

∣∣∣qm,c, j − ql,c, j
∣∣∣, l, m = 1, 2, · · · , Mc, l , m (3)

d(w)
j =

1
C

C∑
c=1

dc, j (4)

The intra-class distance difference factor can be calculated by using (5) for each dimension feature
based on the maximum and minimum values of the distance within the class.

v(w)
j =

max(dc, j)

min(dc, j)
(5)

Calculating the average of each feature of all samples of the same class is equivalent to determining
the position of the center point of each category in the dimension of the j feature and determining the
average distance between the different classes of the j feature dimensions.

uc, j =
1

Mc

Mc∑
m=1

qm,c, j (6)

d(b)j =
1

C× (C− 1)

C∑
e=1

C∑
c,e=1

∣∣∣uc, j − ue, j
∣∣∣, c, e = 1, 2, · · · , C, c , e (7)

Defining and calculating the difference factor between distances between classes as:

v(b)j =
max

(∣∣∣ue, j − uc, j
∣∣∣)

min
(∣∣∣ue, j − uc, j

∣∣∣) , c, e = 1, 2, · · · , C, c , e (8)
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In order to improve the ability of feature evaluation, the weighting factor was determined by the
difference factor between the intra-class distance and the difference factor between the classes, and the
inter-class and intra-class distance ratios with weighting factors are calculated.

λ j =
1

v(w)
j

max(v(w)
j )

+
v(b)j

max(v(b)j )

(9)

α j = λ j

d(b)j

d(w)
j

(10)

Finally, the maximum normalization of α j was obtained to obtain the normalized distance
estimation factor.

−
α j =

α j

max(α j)
(11)

2.5. Motion State Recognition Model

The working process of neural network can mainly be divided into two parts: training and testing.
The motion pattern recognition model was established by combining the feature evaluation method
and the BP neural network. The training process is shown in Figure 5, and the test flow is shown in
Figure 6. In this paper, the hierarchical recognition model is adopted. On the one hand, the calculation
amount is reduced by reducing the number of eigenvalues required for single-point discrimination.
On the other hand, by reducing the input and output of the model, the recognition model is simplified,
the training time of the model is shortened, and the recognition is improved. Robustness lays the
foundation for online motion pattern recognition.Sensors 2020, 20, x FOR PEER REVIEW 8 of 20 
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Figure 7. (a) Hip angle comparison curve; (b) Knee angle comparison curve. 
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3. Results

3.1. Commissioning and Calibration of the Experimental System

The test subjects wore this system to walk, we did signal calibration and noise reduction filtering
processing for the sensors, and compared the data from the hardware and the Vicon Vero2.2 infrared
3D motion capture system for time normalization. As shown in Figure 7, the data of the hip and
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knee angles obtained by the two systems during a uniform walking period for 25 s shows the overall
trend of the joint angle information acquired by the wearable system and the Vicon system in the 25 s
acquisition experiment. The average hip error was 1.254◦ ± 0.270◦, the maximum error was 4.145◦ ±
0.856◦, the correlation coefficient was 0.996 ± 0.002, the average knee error was 3.296◦ ± 1.295◦, and the
maximum error was 11.94◦ ± 1.826◦. The cross-correlation coefficient is 0.973 ± 0.006, and there was no
obvious cumulative error during long-time acquisition, which can be used for subsequent gait data
acquisition and gait parameter calculation.
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3.2. Procedure

We performed the four movement modes of standing, descending stairs, constant speed walking
and fast walking in a sequence and collected gait data. As shown in Figure 8, the hip joint angle and the
three-axis acceleration of the foot during the period were changed. The preprocessing and windowing
interception operations were performed to obtain the variation law of various feature values with
time as the data window slides, and the sensitivity of various features to the motion state is analyzed
accordingly. The result is shown in Figure 9.
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Figure 8. Hip joint angle and changes in the three-axis acceleration of the typical behavior.
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Figure 9. Comparison of the selected features of typical behavioral actions such as standing, stepping
down, constant speed walking and fast walking. (a) Hip joint mean; (b) Hip joint angle variance; (c)
Foot x-axis acceleration maximum; (d) Right knee angle correlation coefficient; (e) Knee joint angle
first-order Fourier series; (f) Knee joint angle fourth-order Fourier series; (g) Plantar acceleration signal
amplitude; (h) Hip joint angle wavelet entropy.

It can be seen that various features have their own advantages and disadvantages in the description
of the motion mode. Therefore, the 141-dimensional features will be extracted according to the acquired
multi-source information. The specific feature names and numbers are shown in Table 2. In order to
ensure the real-time and safety of the human body in the actual use of the exoskeleton, the action
sequence should be recognized as continuously as possible for the acquired action sequence and ensure
high accuracy. Before the feature extraction, the collected data needs to be preprocessed and windowed
separately. The sampling frequency is 60 Hz and the window length is set to Tw = 64 samples. The
time window sliding process needs to overlap each other to ensure the continuity of the calssification.
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It is generally considered that the human action frequency is low, and generally remains unchanged
within one second, so the stacking length is selected as Ts = 32 samples.

Table 2. 141-dimensional feature name and serial number.

Number Feature Feature Content

1–30 Mean
Average of the angle of the hip, knee, and ankle; (6 dimensions)
Average of the three-axis acceleration of the hip, knee, and ankle; (18 dimensions)
Average of pressure on the left and right feet. (6 dimensions)

31–60 Variance

The variance of the hip, knee and ankle angles of the two legs; (6 dimensions)
The variance of the triaxial acceleration of hips, knees and ankles of two legs;
(18 dimensions)
Variance of three pressure points on both feet. (6 dimensions)

61–120 Maximum value

Maximum and range of angles for hips, knees, and ankles; (12 dimensions)
Maximum and range values of triaxial acceleration of hip, knee and ankle; (36 dimensions)
Maximum and range values of the three pressure points of left and right feet.
(12 dimensions)

121–128 Correlation coefficient

Hip and knee angle correlation coefficient of the left leg and right leg; (2 dimensions)
Knee and ankle angle correlation coefficient of the left leg and right leg; (2 dimensions)
Acceleration coefficient of left foot and right foot in x-z plane; (1 dimension)
Angle correlation coefficient between left hip and right hip; (1 dimension)
Angle correlation coefficient between left knee and right knee; (1 dimension)
Angle correlation coefficient between left ankle and right ankle joint. (1 dimension)

129–138 Fourier series Fifth-order Fourier series of hip and knee angles of left leg. (10 dimensions)

139–140 SMA The amplitude of the left and right foot acceleration signals. (2 dimensions)

141 Wavelet energy entropy Wave energy entropy of left hip joint angle. (1 dimension)

According to experience, there must be a certain number of weak correlations or redundant
features in the 141-dimensional features. Before the classification model training, feature selection of
high-dimensional feature sets is needed.

The distance evaluation factors of each feature quantity were obtained by distance evaluation
between the dynamic feature set and the static feature set, and the calculation result is shown in
Figure 10. It can be seen that in the static posture of the human body, the larger evaluation factors
are the average and the maximum value, and the characteristics of the fluctuations of other reaction
data such as the variance and the acceleration amplitude are small, which is consistent with the actual
experience. Different static postures have different leg angles, and the accelerations perceived by the
sensitive axes of the acceleration sensor are greatly different, while the feet are basically in a flat state,
and the difference between the various modes is not large, so the static sensitive features are mainly the
angles with the legs. Acceleration information is relevant. In the dynamic mode, the thigh, calf, and
foot are all performing periodic movements, so the dynamic sensitive features involve three parts of the
thigh, calf and foot movement information. The distance evaluation factors of each feature are sorted,
and finally 20-dimensional static sensitive features and 40-dimensional dynamic sensitive features are
selected according to the distance evaluation factors which are shown in Table A1 in Appendix A.

A three-layer BP neural network structure, with the neurons of the input layer, the hidden layer,
and the output layer with labelled i, j, and k, respectively [27]. The parameter settings of each neural
network in the recognition model are shown in Table 3. The function of the first neural network is
to distinguish between dynamic and static data. As the recognition difficulty is low, so the number
of input nodes was set to 5. The number of hidden layer nodes is 25. The input of the static neural
network is a sensitive 20-dimensional feature, so it contains 20 input nodes, and the hidden layer was
set to 100 nodes. The number of input layer nodes in the dynamic neural network was 40. Since there
are many recognition classes and many similar gaits, it is difficult to identify. So, the number of hidden
layers was set to 200.
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Table 3. Neural network parameter settings.

First Network Static Neural Network Dynamic Neural Network

Input layer 5 20 40
Hidden layer 25 100 200
Output layer 1 1 1

3.3. Experimental and Applied Research

3.3.1. Single Motion Pattern or Gesture Recognition Experiment

Multiple healthy subjects were selected to participate in the gait pattern recognition experiment.
Subjects were required to wear a gait analysis system to perform data acquisition experiments in a
single exercise mode. Each exercise mode was subjected to 10 sets of experiments. Among them, the
metronome performs the step frequency control during fast walking, slow walking and constant speed
walking to ensure the stability of the speed in the three sports modes. The running mode is performed
on a treadmill with a uniform running setting function. The height of the step was fixed at 15 cm,
the width was fixed at 29 cm, and the slope angle is 20◦. Subjects walked for 1 minute before data
acquisition to accommodate the metronome walking speed to reduce abnormal fluctuations in data
during the acquisition process.

The collected data was separately pre-processed and windowed and intercepted, wherein the
window length Tw = 64 samples was taken, and the stacking time Ts = 32 samples was taken. A
sample set of machine learning training data was obtained, where in the independent variable is a
feature extraction result of the data in the window, and the dependent variable is an experimental data
tag value. Because the data was processed in groups, the data needed to be stratified and sampled,
and 75% of the data was randomly selected as the training set. The experimental results are recorded
in Table 4. It can be seen that the accuracy of the static neural network test group was 93.57%, the
accuracy of the dynamic neural network test group was 100%, and the overall recognition rate reached
98.28%. In general, the single motion pattern recognition accuracy in the laboratory environmesnt was
high, which verifies the reliability and effectiveness of the model.

Table 4. Identification accuracy of each layer of neural network.

Identification
Project

First Neural
Network

Static Neural
Network

Dynamic Neural
Network Overall Model

Training 100% 100% 100% 100%
Test 100% 93.57% 100% 98.28%
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Table 5 shows the results of the static neural network in the form of a confusion matrix. The data
on the diagonal of the confusion matrix is the number of samples that are accurately identified, and the
data outside the diagonal is the number of samples that are misidentified.

Table 5. Static neural network confusion matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 88 1
2 26 123
3 84
4 98
5 104
6 84
7 125
8 112
9 104
10 97
11 87
12 127
13 126
14 95
15 91

3.3.2. Recognition Experiment of Mixed Motion Mode

A good recognition effect is obtained for a stable single motion mode. However, in the movement
of the actual terrain, multiple modes are often switched, so the recognition experiment of the mixed
motion mode is required. Multiple experimenters are required to sequentially perform multiple
motion modes without any interruption in a certain order. Each dynamic motion mode is based on the
terrain condition, and was manually timed by a stopwatch to control the walking speed of the subject
according to the metronome.

Two sets of mixed motion experiments were designed based on the existing terrain. The first set
of experiments was set up for horizontal pavement and stair mixing. The subjects transitioned from
horizontal ground speed to single step upstairs, followed by continuous upstairs and two regular
speeds. The process of the first set of mixed motion experiments is shown in Figure 11a.The second set
of experiments was for horizontal pavement and slope. Mixing, the subject moved from standstill to
the lower slope, then transitioned to the horizontal ground at a constant speed, stood still before the
rising slope, and then climbed up the slope. The process of the second set of mixed motion experiments
is shown in Figure 11b. In these experiments, each of the stairs was 29 cm wide and 15 cm high, and
the slope inclination was 20◦.

The collected data is preprocessed and windowed and intercepted, and the eigenvalues are
calculated. The input is sent to the trained model in the single motion pattern recognition experiment,
and the classification result of the mixed motion mode is obtained. The standard value is obtained
from the result recorded by the stopwatch. The mode of the transition phase is determined by the
proportion of the duration of the two modes falling within the window, and the mode with the longer
time in the window is taken as the mode of the transition phase.

The experimental results of the mixed sample of horizontal pavement and stair pavement are
shown in Figure 12. Figure 12a shows the variation curve of the plantar inclination angle of the left
and right foot during the movement. The initial stage is the horizontal ground constant speed walking,
and the left and right soles can be seen. The dip angle waveform is similar and the peak size is close,
indicating that the left and right foot symmetry is very good. For the transition to a single step upstairs,
on the one hand, due to the terrain climb, the peak of the plantee dip is significantly reduced, on the
other hand, the left and right foot movements show significant differences. With the right leg as the
active leg, the right foot sole inclination peak is significantly greater than the left foot sole inclination
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peak. During the continuous climbing up the stairs, the left and right legs alternately act as the forward
active legs, and the waveform of the inclination of the left and right soles of the feet is restored to
symmetry, and finally the two steps are taken at a constant speed.
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Figure 12b is a comparison diagram of the recognition result and the standard value. Referring
to Table 1, it can be seen that the constant speed walking label is 6, the single step upper step label
is 12, and the continuous upper step label is 10. The number of windows is 39, and the number of
misidentifications is one. The recognition accuracy is 97.4%.

The experimental results of the horizontal pavement and the slope pavement are shown in
Figure 13. The curve of hip angle during exercise is shown in Figure 13a. The hip joint angle fluctuation
during the stationary standing phase is small. When the thigh is forward and the hip joint angle is
increased, began to enter the lower slope stage. The last 14 gait cycles are the lower slope process, and
the lower slope phase is limited by the terrain. To ensure the stability of the body, the step size was
kept small, so the hip joint flexion angle is also small. While entering the horizontal road at constant
speed, the stride is obviously increased, and the hip joint peak increases in a single gait cycle. At the
same time, the pitch frequency has also increased, and the duration of a single gait cycle has been
shortened. While completely stopping in front of the rising slope, the hip joint peak at the last step
of the horizontal road at constant speed is significantly smaller. The slope is started after standing
still for six seconds in front of the slope. During the motion on the upward slope, the hip flexion peak
increased to the ground uplift, and the entire experiment was completed. Figure 13b is a comparison
of the recognition result and the standard value. Referring to Table 1, the stationary standing label is 1,
the lower slope label is 15, the normal speed walking label is 6, and the upper slope label is 14. The
number of windows is 97, the number of misidentifications is 7. The overall recognition accuracy is
92.7%, and the recognition accuracy is high in the stable phase.Sensors 2020, 20, x FOR PEER REVIEW 16 of 20 
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4. Discussion

It can be seen that the difference between the static and dynamic modes is large, and the recognition
model can distinguish between the two well. The categories of misidentification in the static mode
mainly appeared between stationary standing and standing while carrying weight. There were a total
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of 114 groups of standing still samples, 88 of which were correctly identified and 26 were misidentified
as weight standing. There were 124 groups for standing with weight, of which 123 were correctly
identified. One group was misidentified as standing without load as there is no significant difference
between the motor features such as the lower limb joint angle of the two postures, the difference is only
reflected in the plantar pressure. The mass of the weight was lighter than the mass of the human body.
After the mass was increased, the pressure of the plantar pressure was not much different. In addition,
the interference of data fluctuations leads to a certain room for improvement in the identification
of these two modes either by increasing the number of plantar pressure sensors or by replacing the
pressure sensor with higher sensitivity. Regarding the single pattern recognition, the accuracy rate of
static neural network recognition was lower than that of dynamic recognition network, because of
large difference between dynamic patterns, and small difference between static patterns. For example,
it is difficult to distinguish between standing still and bearing weight. In the dynamic mode, the test
group data in the stable single mode showed high recognition accuracy. Due to the complementarity of
various features, the behaviors of fast and slow walking, walking upstairs and running can be realized
with accurate identification.

In the mixed motion experiments on horizontal sidewalks and stairs, a sample point of constant
speed walking was identified as slow walking. In the mixed motion experiments on slope and
horizontal road, a stationary standing sample was misidentified as a weighted standing, a downhill
sample was misidentified as slow walking, a constant speed walking sample was misidentified as
downhill, one sample walking at constant speed was misidentified as slow walking, two stationary
standing samples were misidentified as weighted standing, and one uphill sample was misidentified
as a single step up the step.

According to the two sets of mixed motion mode experiments, it can be seen that the
misidentification mainly occurred in the mode switching phase, and the misidentification in the
static to dynamic switching phase is far more than the misidentification in the dynamic mode switching
phase. There is a short period during transition from the standstill to the start of the movement which
causes fluctuations in the pressure of the foot, causing the static standing to be misidentified as a
weight standing before the static switch to dynamic mode. The sliding window in the static to dynamic
switching phase had both a stable static phase and a dynamic phase with large fluctuations. The
mean and variance extracted in the window were inevitably far from the preset mode, resulting in a
far-reaching. The occurrence of misidentification points, such as the transition phase of standing still to
the upper slope in the second set of mixed motion mode experiment, was recognized as a single step.

In this research area, using a single three-axis accelerometer to achieve a recognition rate of 99%
for a single motion state in four motion modes: lying, standing, walking, and running [10]. The
recognition rate of only 6 types of sports modes including sitting, standing, walking, obstacle crossing,
and going up and down using the sole force sensor is 98.8% [11]. Using 64 photoelectric matrix insoles
and exoskeleton sensors to achieve 7 types of sports modes: ground-level walking, stair ascending,
stair descending, sitting, standing, sit-to-stand and stand-to-sit, recognition rate 99.4% [12]. The
combination of EMG and prosthetic mechanical sensors has achieved recognition rates of 97.7% and
97.8%, respectively, in the three scenarios of flat walking, stairs, and ramps [15,16].

In this study, we use six gyroscopes and six pressure sensors to collect the data of human body’s
posture and motion, which provides convenience for integrating this system into exoskeleton system
in the future. EMG acquisition system is not stable, skin temperature changes and sweating will affect
the acquisition data, which is not conducive to the application of integration with exoskeleton in daily
scenes. We propose 15 common human body postures and motion modes in exoskeleton application
scenarios. The recognition accuracy of single motion mode is 98.28%, and that of mixed motion mode
is 92.7% and 97.4%, respectively. Although the recognition rate of our system is not the highest at
present, which is related to the 15 kinds of human body states and motion modes proposed by us.
Compared with the simpler motion scenes mentioned above, the data volume of our multiple scenes
increases the difficulty of data training and recognition. After we improve the experimental system
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and algorithm in the future, the recognition rate will be improved. At the same time, compared with
the use of photoelectric matrix pressure insole [12], we only select the most important three positions of
the foot to arrange the pressure sensor, and the cheap scheme is more feasible in practical application.
In fact, the foot segmentation in our system, which can adapt to different terrain, is an initial design for
exoskeleton. The gyroscope can be assembled into the leg of exoskeleton to realize system integration.
Of course, our system also has shortcomings, the human foot and the exoskeleton foot can not fit closely
at all times, which may cause false recognition in the complex road. The gyroscope sensor is also prone
to dislocation between the legs, which affects the data acquisition. In the future, we will make up
for the data of various sensors to reduce the generation of false identification. In addition, the entire
wearable experimental system had too many wiring harnesses, which may interfere with the subject’s
movement during the experiment and affect the accuracy of the experiment. If misidentification occurs
during the use of the exoskeleton, it will affect the exoskeleton robot to switch the correct control
mode, causing the exoskeleton to run smoothly and even cause an wearer injury. And it is necessary
to further improve the motion pattern recognition performance of the system. On the one hand, it is
necessary to increase the number of samples to improve the generalization ability. On the other hand,
it is necessary to increase the dynamic to static switching mode.

5. Conclusions

In order to improve the accuracy of the movement state recognition of the lower extremity
exoskeleton robot, this paper proposes a motion state recognition model based on feature evaluation
and a multi-layer BP neural network. Firstly, 15 common gait patterns and postures were determined
from the actual use requirements of an exoskeleton. The multi-source lower limb motion information
extraction; multi-dimensional time domain features, frequency domain features, and energy features
were combined to form a joint state for different motion modes. The evaluation factors of each feature
selected the sensitive features of each layer as the input of the BP neural network according to the size
of the evaluation factor, thus establishing a nonlinear mapping model between the feature quantity
and the motion state. The final experimental results showed that the model proposed in this paper
can identify the wearer’s motion state with high precision, and it also obtains satisfactory results for
the continuous motion recognition problem of multiple motion modes. The recognition accuracy rate
in single motion mode is up to 98.28%, and the recognition accuracy of two groups in mixed motion
mode is 92.7% and 97.4%, respectively.

In future work, we will complement the data collected by this wearable system with data collected
by other intent recognition systems (such as EEG or EMG) to improve the recognition of more postures
and movement states of the body, especially continuous and transitional movements. And the results
of this research will be used in the multi-mode control of lower extremity exoskeleton to further explore
the optimization of human machine coordinated motion in clinical.
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Appendix A

Table A1 shows 20-dimensional static sensitive features and 40-dimensional dynamic sensitive
features which we selected according to the distance-based feature evaluation method.
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Table A1. 20-dimensional static sensitive features and 40-dimensional dynamic sensitive features.

20-Dimensional Static Sensitive Features 40-Dimensional Dynamic Sensitive Features

3 63 1 46 95 110
7 67 6 54 98 114
9 69 9 61 99 121

12 72 19 64 101 123
13 75 20 67 102 124
15 76 29 69 103 127
16 78 31 75 105 128
18 86 34 77 107 131
26 87 38 79 108 136
27 139 42 93 109 138
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