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Abstract: We present an eating detection algorithm for wearable sensors based on first detecting
chewing cycles and subsequently estimating eating phases. We term the corresponding algorithm class
as a bottom-up approach. We evaluated the algorithm using electromyographic (EMG) recordings
from diet-monitoring eyeglasses in free-living and compared the bottom-up approach against two
top-down algorithms. We show that the F1 score was no longer the primary relevant evaluation metric
when retrieval rates exceeded approx. 90%. Instead, detection timing errors provided more important
insight into detection performance. In 122 hours of free-living EMG data from 10 participants, a total of
44 eating occasions were detected, with a maximum F1 score of 99.2%. Average detection timing errors
of the bottom-up algorithm were 2.4 ± 0.4 s and 4.3 ± 0.4 s for the start and end of eating occasions,
respectively. Our bottom-up algorithm has the potential to work with different wearable sensors that
provide chewing cycle data. We suggest that the research community report timing errors (e.g., using
the metrics described in this work).

Keywords: automated dietary monitoring; eating detection; eating timing error analysis; biomedical
signal processing; smart eyeglasses; wearable health monitoring

1. Introduction

Eating occasion detection is at the core of automated dietary monitoring (ADM) in humans,
targeting healthy diet management [1,2]. We regard intake to consume food pieces with dietary activities
including ingestion, chewing, and swallowing [3] as an eating occasion if all dietary activities start
and end in a given temporal relation. Meals or snacks are typical examples of eating occasions. Eating
occasions thus have a start and end denoting the timing of intake beginning and intake completion.
For solid and semi-solid food, chewing (i.e., the cyclic opening and closing of the jaw) is typically the
longest activity within eating occasions [3]. We therefore consider chewing as representative of eating
occasions, denoted as eating events in this work.

Recording chewing to interpret eating has been attempted in a variety of approaches intended
for free-living ADM (see Section 2), as accurate eating event timing detection is essential for diet
management. For example, users could be reminded to check vital parameters such as glucose level
when the initial moment of an eating event is detected. Similarly, users could be asked to confirm
food details or take a photo of leftovers immediately after an eating event ends. In both examples it is
important that timing errors of the eating event detection are minimal. Hence, timing errors determine
whether an eating event detection approach is suitable across the ADM application spectrum.

Detecting dietary activities, including eating events, in wearable or ambient sensor data is a
complex pattern analysis and modelling problem due to the inter- and intra-individual variability in
free-living behaviour patterns. Approaches to eating event detection and analysis can be categorised
as top-down or bottom-up sensor data processing: In the top-down approach, eating events are
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detected by applying sliding windows to the sensor time series and applying feature pattern models.
If necessary, further information details such as chewing cycles, intake gestures, etc. could be derived
using the detected eating events. Conversely, in a bottom-up approach, individual dietary activities are
modelled and the result is subsequently used to detect eating events. The early abstraction in bottom-up
processing may help to deal with varying dietary activity patterns. Furthermore, bottom-up processing
fits into hierarchical data processing schemes of resource-constrained wearable and IoT systems, where
instead of raw data, derived parameters or events are communicated between system components.

This investigation proposes a bottom-up eating detection algorithm and compares it with two
top-down algorithms. The bottom-up eating detection algorithm first detects individual chewing cycles.
Retrieved chewing cycles are then used to detect eating events and estimate start and end of eating
occasions. In contrast, top-down algorithms apply sliding windows over the sensor time series to
detect eating events. The bottom-up algorithm proposed here is potentially agnostic to the particular
sensor used, as long as chewing cycle information is acquired. In particular, the following contributions
are made:

1. We present a bottom-up algorithm for eating event detection based on chewing time-series data.
The algorithm works based on chewing cycle information and has only four parameters.

2. We evaluate and compare bottom-up and top-down eating event detection algorithms in
data of a free-living study, where participants continuously wore unobtrusive diet monitoring
eyeglasses. The diet eyeglasses recorded electromyographic (EMG) data of the temporalis muscles.
We analysed retrieval performance as well as start and end timing errors of detected eating events.

3. We describe and analyse a procedure to derive eating event reference data in a free-living context.
Our approach combines participant self-reports with a mostly unobtrusive chewing reference
measurement. The analysis confirms that our reference estimation approach reached a timing
resolution of less than one second in free-living behaviour data.

2. Related Work

ADM has received increasing research interest over the last decade, where eating event detection
based on data from various body-worn and ambient sensors has been frequently considered. Most
investigations that considered quantitative performance for eating event detection focused on detection
accuracy or retrieval metrics. In this investigation, we highlight that timing errors are critical for
detection performance and investigate timing errors specifically.

Eating event detection has often been approached by top-down data processing. For example,
Dong et al. used a wrist motion sensor to detect eating, reporting 81% accuracy in 449 hours of free-living
data [4]. Thomaz et al. also used a wrist-worn three-axis accelerometer to monitor eating in free-living
conditions [5]. The random forest classifier yielded 66% precision and 88% recall for one day of data and
intra-individual analysis. Bi et al. implemented a headband carrying a bone-conducting acoustic sensor
and reported eating detection performance of over 90% [6]. Farooq et al. used accelerometer-equipped
eyeglasses to detect food intake in the lab and in short-term free-living [7]. The highest F1 score
of 87.9% ± 13.8% (mean ± standard deviation) was achieved with a 20 s sliding window using a
k-nearest neighbour classifier. Studies involving multiple sensor modalities are a recent trend in eating
event detection applications. Wahl et al. implemented an eyeglasses prototype equipped with an
inertial measurement unit (IMU), an ambient light sensor, and a photoplethysmogram (PPG)sensor
for the recognition of nine daily activities, including eating [8]. The classification reached an average
accuracy of 77%. Merck et al. realised a multi-device monitoring system involving in-ear audio, head
motion, and wrist motion sensors, which could recognise eating with 92% precision and 89% recall [9].
Papapanagiotou et al. proposed an ear-worn eating monitoring system based on PPG, audio and
accelerometer, achieving an accuracy up to 93.8% and class-weighted accuracy up to 89.2% in eating
detection [10]. Bedri et al. used an ear-worn system for chewing instance detection. An F1 score of over
80% and accuracy of over 93% was reported [11]. Timing error for eating start was 65.4 s. The authors did
not report the timing error at eating ends. Doulah et al. investigated the effect of the temporalresolution
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of eating microstructure analysis, including the duration of eating events [12]. The analysis did not
yield insight into start and end time estimates for eating events. In our prior investigation of top-down
eating detection based on free-living EMG recordings, a one-class support vector machine (ocSVM)
yielded an F1 score of 95%. Timing error analysis showed 21.8 ± 29.9 s for eating start and 14.7 ± 7.1 s
for eating end [13].

For the bottom-up data processing approach, dietary activities that characterise eating are
modelled, and eating is subsequently derived from these activities. Chewing has frequently been
investigated as a basis for subsequent eating analysis. Amft et al. investigated chewing detection for
ADM using an ear-plug acoustic sensor, capturing vibration patterns during chewing [14]. Bedri et al.
proposed earwear using proximity sensors for the detection of tiny deformations of the outer ear during
chewing [15]. Eating could be detected with 95.3% accuracy with a user-dependent classification.
Zhang et al. was the first to use smart eyeglasses to detect chewing, analysing EMG electrode positions
in eyeglasses frames and the effect of hair on the EMG signal [16]. EMG electrodes were embedded
into the eyeglasses’ temples, and chewing cycles were detected with a precision and recall of 80%.
In subsequent work [17], a refined version of the eyeglasses was used for eating detection, yielding an
accuracy of above 95% in natural, free-living data. Furthermore, it was demonstrated that soft foods
such as banana provide identifiable EMG signatures. Chung et al. incorporated a force-sensitive load
cell in eyeglasses hinges to monitor temple movement during chewing, head movement, talking, and
winking. A classification of these activities yielded an F1 score of 94% [18]. Farooq et al. attached a
strain sensor at the temporalis muscle area to obtain chewing cycle information [19]. With additional
accelerometer data, the authors reported an F1 score of 99.85% for recognising eating from other
physical activities in laboratory recordings.

So far, timing performance has been rarely reported, partly because methods to derive eating
reference in free-living studies were missing. Here, we evaluated three algorithms in free-living EMG
recordings with a realistic ratio of eating vs. non-eating time. All algorithms can be used with one
or more sensors and in multimodal configurations. In particular, the bottom-up algorithm builds on
chewing cycle information extracted from sensor data, and thus can be applied with other sensors
besides EMG by adapting the chewing cycle extraction. Our current work focuses in particular on the
analysis of timing errors.

3. Eating Event Detection Algorithms

We propose a bottom-up eating event detection algorithm and compare it to two top-down
algorithms. As input for all algorithms we consider a multi-source sensor data stream of chewing
cycle measurements, corresponding to a random process Xn(t), where n indexes the random variables
(e.g., sensor channels or features) and t is the time index. For example, the sensor could be an EMG
monitor measuring the temporalis muscle contraction or acoustic transducers measuring vibration
patterns due to food fracture. An overview of the algorithm pipelines for all algorithms considered is
shown in Figure 1. Below, we formally describe the algorithms.

3.1. Bottom-Up Algorithm

The idea of this algorithm is to estimate eating events from the density of chewing cycles, where a
relatively high frequency of chewing cycles indicates eating. After pre-processing multi-source sensor
signals Xn(t), chewing cycle onsets Cn were detected. Subsequently, a sliding window of length w0,
was applied around each retrieved onset of Cn (i.e., with a step size of one onset). Then, the sliding
window moved to the next detected onset. At every onset, we calculated chewing cycle frequency fn

as the number of detected onsets per time interval w0. A chewing segment start tn, start was detected
as the first onset in Cn at the signal start or an onset after a preceding detected chewing segment,
where fn equalled or exceeded θ0. The end of a chewing segment tn, end was determined as the onset
in Cn where fn equalled θ0 and the (θ0 − 1)-th subsequent fn equalled 1. Detection results of n sensor
sources were combined and post-processed by eliminating gaps between adjacent groups of chewing
segments. The details of each step are described below.
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Bottom-up eating event detectionTop-down eating event detection

Input: Random process Xn(t), e.g. time series of multi-source sensor data

Signal pre-processing

Chewing segment detection

Fusion of multi-source detection

Gap elimination

Signal pre-processing

Chewing cycle detection

Chewing segment detection

Fusion of multi-source detection

Output: Eating events

Gap elimination

Variant 1: 
Threshold-

based
algorithm

Variant 2: 
ocSVM 
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Figure 1. Overview of the top-down and bottom-up eating event detection algorithms investigated in
this work. White processing blocks indicate functions shared by the algorithms. Shaded processing
blocks are specific functions for each algorithm. Both top-down algorithms follow the same detection
pipeline with different implementations of the “Chewing segment detection” block. ocSVM: one-class
support vector machine.

3.1.1. Signal Pre-Processing

Pre-processing steps vary depending on the type of sensors used. It is likely that the human body
acts as an antenna and picks up power line noise. Thus, we applied a notch filter to raw signal Xn(t) to
eliminate potential power line interference at frequency fnf. In this study, we used dual-channel smart
eyeglasses EMG data sampled at 256 Hz per channel. Hence, Xn(t)(n = 1, 2) represents EMG data
in this case. The notch filter frequency was set to fnf = 50 Hz. Baseline wander and motion artifacts
were removed using a high-pass filter with a cut-off frequency of fhpf = 20 Hz—a typical value for
EMG signal processing. The resulting data Xn, hpf were rectified for detection. The pre-processed and
rectified data were abbreviated as Xn. The pseudo code is in Algorithm block 1.

Algorithm block 1 : Signal pre-processing.

Input: Multi-source free-living data Xn(t)

Parameter: Notch filter band-stop frequency fnf, high-pass filter cut-off frequency fhpf

Output: Pre-processed data Xn

1: Xn,nf = NotchFilt(Xn(t), fnf)

2: Xn,hpf = HighPassFilt(Xn, nf, fhpf)

3: Xn = |Xn, hpf|

3.1.2. Chewing Cycle Detection

Chewing cycle detection was performed by adapting the EMG onset detection principle initially
proposed by Abbink et al. [20]. Every chewing cycle has an onset time corresponding to the moment
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when the muscle contraction starts, and an offset time corresponding to the contraction end. Hence, the
number of onsets should represent the number of chewing cycles. First, a sliding window of size w was
applied to Xn. The value of w should be no larger than the duration of a typical chewing cycle. Here
we used 0.4 s (100 samples for the EMG signal), as chewing cycle frequency typically ranges between
0.94 and 2.17 Hz [21]. We derived a conditional summation of sensor samples within the window: For
samples 0 to w/2 within the current window starting at i0, we derived index1 = ∑w/2

i=0 1 if Xn[i0 + i] <
θC. For samples in the second half-window, index2 = ∑w

i=w/2+1 1 if Xn[i0 + i] > θC was summed.
Finally, index = index1 + index2 was derived. Parameter θC was set to µ+ 3× σ, where µ was the mean
and σ the standard deviation derived from baseline noise of Xn. Both µ and σ were estimated across
training data of all participants. The amplitude of the baseline noise was assumed to be Gaussian
distributed and threshold θC was set to cover 99% of the confidence interval. As the window with
size w was slid with a step size of one sample, an index in range [0, w] was obtained for each sample,
forming a new time series In per signal source n. To determine chewing onsets, we derived points of
In that exceeded θP × w, with θP in the range [0, 1]. Considering the chewing frequency, the temporal
distance between neighbouring detection points of In should be larger than tinterval = 1/3 s. Detected
chewing cycle onsets were sequentially saved in a list Cn. The pseudo code is shown in Algorithm
block 2.

Algorithm block 2 : Chewing cycle detection.

Input: Pre-processed data Xn

Parameter: EMG burst threshold θC, sliding window size w, peak threshold θP, peak interval tinterval

Output: A list of detected chewing cycle onsets Cn

1: index = 0, In ← ∅, Cn ← ∅

2: for (i = 1, i < w/2, i ++) do

3: if Xn[i] < θC then

4: index+ = 1
5: for (i = w/2, i < w, i ++) do

6: if Xn[i] > θC then

7: index+ = 1
8: for (i = w/2 + 1, i < length(Xn)− w/2, i ++) do

9: if Xn[i− w/2− 1] < θC then

10: index− = 1
11: if Xn[i− 1] < θC then

12: index+ = 1
13: if Xn[i− 1] > θC then

14: index− = 1
15: if Xn[i + w/2] > θC then

16: index+ = 1
17: In.append(index)
18: for (i = 0, i < length(In)− 2, i ++) do

19: if Ii < Ii+1 and Ii+1 > Ii+2 and Ii+1 > θP then

20: Cn.append(i + 1)

21: i+ = tinterval

3.1.3. Chewing Segment Detection

We applied a sliding window of size w0 to Cn, with the start of the window located at the first
chewing cycle onset Cn[0], and subsequently slid to the adjacent onset until reaching the end of Cn.
With the window starting at Cn[j], the chewing cycles in the window were counted and noted as the jth
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chewing cycle frequency fn[j]. We applied a criterion fn[j] ≥ θ0 to confirm that onset Cn[j] belonged to
a chewing segment. Correspondingly, the first onset in Cn that also satisfied the criterion fn[jstart] ≥ θ0

was considered as the start of the first chewing segment tn, start[0]. An onset with fn[jend] = θ0 and
fn[jend + θ0 − 1] = 1 indicated that Cn[jend + θ0 − 1] was the only onset in the latest window, that is,
the final onset/end of the k-th estimated chewing segment, denoted as tn, end[k]. The next onset after
tn, end[k] that satisfied the criterion fn[j] ≥ θ0 was considered as the (k + 1)-th chewing segment start
tn, start[k + 1]. The pseudo code is shown in Algorithm block 3.

Algorithm block 3 : Chewing segment detection.

Input: List of detected chewing cycle onsets Cn

Parameter: Sliding window size w0, chewing cycle frequency threshold θ0

Output: Detected chewing segment starts and ends (tn, start, tn, end) from each signal source n

1: tn, start ← ∅, tn, end ← ∅

2: function FIND_START_AND_END(Cn, j, θ0, w0)

3: fn, end = onset count in interval [Cn[j], Cn[j] + w0]

4: if fn, end == 1 then

5: tn, end.append(Cn[j + θ0 − 1])

6: for (i = j + θ0, i < length(Cn), i ++) do

7: fn, start = onset count in interval [Cn[i], Cn[i] + w0]

8: if fn, start >= θ0 then

9: tn, start.append(Cn[i])

10: break
11: return i

12: else

13: FIND_START_AND_END(Cn, j0 + fn, end + θ0 − 1, θ0, w0)

14: for (j = 1, j < length(Cn), j ++) do

15: fn[j] = onset count in interval [Cn[j], Cn[j] + w0]

16: fn[j + 1] = onset count in interval [Cn[j + 1], Cn[j + 1] + w0]

17: if tn, start == ∅ and fn[j] >= θ0 then

18: tn, start.append(Cn[j])
19: if fn[j] >= θ0 and fn[j + 1] < θ0 then

20: step = FINDSTARTEND(Cn, j, θ0, w0)

21: j+ = step + θ0 − 1

3.1.4. Fusion of Multi-Source Detection

The fusion of N sensor or feature channels was made by taking the union of source-specific
chewing segments:

Tmerge =
N⋃

n=1

Kn⋃
k=1

[tn, start[k], tn, end[k]], (1)

where Tmerge was a list of the merged chewing segments of N sources, and Kn was the number of
chewing segments in Channel n. All detected segments were collected chronologically regardless of
any overlapping among sources. For the evaluation data used in this investigation, bilateral EMG
channels yielded two lists of chewing segments. Hence, N = 2.
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3.1.5. Gap Elimination

In free-living, eating is often accompanied by interrupts (e.g., conversations). Thus, an eating
event is usually represented by several chewing segments in Tmerge, where the gaps indicate interrupts
without chewing cycles. Depending on the detection application and choice of eating event definition,
it is reasonable to combine temporally close segments into one final eating event. We denote the start
and end of the k-th segment Tseg[k] in Tmerge as start[k] and end[k] respectively, and the gap between
Tseg[k] and Tseg[k + 1] as Tgap[k]. We generated a new list Tconcatenated by removing all gaps that were
smaller than tgap:

Tconcatenated =
⋃
k∈S

(Tseg[k] ∪ Tgap[k] ∪ Tseg[k + 1]), (2)

where
S = {k | start[k + 1]− end[k] < tgap}. (3)

An estimated eating event start T̂start[q] and end T̂end[q] with (q = 1, 2, ..., Q) were thus obtained as the
start and end of every segment in Tconcatenated, where Q was the number of segments (i.e., detected
eating events) in Tconcatenated. In the present investigation, tgap was set to 5 min.

3.2. Top-Down Algorithms

Two top-down algorithm variants were considered with different chewing segment detection
blocks (see Figure 1): Threshold-based top-down and ocSVM top-down. Several blocks of the top-down
and bottom-up pipelines were identical, including signal pre-processing (Section 3.1.1), fusion of
multi-source detection (Section 3.1.4), and gap elimination (Section 3.1.5). Here we concentrate on the
individual variants of the chewing segment detection.

3.2.1. Threshold-Based Top-Down Algorithm

A sliding window of size w1 and step size s1 was applied to Xn. We computed the chewing
intensity feature F in each sliding window and applied threshold θ1. If F > θ1, the window was
reported as chewing. For the present investigation, we considered EMG readings as time series
containing chewing information and extracted EMG work as chewing intensity feature F. EMG work
was defined as the summation of rectified EMG samples within the sliding window. For the EMG data,
s1 was 256 samples (1 s). The pseudo code is shown in Algorithm block 4.

Algorithm block 4 : Chewing segment detection.

Input: Preprocessed signals Xn

Parameter: Sliding window size w1, window step size s1, chewing intensity feature threshold θ1

Output: Detected eating starts/ends from each signal source n: tn, start and tn, end

1: tn, start ← ∅, tn, end ← ∅

2: for (i = s1, i < length(Xn)− w1, i+ = s1) do

3: extract Fprevious from Xn[i− s1 : i + w1 − s1]

4: extract Fcurrent from Xn[i : i + w1]

5: extract Fnext from Xn[i + s1 : i + w1 + s1]

6: if Fprevious < θ1 and Fcurrent > θ1 then

7: tn, start.append(i)
8: if Fcurrent > θ1 and Fnext < θ1 then

9: tn, end.append(i + s1)
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3.2.2. ocSVM Top-Down Algorithm

We applied a non-overlapping sliding window of size w2 to the EMG data. An ocSVM model was
trained based on the windows to detect chewing segments using the same features as described in [13].
The radial basis function (RBF) was used as the kernel. The hyper-parameters γ and ν were varied,
where γ weighted the non-support vectors’ influence on the hyper plane, and ν was an upper bound
on the fraction of margin errors as well as a lower bound of the fraction of support vectors relative
to the number of training samples. The ocSVM predicted the class of each sliding window as either
eating or non-eating.

4. Evaluation Methodology

We evaluated the algorithms using a free-living dataset collected from smart eyeglasses with
integrated EMG electrodes. Details of the eyeglasses design and data collection process can be found
in [17]. Here we summarise the relevant data collection procedures, as well as evaluation methods.

4.1. Participants and Recording Protocol

The dataset was collected from a group of 10 participants (6 male, 4 female, average age of
25.1 years, average BMI of 23.8 kg/m2) each wearing the smart eyeglasses for one day of regular
activity without script or specific protocol. The study was approved by the Ethical Committee of FAU
Erlangen-Nürnberg. All participants were healthy and consented to participate after having received
oral and written study information.

Each participant received a pair of 3D-printed smart eyeglasses mechanically fitted to their head
using a personalisation procedure similar to [22], ensuring that the effect of hair, loss of contact
between skin and electrodes, or movement was minimal. In each temple of the eyeglasses frame, dry
stainless-steel electrodes of 3 mm × 20 mm (EL-DRY-STEEL-5-20, BITalino, Lisbon, Portugal) were
integrated, yielding a two-channel EMG recording system on each side of the head. The EMG electrode
pairs were positioned to capture activity of the temporalis muscle. A reference EMG channel was
recorded from the right temporalis muscle via gel electrodes attached to the skin at the corresponding
forehead region. All EMG channels were acquired with an EMG recorder (ACTIWAVE, CamNtech,
Cambridgeshire, United Kingdom) at a sampling rate of 256 Hz per channel.

Participants were suggested to wear the eyeglasses during one entire recording day (i.e., attaching
the system right after getting up and ending before going to bed at night). Recordings were conducted
in free-living conditions without dietary constraints. Participants chose their diets and conducted other
daily activities at their choice. Participants were asked to log activities in a paper-based 24-h activity
journal with 1 min resolution, including any food intake as well as start and end times of eating events.
As Figure 2 show:

Figure 2. Illustration of the EMG eyeglasses and study: (A) Eyeglasses frame with electromyographic
(EMG) electrodes symmetrically integrated on the temples. (B) Study participant wearing the EMG
eyeglasses. Reference EMG electrodes were attached to the skin at the right forehead temporalis
muscle position.
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4.2. Data Corpus

By the end of the recording, we collected a total of 122.3 h of free-living data including 44 eating
events ranging from 54 s to 35.8 min, which summed up to 429 min of eating for all participants
combined. Eating took up 5.8% of the whole dataset. Participants took off eyeglasses for a total time of
12 min during the recordings, which corresponds to 0.16% of the total recordings. Known activities
reported by participants in the activity journal included cooking, eating, walking, transportation,
attending lectures, performing office work, having conversations, doing housework, brushing teeth,
playing video games, going to the cinema, and engaging in physical exercise. Through visual inspection
we observed various artefacts in the data corpus including, for example, suspected teeth grinding [17].

4.3. Free-Living Eating/Non-Eating Reference Construction

Obtaining accurate reference information on eating events in unsupervised free-living studies
is particularly challenging. Here, we propose a combination of participant activity journal and EMG
reference recordings. All eating events were annotated using a custom Matlab annotation software.
Our annotation process comprised two steps: coarse manual annotation using the activity journal and
fine-tuning through reference EMG recordings. Coarse manual annotation was realised by searching
the journal for the participant-logged start time Tstart[i] and end time Tend[i] of each annotated eating
event, indexed i. As manual journaling is often imprecise in identifying event times, a fine-tuning
step was used to adjust coarse eating event times: Start and end times TS[i] and TE[i] of eating event
i were adjusted by visually searching the reference EMG data for chewing cycle patterns in the
neighbourhood of approx. ± 1 min (journal resolution) around the coarse annotations Tstart[i] and
Tend[i]. Since each chewing cycle had a duration of around 1/3 s, the fine-tuned eating event labels TS[i]
and TE[i] resulted in a chew-accurate eating/non-eating reference with resolution of approximately
1/3 s. The derived start and end times were considered as eating/non-eating reference for algorithm
evaluation. The eating/non-eating reference construction is illustrated in Figure 3.

… … … … … …

1 min           1 min Chewing cycles                     1 min           1 min

TS Tstart TE Tend

Time

Figure 3. Illustration of the free-living eating/non-eating reference construction. Tstart and Tend are
start and end times of an eating event obtained from the participant journal, while TS and TE are the
corrected start and end times derived by searching the EMG reference ± 1 min around Tstart and Tend.
The eating/non-eating reference construction is described in Section 4.3.

Type 1 errors (false positives) could occur in the eating/non-eating reference if an activity journal
entry could not be matched to any chewing-like pattern in the reference EMG signal. We inspected
all entries in the participant journal and compared them to the reference EMG signal. In the present
dataset, all participant-annotated events could be matched to the EMG reference.

Type 2 errors (false negatives) could occur in the eating/non-eating reference if participants
omitted annotations. To amend potential omissions from the activity journal, we first inspected the
entire reference EMG data for chewing-like signal patterns that did not correspond to any entry in
the journal. For each chewing-like pattern found, we inspected the activity journal to obtain insight
into the participant’s momentary context. We observed that concise activations in the EMG reference
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occurred occasionally without corresponding eating annotations (e.g., during a lecture). Yet, EMG
activations were typically short (i.e., less than five consecutive activations with lower EMG work
compared to confirmed chewing). Given a non-eating context and the clear non-chewing signal
patterns, we attributed the activations to teeth grinding. Jaw motion during speaking does not involve
profound temporalis muscle activation, as there is hardly any teeth clenching and thus substantially
lower EMG work than during chewing [16]. In addition, non-chewing muscle activity is typically
non-periodic, thus observable and distinguishable during time series inspection. Overall, we did not
find Type 2 errors in the dataset, supporting our eating/non-eating reference construction approach for
free-living recordings.

4.4. Evaluation Metrics

A grid search over the window length parameters wi and thresholds θi with i = 0, 1, 2, and
θ2 = (γ, ν) representing the combination of the ocSVM hyper-parameters was performed to investigate
optimal parameter combinations. To evaluate the eating event detection algorithms, we derived the
overlap between retrieved eating events and any eating/non-eating reference label. The precision and
recall of each algorithm were calculated according to: Recall = Ttp

Tgt
and Precision =

Ttp
Tret

, where Tgt was
the summed duration of all P eating events according to the constructed eating/non-eating reference
labels, calculated as:

Tgt =
P

∑
p=1

(Tend[p]− Tstart[p]), (4)

while Tret was the summed duration of all Q detected eating events by the algorithm:

Tret =
Q

∑
q=1

(T̂end[q]− T̂start[q]), (5)

and Ttp was the summed overlap duration between retrieved eating events and the
eating/non-eating reference:

Ttp =
P

∑
p=1

Q

∑
q=1

(min(Tend[p], T̂end[q])−max(Tstart[p], T̂start[q])), (6)

given the following premise:

min(Tend[p], T̂end[q])−max(Tstart[p], T̂start[q]) > 0. (7)

T̂end[q] and T̂start[q] were the start and end time points of the qth retrieved eating event, Q was the
number of retrieved eating events, and P was the number of eating events in the eating/non-eating
reference. All times were computed at a resolution of 1 sample (1/256 s). Finally, the F1 score was
calculated as the harmonic mean of precision and recall.

The evaluation was performed using leave-one-participant-out (LOPO) cross-validation. In each
evaluation fold, the EMG data were split into a training set of nine participants and a test set of one
participant. This process was repeated 10 times until every participant’s data were in the test set
once. Training data were used in a grid search to estimate performance under different parameter
combinations. Optimal parameter combinations were chosen according to the training data performance
and applied with the test data to estimate algorithm performance. The test results of all folds were
averaged to obtain the total algorithm performance. For the bottom-up algorithm, w0, θ0, and θP were
analysed. For the threshold-based top-down algorithm, w1 and θ1 were analysed, and for the ocSVM
top-down algorithm, w2, γ, and ν were analysed.
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4.5. Detection Timing Errors

We further investigated the detection timing error of every algorithm. The average start and end
timing errors of the algorithms were calculated as follows:

∆TS =

∑Q
q=1 min

( ∣∣∣T̂S[q]− TS[p]
∣∣∣ ∣∣∣∣

p=1,2,...,P

)
Q

, (8)

and

∆TE =

∑Q
q=1 min

( ∣∣∣T̂E[q]− TE[p]
∣∣∣ ∣∣∣∣

p=1,2,...,P

)
Q

. (9)

∆TS and ∆TE were the average absolute detection errors at the start and end of eating events.
To investigate retrieval performance in detail and identify the algorithms’ behaviour, different

optimisation objectives were analysed. Using the grid search over the parameter space, the best
performance point according to maximal F1 score (termed PX), minimal start timing error ∆TS (termed
PS), and minimal end timing error ∆TE (termed PE) were derived.

5. Results

Algorithm detection performances according to the test data are shown in Figure 4 for varying
parameter combinations. The threshold-based top-down algorithm could not reach meaningful F1
scores, indicating that detecting eating events is not a trivial task. The performance map of the ocSVM
algorithm shows a periodic landscape due to the variation of parameters γ and ν. The best performance
of the bottom-up algorithm was achieved with θP = 0.7. The bottom-up algorithm had a smooth
landscape across the parameters. For all algorithms, the three performance points (PX, PS, PE), did
not coincide at the same parameter settings. To illustrate the performance points quantitatively, they
are summarised in Table 1. The bottom-up algorithm yielded comparable performance values across
all performance points (PX, PS, PE). At best, the bottom-up algorithm reached an F1 score of 99.2%,
yielding a start/end error (∆TS and ∆TE) of 2.4± 0.4 s and 4.3± 0.4 s, respectively. The results show
that the bottom-up algorithm outperformed the top-down algorithms.

Table 1. Performance comparison among algorithms using optimal parameter settings for each
performance point (PX, PS, PE). For timing metrics, mean performance ± std. dev. are shown.
For example, the bottom-up algorithm reached an F1 score of 99.2% at best, where the start/end
error was 2.4± 0.4 s and 4.3± 0.4 s, respectively.

Metric Performance Points

PX PS PE

F1 score (%)
Threshold-based top-down 36.7 0.03 0.001

ocSVM top-down 95.1 90.9 93.2
Bottom-up 99.2 97.8 97.7

∆TS (s)
Threshold-based top-down 152.4 ± 21.7 10.1 ± 3.0 185.9 ± 35.9

ocSVM top-down 30.0 ± 36.4 18.8 ± 27.9 53.2 ± 61.7
Bottom-up 3.0 ± 0.6 2.4 ± 0.4 4.8 ± 2.9

∆TE (s)
Threshold-based top-down 177.4 ± 12.1 265.8 ± 86.5 63.0 ± 11.9

ocSVM top-down 25.9 ± 39.4 26.9 ± 38.3 15.2 ± 19.0
Bottom-up 4.9 ± 0.3 6.4 ± 0.5 4.3 ± 0.4
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Figure 4. F1 score, average start and end timing errors for test data and each eating event detection
algorithm using grid search over the parameter space. The highest F1 score location was denoted as
PX, while PS and PE indicate the minimal start timing error ∆TS and minimal end timing error ∆TE,
respectively. The bottom-up algorithm performance was obtained with fixed peak detection threshold
θP = 0.7.

Figure 5 shows the effect of varying the peak detection threshold θP of the bottom-up algorithm,
indicating robust retrieval and timing performance (PX, PS, PE) for a parameter range of 0.65 < θP < 0.8.
The best retrieval and timing performances were achieved at θP = 0.7.

Figure 5. Retrieval and timing performance of the bottom-up algorithm at different peak detection
thresholds θP. In the timing error diagrams, caps on vertical line ends indicate the standard deviation.
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Figure 6 illustrates retrieved eating events as point pairs across F1 scores, where the line ends
represent average start and end timing errors (∆TS and ∆TE). ∆TS and ∆TE were obtained by varying
the algorithm parameters and averaging the individual timing errors obtained for specific retrieval
performances. For the bottom-up algorithm, the graph shows the performance obtained by varying
sliding window size w0 and chewing cycle frequency threshold θ0 at fixed peak detection threshold
θP = 0.7. There was no parameter combination for the threshold-based top-down algorithm that
yielded an F1 score above 40%. In contrast, bottom-up and ocSVM top-down algorithms provided
retrieval performances of up to 99% and 95% respectively. With increasing F1 score, timing errors
tended to decline. It can be derived from Figure 6 that the relation between start and end timing errors
varied between algorithms. For the bottom-up algorithm and F1 score >80%, the start timing error
∆TS became smaller than the end timing error ∆TE.
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Figure 6. Relation of retrieval and timing performance of all three algorithms. ∆TS and ∆TE were
obtained by varying algorithm parameters. Blue lines link average start and end timing errors of all
eating events at a given algorithm parameter set. With increasing F1 score, timing errors declined.
Note that timing error analysis could be performed only for eating events retrieved by an algorithm.
The bottom-up algorithm (θP = 0.7) achieved the highest F1 score at smallest timing errors among all
algorithms investigated. Point pairs were down-sampled for visualisation.

Figure 7 shows examples of the detected eating event starts and ends. The bottom-up algorithm
yielded similar detected labels to the eating/non-eating reference whereas the ocSVM top-down
algorithm incurred larger timing errors for some eating event instances.

Figure 7. Cont.
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Figure 7. Examples of data situations with the corresponding retrieval results of bottom-up and ocSVM
top-down algorithms obtained at each algorithm’s performance point PS (left column) and PE (right
column). As the diagrams illustrate, the ocSVM algorithm may anticipate or delay eating events’ starts,
as ocSVM deploys a time-domain sliding windowing with a given step size, whereas the bottom-up
algorithm did not.

6. Discussion

The F1 score describes the algorithm’s retrieval performance by retrieved and missed eating
instances, while timing errors reveal the accuracy of estimated event timing. Considering the varying
eating durations in a free-living context, the two metrics are not necessarily similar in their sensitivity,
thus we argue here that both are relevant metrics for evaluation. Among the few investigations on
event timing in ADM, Dong et al. [4] reported event start-timing errors of 0.6 minutes, and end errors
of 1.5 min. The authors determined intake from bites using arm motion, while the present investigation
was based on chewing. Bedri et al. [11] evaluated eating event detection using a metric called delay,
measuring the time from the beginning of an eating event until it was recognised. The average delay
reported was 65.4 s. In contrast to the investigation of Bedri et al. [11], we also evaluated the timing
error at the end of eating events. Our bottom-up algorithm yielded average start/end timing errors of
2.4 s and 4.3 s.

We believe that the bottom-up method is practically useful for eating event start and end detection,
as well as, for example, sending reminders, sampling user responses, and gathering environmental
variables. Study participants did not complain or reject wearing the eyeglasses for one day. Hence,
the combination of the bottom-up algorithm and smart eyeglasses could be adopted in unconstrained
free-living applications. In contrast to several previous investigations of eating detection that require
the training of many parameters, our bottom-up approach requires that only four parameters be
set (w0, θ0, θP, and tgap). Our analysis indicates that performance was unaffected by parameter changes
across a wide value range (i.e., shown as a smooth performance space in Figure 4). Pattern learning
may work reliably when trained on sufficient data with proper features. Considering the variability
in free-living behaviour and the unbalanced distribution of eating and non-eating times, substantial
training data is needed to implement any learning method and therefore a minimal number of free
parameters is key. The bottom-up method outperformed our top-down methods, with a higher F1
score and lower detection timing errors. We attribute the higher performance yielded in the present
investigation to the expert knowledge incorporated in the bottom-up approach.

In both top-down and bottom-up methods, the sliding window size wi influenced the algorithm
performance. In top-down methods, a small sliding window of length wi contained fewer data samples,
which usually led to less representative features. Thus, the lowest timing errors were typically not
achieved with smallest sliding window sizes (e.g., wi < 10 s). Similarly, in the bottom-up method, both
window size w0 and the second parameter θ0 influenced the detection performance. Hence, a small
window size w0 did not always give the best performance.

The timing errors of top-down methods were highly dependent on the combination of sliding
window length and window step size. Large sliding window sizes included more dietary activity
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information, but usually failed in accurately detecting the starts and ends of eating events as the
window was filled with both eating and non-eating data. Figure 7 shows impressively that the ocSVM
top-down algorithm indeed incurred larger timing errors due to the larger sliding window size.
In our previous investigation [13], we adopted window overlaps and majority voting on windows
with differing results. We observed that retrieval performances differed marginally when comparing
overlapping and non-overlapping windowing approaches. The bottom-up algorithm was not affected
by the window parameterisation problem, as the window step size is determined by distance of
neighbouring chewing onsets. Thus, eating and non-eating rarely coincided in one window.

The bottom-up algorithm is based on chewing cycle detection, which decouples the eating event
detection from the sensor type. The detection leverages event frequency information (i.e., chewing
cycle frequencies), which can be obtained with different chewing monitoring approaches. We expect
that the algorithms could be applied with various sensors or sources that provide chewing cycle
information, including acoustics [1], ear canal deformation [15], strain on head skin [19], eyeglasses
temple motion [18], etc.

The present investigation analysed relevant free parameters of the proposed algorithms to
determine their stability. For example, the sweep of the peak detection threshold θP showed desirable
performance trends (Figure 5) allowing us to set θP to a proper range—approximately [0.65, 0.8].
In addition, the pipeline block “gap elimination” used the parameter tgap = 5 min to merge temporally
close eating detections. The parameter tgap supports our informal definition of eating events as
temporally linked sequences of dietary activities during one meal or snack [3] and was set based
on experience. Varying tgap means to change the representation of eating occasions (i.e., meals and
snacks), which is outside of the scope of this investigation.

While this investigation focuses on the retrieval performance, the computational complexity of
the algorithms is an important consideration for wearable resource-limited systems. In a detection, the
computational complexity is O(n) for the threshold-based top-down algorithm, and O(nsv × n) for
the ocSVM top-down algorithm. Here, n is the input data dimension and nsv is the number of support
vectors of the ocSVM model. The complexity of the bottom-up algorithm is decided by the chewing
cycle detection method. For the proposed bottom-up algorithm, the corresponding complexity is
O(n). With a proper chewing cycle detection approach, the bottom-up algorithm is suitable to execute,
for example, on wearables at a minimal computational cost. The delay due to processing was not
addressed in this investigation. However, with the low complexity of all algorithms, processing delay
is expected to have a negligible effect compared to the algorithm timing errors.

This investigation was supported by a new method to obtain reference data on eating times
in a free-living context, where we combined the participants’ activity journals with reference EMG
measurements. While the activity journals yielded rather coarse timing, they provided us with context
information on the users’ behaviour. The reference EMG measurement complemented the journal with
accurate timing resolution of individual chewing cycles. However, adherence to journals is known to
decline quickly over several days of measurement [23]. Hence, it is reasonable to assume that journals
alone would be too inaccurate. We avoided video recordings to retrieve eating/non-eating reference
due to privacy concerns and the potential impact of cameras on natural, free-living behaviour.

One limitation of our study is that only young healthy participants were involved. For other
populations, the eating structure could vary, which could generate different eating durations. However,
our present investigation already showed that eating events ranging from short snacks of 54 s to
35.8 min meals could be recognised. Other populations may benefit from different pre-processing steps
or other sensors to apply the discussed bottom-up algorithm. We are planning longer-term studies in
the future.

7. Conclusions

We proposed a bottom-up eating event detection algorithm that uses chewing cycle information as
input and compared it to two top-down algorithms, including threshold-based and ocSVM algorithms.
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Evaluation of the algorithms was performed using free-living data with smart eyeglasses recording
EMG data bilaterally from the temporalis muscles. Our results indicate that the F1 score became
less meaningful at high retrieval rates above 0.9. The analysis of timing errors revealed substantial
differences of several tens to hundreds of seconds on average between top-down and bottom-up
algorithms. The grid search analysis showed smooth performance transitions during parameter
variation for the bottom-up algorithm. We conclude that timing error analysis is an important
component in performance estimation, besides a relevant retrieval metric, as the F1 score. We suggest
that the research community report timing errors (e.g., using the metrics described in this work).
The bottom-up algorithm yielded the overall best results with the lowest timing errors of 2.4± 0.4 s
for eating start and 4.3± 0.4 s for eating end. The bottom-up algorithm is thus suitable for eating
event detection.

Author Contributions: R.Z. and O.A. devised the methodology. R.Z. performed data curation and implemented
the algorithms. O.A. provided feedback throughout the implementation phase. R.Z. and O.A. prepared the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research did not receive external funding.

Acknowledgments: The present work was performed in partial fulfilment of the requirements for obtaining the
degree “Dr. rer. biol. hum.” We are thankful to the participants for the time and effort spent in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amft, O.; Stäger, M.; Lukowicz, P.; Tröster, G. Analysis of Chewing Sounds for Dietary Monitoring.
In Proceedings of the 7th International Conference on Ubiquitous Computing (UbiComp 2005),
Tokyo, Japan, 11–14 September 2005; pp. 56–72.

2. Amft, O.; Junker, H.; Tröster, G. Detection of eating and drinking arm gestures using inertial body-worn
sensors. In Proceedings of the Ninth International Symposium on Wearable Computers (ISWC 2005),
Osaka, Japan, 18–21 October 2005; pp. 160–163.

3. Schiboni, G.; Amft, O. Automatic Dietary Monitoring Using Wearable Accessories. In Seamless Healthcare
Monitoring; Springer: Cham, Switzerland, 2018; pp. 369–412.

4. Dong, Y.; Scisco, J.; Wilson, M.; Muth, E.; Hoover, A. Detecting periods of eating during free-living by
tracking wrist motion. IEEE J. Biomed. Health Inform. 2014, 18, 1253–1260. [CrossRef] [PubMed]

5. Thomaz, E.; Essa, I.; Abowd, G.D. A Practical Approach for Recognizing Eating Moments with Wrist-
mounted Inertial Sensing. In Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp’15), Osaka, Japan, 7–11 September 2015; pp. 1029–1040.

6. Bi, S.; Wang, T.; Davenport, E.; Peterson, R.; Halter, R.; Sorber, J.; Kotz, D. Toward a Wearable Sensor for
Eating Detection. In Proceedings of the 2017 Workshop on Wearable Systems and Applications (WearSys’17),
Niagara Falls, NY, USA, 19–23 June 2017; pp. 17–22.

7. Farooq, M.; Sazonov, E. Accelerometer-Based Detection of Food Intake in Free-Living Individuals.
IEEE Sens. J. 2018, 18, 3752–3758. [CrossRef] [PubMed]

8. Wahl, F.; Freund, M.; Amft, O. WISEglass—Multi-purpose context-aware smart eyeglasses. In Proceedings
of the 2015 ACM International Symposium on Wearable Computers (ISWC 2015), Osaka, Japan,
7–11 September 2015; pp. 159–160.

9. Merck, C.; Maher, C.; Mirtchouk, M.; Zheng, M.; Huang, Y.; Kleinberg, S. Multimodality Sensing for
Eating Recognition. In Proceedings of the 10th EAI International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth’16), Cancun, Mexico, 16–19 May 2016; pp. 130–137.

10. Papapanagiotou, V.; Diou, C.; Zhou, L.; Boer, J.v.d.; Mars, M.; Delopoulos, A. A Novel Chewing Detection
System Based on PPG, Audio, and Accelerometry. IEEE J. Biomed. Health Inform. 2017, 21, 607–618.
[CrossRef] [PubMed]

11. Bedri, A.; Li, R.; Haynes, M.; Kosaraju, R.P.; Grover, I.; Prioleau, T.; Beh, M.Y.; Goel, M.; Starner, T.;
Abowd, G. EarBit: Using Wearable Sensors to Detect Eating Episodes in Unconstrained Environments.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 37:1–37:20. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JBHI.2013.2282471
http://www.ncbi.nlm.nih.gov/pubmed/24058042
http://dx.doi.org/10.1109/JSEN.2018.2813996
http://www.ncbi.nlm.nih.gov/pubmed/30364677
http://dx.doi.org/10.1109/JBHI.2016.2625271
http://www.ncbi.nlm.nih.gov/pubmed/27834659
http://dx.doi.org/10.1145/3130902
http://www.ncbi.nlm.nih.gov/pubmed/30135957


Sensors 2020, 20, 557 17 of 17

12. Doulah, A.; Farooq, M.; Yang, X.; Parton, J.; McCrory, M.A.; Higgins, J.A.; Sazonov, E. Meal Microstructure
Characterization from Sensor-Based Food Intake Detection. Front. Nutr. 2017, 4, 31. [CrossRef] [PubMed]

13. Zhang, R.; Amft, O. Free-living eating event spotting using EMG-monitoring eyeglasses. In Proceedings
of the 2018 IEEE EMBS International Conference on Biomedical Health Informatics (BHI ’18), Las Vegas,
NV, USA, 4–7 March 2018; pp. 128–132.

14. Amft, O. A Wearable Earpad Sensor for Chewing Monitoring. In Proceedings of the IEEE Sensors Conference
(Sensors 2010), Waikoloa, HI, USA, 1–4 November 2010; pp. 222–227.

15. Bedri, A.; Verlekar, A.; Thomaz, E.; Avva, V.; Starner, T. A Wearable System for Detecting Eating Activities
with Proximity Sensors in the Outer Ear. In Proceedings of the 2015 ACM International Symposium on
Wearable Computers (ISWC’15), Osaka, Japan, 9–11 September 2015; pp. 91–92.

16. Zhang, R.; Bernhart, S.; Amft, O. Diet eyeglasses: Recognising food chewing using EMG and smart eyeglasses.
In Proceedings of the International Conference on Wearable and Implantable Body Sensor Networks (BSN’16),
San Francisco, CA, USA, 14–17 June 2016; pp. 7–12.

17. Zhang, R.; Amft, O. Monitoring chewing and eating in free-living using smart eyeglasses. IEEE J. Biomed.
Health Inform. 2018, 22, 23–32. [CrossRef] [PubMed]

18. Chung, J.; Chung, J.; Oh, W.; Yoo, Y.; Lee, W.G.; Bang, H. A glasses-type wearable device for monitoring
the patterns of food intake and facial activity. Sci. Rep. 2017, 7, 41690. [CrossRef] [PubMed]

19. Farooq, M.; Sazonov, E. A Novel Wearable Device for Food Intake and Physical Activity Recognition.
Sensors 2016, 16, 1067. [CrossRef] [PubMed]

20. Abbink, J.H.; Bilt, A.v.d.; Glas, H.W.v.d. Detection of onset and termination of muscle activity in surface
electromyograms. J. Oral Rehabil. 1998, 25, 365–369. [CrossRef] [PubMed]

21. Po, J.; Kieser, J.; Gallo, L.; Tésenyi, A.; Herbison, P.; Farella, M. Time-Frequency Analysis of Chewing
Activity in the Natural Environment. J. Dental Res. 2011, 90, 1206–1210. [CrossRef] [PubMed]

22. Wahl, F.; Zhang, R.; Freund, M.; Amft, O. Personalizing 3D-printed smart eyeglasses to augment daily life.
IEEE Comput. 2017, 50, 26–35. [CrossRef]

23. Witschi, J.C. Short-Term Dietary Recall and Recording Methods. In Nutritional Epidemiology; Willett, W., Ed.;
Oxford University Press: Oxford, UK, 1990; Volume 4, pp. 52–68.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3389/fnut.2017.00031
http://www.ncbi.nlm.nih.gov/pubmed/28770206
http://dx.doi.org/10.1109/JBHI.2017.2698523
http://www.ncbi.nlm.nih.gov/pubmed/28463209
http://dx.doi.org/10.1038/srep41690
http://www.ncbi.nlm.nih.gov/pubmed/28134303
http://dx.doi.org/10.3390/s16071067
http://www.ncbi.nlm.nih.gov/pubmed/27409622
http://dx.doi.org/10.1046/j.1365-2842.1998.00242.x
http://www.ncbi.nlm.nih.gov/pubmed/9639161
http://dx.doi.org/10.1177/0022034511416669
http://www.ncbi.nlm.nih.gov/pubmed/21810620
http://dx.doi.org/10.1109/MC.2017.44
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Eating Event Detection Algorithms
	Bottom-Up Algorithm
	Signal Pre-Processing
	Chewing Cycle Detection
	Chewing Segment Detection
	Fusion of Multi-Source Detection
	Gap Elimination

	Top-Down Algorithms
	Threshold-Based Top-Down Algorithm
	ocSVM Top-Down Algorithm


	Evaluation Methodology
	Participants and Recording Protocol
	Data Corpus
	Free-Living Eating/Non-Eating Reference Construction
	Evaluation Metrics
	Detection Timing Errors

	Results
	Discussion
	Conclusions
	References

