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Abstract: We recorded the time series of location data from stationary, single-frequency (L1) GPS
positioning systems at a variety of geographic locations. The empirical autocorrelation function of
these data shows significant temporal correlations. The Gaussian white noise model, widely used in
sensor-fusion algorithms, does not account for the observed autocorrelations and has an artificially
large variance. Noise-model analysis—using Akaike’s Information Criterion—favours alternative
models, such as an Ornstein–Uhlenbeck or an autoregressive process. We suggest that incorporating
a suitable enhanced noise model into applications (e.g., Kalman Filters) that rely on GPS position
estimates will improve performance. This provides an alternative to explicitly modelling possible
sources of correlation (e.g., multipath, shadowing, or other second-order physical phenomena).
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1. Introduction

Numerous applications are built using location provided by Global Positioning System (GPS)
receivers. While centimetre precision has been demonstrated for dual-frequency [1] and differential
GPS systems, a very large number of systems rely on single-frequency non-differential units,
which report positions with typical precision of many metres [2]. We use the term “noise” to refer
to the errors in a sequence of reported positions. The sources of the noise in the positions include
atmospheric and ionospheric phenomena [3], multipath effects [4,5], canopy trees [6], and a wide
variety of physical phenomena that may be impractical to model. However, other types of errors are
also inadvertently added to the signal, e.g., errors present in the modelling of satellite orbits [7], finite
precision of the digital components of receivers, variations in the built-in phased-locked loop [8],
or the signal processing techniques [9], etc. The common structure and frequent formulations of GPS
algorithms are discussed in Xu and Xu [10], including some aspects of the mathematical formulation
that carry non-trivial correlation in readings between epochs. In summary, however, it is sufficient
for this work to realise that there are noise sources that can be adequately modelled by uncorrelated
processes, e.g., white noise, and there are sources that inherently carry temporal correlations.

All GPS signals are encumbered with noise, whose sources are hard to distinguish [11,12].
The noise could be attributed to satellite clock and orbit errors, to the propagation of the GPS
signal through media (ionosphere, troposphere, etc.), and to the receiver units. Many of these noise
components are time-correlated and caused by stochastic processes external to the useful signal.
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It would be ambitious to model and distinguish between all these processes; alternatively, one can
consider their cumulative effect on the time series [13,14]. Irrespective of the source, a robust
signal-processing algorithm needs some model of noise processes. Such a model unavoidably
contains assumptions on the nature of the noise, e.g., amplitude and correlation in the time domain,
which must be experimentally validated. Often, the measurement errors are modelled by independent,
identically distributed random Gaussian variables (Gaussian white noise). While this model is
sufficient for many applications, it is generally accepted that a linear combination of coloured noise
(whose power spectrum follows a P ∼ f−κ law with a characteristic exponent κ) is a more suitable
approximation [15]. With the assumption of white noise, the time correlation in GPS datastreams
leads to biased and inconsistent parameter estimates [16], especially for sampling rates above 5 Hz.
Moreover, it is unrealistic that measurements from different satellites would have the same accuracy;
therefore, stochastic models assuming independent and constant variance result in unreliable statistics,
and stochastic modelling is needed. Directly estimating statistical parameters of the GPS time series
by explicitly taking into account the heteroscedastic space- and time-correlated error structure of the
observations could result in improved accuracy at minimal computational cost.

Noise in long GPS time series has been analysed for geodetic purposes by [17,18], who found
−1 ≤ κ ≤ 3 in the relevant frequency band. Their results are, however, not conclusive, as many spectra
would fit this range, e.g., white noise (κ = 0) or flicker noise (κ = 1). Many processes that these GPS
observations are expected to capture, e.g., earthquakes or the wobble of the Earth around its axis, have
similar spectra [19]. Consequently, the physical process being observed by GPS and the inherent noise
of a GPS signal are present simultaneously. The noise amplitude changes with time and, for older data,
can be a considerable fraction of the signal [20].

In this study, we analyse time series of GPS measurements with duration between a day and
a week at 1 Hz sampling frequency. Observations were made in the Southern Hemisphere with
stationary units. The recordings show significant autocorrelation incompatible with a Gaussian
white noise model. The observed presence of correlations implies that there are some stochastic
equations governing the dynamics of the signal. There are two major sources that plausibly introduce
correlations: (a) the movement of GPS satellites and, thus, their constellation, and (b) the algorithms
coded in the GPS emitters and receivers. Both sources are, to a high degree, deterministic; thus, in a
perfect environment, they would produce a strongly correlated signal. However, there are many other
phenomena, e.g., weather and surface reflectance, that introduce effects into the signal that can be
most effectively modelled by noise, rather than searching for their respective governing equations.
We develop mathematical models for the observed noise and suggest how these models can be used
for improved positioning and uncertainty quantification in future devices.

2. Description of the Data Collection Process

Data were collected from civilian L1-band GPS units at multiple locations. At each location,
data were collect from four units with a Telit Jupiter-F2 integrated GPS module, as well as a single
standard USB-connected GPS receiver—GlobalSat BU-353S4. The first- and second-order statistics of
the location data showed no significant difference between the two devices. For brevity, we present
our findings using the data obtained only with the GlobalSat BU-353S4.

The location of satellites is a major factor of GPS accuracy degradation. Devices function well
when the satellites are widely distributed [21]; hence, the altitude errors in measurements are typically
much larger than those in latitude or longitude. The GPS satellites operate at an inclination of around
55◦; consequently, for devices at higher latitudes, the GPS satellite positions are biased strongly towards
the equator.

To ensure that our analysis was not biased due to specifics of the GPS satellite constellation
geometry, we carried out measurements at four locations with latitudes between 45◦ and 10◦ South
(see Table 1). Data were recorded at each site for approximately 48 h. The decimated latitude and
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longitude errors (deviations from time average) are shown in Figure 1. Disregarding the initialisation
period (typically ∼1 min), the data resemble a random walk.

Table 1. Measurement sites and dates of observations.

Measurement Site Latitude (South) Longitude (East) Dates

North Stradbroke Island 27◦25′14′′ 153◦30′52′′ 14 September 2014
Port Douglas 16◦29′07′′ 145◦27′59′′ 17 September 2014
Thursday Island 10◦34′79′′ 142◦13′47′′ 21 September 2014

Dunedin 45◦ 51′50′′ 170◦30′48′′ 6 August 2014
7 August 2014

15 August 2014
27 September 2014

5 October 2014
22 October 2014
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Figure 1. The longitude and latitude errors at each location. Due to the large number of observations,
the data have been decimated.

While this cursory look seems suggestive, calculating the residuals defined as rt = Xt − ξ0

(here, ξ0 denotes the long-time average, or the ‘true’ position) and creating a QQ-plot [22] reveals the
non-Gaussian nature of rt (for technical details see Appendix A).

In Figure 2 the QQ-plot of the latitude data collected in Dunedin is depicted. In order to support
the graphical findings, we have also calculated two more normality tests [23], one based on d’Agostino
and Pearson’s work [24,25], and another one suggested by Lilliefors [26]. The latter is the most suitable
for our use, as it does not assume the knowledge of mean and standard deviation of the normal
distribution, but estimates these from the sample. The null hypothesis of both tests is that the data
come from a normal distribution. Since both tests return p-values much smaller than 0.01, we can
thus conclude at a 99% confidence level that latitude data do not support the assumption of normal
distribution. Similar conclusions can be drawn for longitude and altitude data at all locations.
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Figure 2. The main figure shows the QQ-plot of the residual of latitude data (measured in metres)
collected in Dunedin. The inset depicts the histogram of the same data. The p-values of two normality
tests are also given in the top left corner. Based on this evidence, the data do not support the assumption
that the residual follows a Gaussian distribution.

3. Analysis of Observations

One may think of the collection of positions—emitted by the GPS chip—as a stochastic process,
a sequence of random variables, X1, X2, · · · , Xt, · · · labelled by time t = 1, 2, . . . In our study, Xt may
represent the latitude, longitude, or altitude returned by a GPS unit. We denote random variables with
capital letters, e.g., Xt, and its particular realisation with lower case letter, e.g., xt. Any estimator of a
statistic, e.g., the expectation value µ, is denoted by the same letter but decorated with a ̂ symbol,
e.g., µ̂.

Stochastic Processes

The simplest non-trivial stochastic process can be formulated as the sum of the true position,
ξ0, and an additive noise term:

Xt = ξ0 + Et. (1)

The measurement error, Et, is often considered to be a Gaussian white noise with zero mean and
variance σ2. The problems of fitting Gaussian noise models to GPS measurements have been recognised
by [27,28], and two models were proposed to describe the measurements more accurately: a moving
average process (MA) and an autoregressive model (AR).

We check whether adjacent recordings can be considered independent random variables using
the empirical autocorrelation function [29–33], defined as

ρ̂(t, s) =
cov(Xt, Xs)

σtσs
=

E [(Xt − µt) (Xs − µs)]

σtσs
, (2)

where µr and σr are the expectation value and variance of the random process at step r, respectively.
The process {Xt} is stationary if µt and σt are both time-independent; in such a case, the autocorrelation
function depends only on the time difference h = s− t (lag) between its arguments and not explicitly
on the arguments themselves. Henceforth, we assume stationarity; thus, ρ(t, s) = ρ(h) while µt = µ
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and σt = σ both become constants, which are calculated by time-averaging. Furthermore, we consider
the empirical partial autocorrelation function calculated using the Yule–Walker method [32,34] and
defined as

ρ̂p(h) =
cov(Xt, Xt+h|Xt+1, Xt+2, · · · , Xt+h−1)

σtσt+h
, (3)

which provides the amount of correlation between a variable and a lag of itself that is not explained by
correlations at all lower-order lags.

As an example, Figure 3 shows the autocorrelation of a typical time series. The autocorrelation
function decays slowly. Fitting an exponential decay to the first half-hour dataset provides a
characteristic time estimate of τ = 20.98± 0.02 minutes, i.e., it takes approximately an hour (∼ 3τ) to
reach statistical independence. Using the reported position for periods much shorter than τ would
lead to a biased estimate. We wish to draw the reader’s attention to the fact that long-term correlations
usually imply a power-law decay of correlation, while our fit assumes an exponential correlation.
While exponential decay of correlation is relatively fast, compared to power-law decay, it seems to
have an observable effect on location time series, and its inclusion in modelling may provide better
positioning algorithms in the future.
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Figure 3. Correlogram of latitude errors of a time series from Dunedin of ∼250 h. The dashed lines
correspond to the classical 95% confidence interval, while the dash-dotted curve corresponds to the
Box–Jenkins standard error. The thin solid line represents the exponentially decaying curve fitted to
the first half-hour section. The inset depicts the empirical partial autocorrelation function.

The theoretical autocorrelation function of Gaussian white noise is the Dirac-delta, ρ(t, s) ∝
δ(t− s). Assuming this model, one may test for statistical independence of Xt and Xt+h by checking
whether the autocorrelation function is different from zero, i.e., whether it falls within the confidence
interval around µ̂ = 0 [35,36].

−
z
(
1− α

2
)

√
n

σ̂ ≤ ρ̂(h) ≤
z
(
1− α

2
)

√
n

σ̂,

where z(x) is the cumulative distribution function of the standard normal probability distribution, α is
the required level of significance, σ̂ denotes the sample standard deviation, and n is the number of
measurements. This confidence interval at the α = 0.05 level is plotted with dashed lines in Figure 3.
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The majority of ρ̂(h) falls outside this interval; therefore, our observations and the assumption of
Gaussian white noise are inconsistent with each other. One may take into account that the empirical
autocorrelation function estimated from a finite-length time series also carries error [37] and could
derive a modified confidence interval. At significance level α, this is given by the Box–Jenkins standard
error [38–40]:

−
z
(
1− α

2
)

√
n

S(h) ≤ ρ̂(h) ≤
z
(
1− α

2
)

√
n

S(h),

where S(h) =
√

1 + 2 ∑h−1
k=1 ρ̂ 2(k). Figure 3 also depicts the Box–Jenkins standard error with

dash-dotted lines, and it is apparent that the two confidence intervals differ from each other
substantially, thus confirming the statistical dependence in the measured location readings. It is
worth noting here that the exponential fit and the first crossing of ρ̂(h) with the Box–Jenkins confidence
interval agree with each other. The inset in Figure 3 shows ρ̂p(h) for h ≤ 20 seconds with its standard
error at a 0.95 significance level. This graph may suggest the application of a high-order autoregressive
noise model (see next section), since ρ̂p(h) vanishes only for lags larger than approximately 30 s.

However, we find that other datasets exhibit much shorter ‘memory’, so lower-order processes
might also be sufficient.

Datasets from other locations exhibited different behaviour (see Figure 4). The autocorrelation still
takes less than an hour to reach the Box–Jenkins standard error, but the initial drop is much sharper.
This drop may explain the different behaviour of the partial autocorrelation function, which vanishes
for lags larger than unity. Figures 3 and 4 illustrate the extreme cases.
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Figure 4. Correlogram of longitude errors for the GPS data taken in Port Douglas. The line styles are
identical to those in Figure 3.

The autocorrelation of the Thursday Island dataset, see Figure 5, displays persistent oscillations
not observed at other locations. This could be because of a temporary loss of power experienced on
Thursday Island, which forced the data to be split into two sets, each approximately 24 h long, or an
artefact of the local geography contributing to long-term multipath effects.
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Figure 5. The partial autocorrelation function, ρ̂p(h), for longitude, latitude, and altitude at all
geographic locations visited. The lag is measured in seconds.

4. Modelling the Noise

In this section, we develop some statistical models for the observed noise. A model is a relationship
between random variables, {Xt+k}k∈K, in the following form:

h({Xt+k}k∈K) = g({Et+`}`∈L) , (4)

where K and L are sets of integers, h and g are fixed functions, and Et ∼ N (0, σ2). Here, the quartet (h,
g, K, L) constitutes the model to be inferred. To simplify the task, we presume that h and g are linear
in all their variables (so-called linear models). The stochastic model is then

∞

∑
k=0

hkXt−k =
∞

∑
`=0

g`Et−`, (5)

where hk and g` are all constants with h0 = g0 = 1 (convenience), and causality restricts summations to
the current or past values of Xt or Et [41]. This model requires an infinite number of coefficients, which
cannot be estimated using a finite number of observations. Therefore, we focus on finite-parameter
linear models and estimate the unknowns via the maximum likelihood method, in which the likelihood
function below is constructed for Gaussian processes.

The likelihood function, L, is the joint probability density of obtaining the actually observed data
x = (x1, x2, . . . , xN), according to the model. It is a function of the unknown parameters β = (h0, h1,
. . . , g0, g1, . . . ), and σ2. Under general assumptions, the log-likelihood function of a finite parameter
linear model is:

log
(

L(β, σ2)
)
= −1

2

[
N log(2π)+log

(
det
(

σ2 Σ(β)
))

+
1
σ2 xTΣ−1(β) x

]
where the (m, n)-th component of the covariance matrix σ2Σ(β) is calculated from

σ2Σm,n =
σ2

2π

∫ π

−π
ei(m−n)ω

∣∣∣∣ g0 + g1z + g2z2 + · · ·
h0 + h1z + h2z2 + · · ·

∣∣∣∣2
z=e−iω

dω.

Although the likelihood function, L, is derived under Gaussian processes, if the time
series is causal and invertible, then maximising this likelihood leads to asymptotically consistent
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estimators [42,43]. This approximation is convenient, as the asymptotic likelihood function has a
unique stationary point, the global maximum [44].

Below, we introduce and analyse finite-parameter linear noise models and compare their
performance, including the Gaussian white noise model for a benchmark.

4.1. Gaussian White Noise Model

The simplest noise model treats measurements as statistically independent, normally distributed
random variables: Xt − µ = Et for fixed µ. Thus, Xt ∼ N (µ, σ2), with yet unknown parameter
values µ and σ. Using the maximum likelihood approach, these parameters are estimated from the
observations as

µ̂ =
1
N

N

∑
i=1

xi and σ̂2 =
1
N

N

∑
i=1

(xi − µ̂)2.

4.2. Autoregressive Models

An autoregressive process of order p, abbreviated as AR(p), is a stochastic process where h is a
linear combination of p terms:

Xt = −
p

∑
k=1

hkXt−k + Et,

where hk are constants. The process has p + 1 parameters: {hk}
p
k=1 and σ. The estimators ĥi and

σ̂2 = ρ̂(0) + ∑
p
k=1 ρ̂(k)ĥk are found by linear algebra [37]. Alternatively, the estimators can be found

by least squares regression [45]. The parameter estimation procedure costs, at most, O((p + 1)2 + np)
operations, where n is the number of observations.

As the Laplace transformation of Xt suggests the autocorrelation function of an AR(p) process is
formally the sum of p exponentially decaying terms, thus, ρ̂(h) exhibits exponential decay or oscillatory
behaviour [32], while ρ̂p(h) vanishes for lags p < h.

4.3. Moving Average Model

Rather than using the past values of the random variable, a moving average model of order q,
abbreviated as MA(q), regresses on past errors, Et−k = Xt−k −E(Xt) for k = 0, . . . q, and is defined as

Xt = µ +
q

∑
`=0

g`Et−`.

The process has q + 2 parameters. One may cast any stationary AR(p) process as an MA(∞) model
and an invertible MA(q) model as an AR(∞) process. Nevertheless, MA(q) models are useful, as one
cannot fit an AR(∞) model on a finite number of observations.

Unlike autoregressive processes, for MA processes, any estimator based on a finite amount of
observations inherently carries some loss of information. Resultantly, parameter estimation is harder
than for AR processes of comparable order.

The qualitative behaviours of the autocorrelation and partial autocorrelation functions, ρ̂(h) and
ρ̂p(h), are similar to those in autoregressive processes, but with roles interchanged. The autocorrelation
function vanishes for h > q, while the partial autocorrelation function is dominated by damped
exponential and/or periodic functions. In the examples shown in Figures 3 and 4, the autocorrelation
function vanishes too slowly to be described by a low-order MA process.



Sensors 2020, 20, 6050 9 of 16

4.4. Autoregressive Moving Average Model

The combination of AR(p) and MA(q) processes can be formulated as

Xt = µ−
p

∑
k=1

hkXt−k +
q

∑
`=0

g`Et−`.

The combination inherits most of its properties from these simpler processes. Neither
the autocorrelation nor the partial autocorrelation function vanishes after a threshold lag.
The autocorrelation function exhibits damped exponential and/or oscillatory behaviour for lags
h > q − p, while ρ̂p(h) is dominated by exponential and periodic terms for lag values h > p − q.
The variance of the sample autocorrelation function can exceed the Box–Jenkins error (see Figure 3).
As a result, it is often difficult to determine the model orders; model verification and iterative parameter
estimation are needed.

For normally and independently distributed Et with zero mean and constant variance, and for
stationary {Xt}, Melard [46] provided an efficient algorithm for calculating the exact likelihood
function of an ARMA(p, q) model. This algorithm requires O(p2 + q2 + n(p + 3q)) operations for n
observations, which—in practice—can be reduced by considering the observations in a finite window.

4.5. Ornstein–Uhlenbeck Model

In this section, we consider a stochastic differential equation (SDE) rather than a discrete stochastic
process. Stochastic partial differential equations are a natural choice to model dynamical systems
subject to random fluctuation. For an introduction to SDEs, we point to Evans’ [47] and Øksendal’s [48]
excellent monographs.

The scatter-plots in Figure 1 resemble a random walk on a phenomenological level. However,
in a Brownian motion, the variance of the position increases with time, which we do not observe here.
On the contrary, we observe (and expect) that the GPS reading will return to the true location even
if it deviates from it momentarily, i.e., it is mean-reverting. Furthermore, Figure 3 shows that the
correlation function decreases exponentially. These properties suggest an Ornstein–Uhlenbeck (OU)
process [49], defined by the SDE

dXt = θ(µ− Xt)dt + σdWt, (6)

where θ, µ, and σ are real parameters, with θ, σ > 0. For historical and physical reasons, the parameters
θ and σ are called the drift and diffusion coefficients, respectively. The fluctuation part, Wt ∼ N (0, t),
is a Wiener process. The same process can also be represented as

Xt = X0e−θt + µ
(

1− e−θt
)
+ σe−θtW(e−2θt−1)/2θ .

The first term corresponds to the long-term but diminishing influence of the initial observation.
The second reaches the steady value µ exponentially fast, while the third describes a scaled and
time-transformed random fluctuation. The expectation value at time t is E(Xt) = µ

(
1− e−θt) +

e−θtE(X0) ≈ µ.
One may simplify (6) by eliminating µ with the Xt 7→ Xt − µ transformation, but we keep

µ explicit, as it is the ‘true’ position of the GPS device. The parameter θ sets the scale of the
autocorrelation function ρ(h), while σ determines the noise between measurements. The OU process
is the continuous-time generalisation of an AR(1) process. It has several desirable properties: (a) It is
mean-reverting for θ > 0, (b) it has finite variance for all t ≥ 0 contrary to Brownian motion, (c) its
analytic covariance cov(Xt, Xu) ∼ e−θ|t−u| permits a long autocorrelation time, (d) the autocorrelation
function is insensitive to the sampling rate, and (e) it approaches Gaussian white noise as θ → ∞.
More precisely, the OU process is the only non-trivial, mean-reverting, Gauss–Markov process,
i.e., whose transitions are memory-less, and it thus allows predictions of the future state based on the
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current state [50]. This does not prohibit more sophisticated models for GPS time series, but these
models will lack at least one of the properties listed above.

To model our observations as an Ornstein–Uhlenbeck process, we must estimate θ, µ, and σ

using maximum likelihood estimation [51]. Tang and Chen [52] provided a detailed derivation of
estimators for these parameters, and Dacunha-Castelle and Florens-Zmirou [53] showed that for
time-equidistant observations, the maximum likelihood estimators are consistent and asymptotically
normal, irrespective of the sampling time-step, ∆t.

The estimators for θ, µ, and σ require ∼ 2n operations each. Therefore, the overall parameter
estimation takes O(6n) operations. However, Tang also gives explicit estimates for the asymptotic
form of these estimators, e.g.,

E
(

e−θ̂∆t
)
= e−θ∆t − 4− 3θ∆t

n
+ O

(
1
n2

)
.

Thus, one needs only a moderate number of observations, n, or short sampling time ∆t to estimate
the θ parameter, especially compared with the estimator of the mean for an uncorrelated process,
which would have O(1/

√
n) (much slower) convergence to the true mean.

Parameter estimation for SDEs is a rapidly developing field, especially the sub-field of
online estimators that update the parameter estimates as newer observations become available.
Such estimators are usually associated with constant computational cost, as their performance is
independent of n. A method of online estimators for a sampled, continuous-time Ornstein–Uhlenbeck
is the subject of future publication.

After estimating µ, θ, and σ, we simulated an ensemble of Ornstein–Uhlenbeck processes using
the Euler–Maruyama method [54]. We calculated and plotted the autocorrelation function for each run
(see Figure 6) as well as the range covered by these functions. Clearly, the OU noise model represents
the autocorrelation in the data up to at least two hours. However, it is unable to capture the undulation
of ρ̂(h). Therefore, an Ornstein–Uhlenbeck process should be complemented with some other process
for longer-term predictability. We believe that a more complicated noise model is unwarranted unless
the sampling period exceeds an hour.
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Figure 6. The thick black solid line depicts ρ̂(h) for the GPS recordings on 15 August, 2014 in Dunedin,
as in Figure 3. All grey lines represent the autocorrelation function of a simulated Ornstein–Uhlenbeck
process with input parameters µ = µ̂ ∼= 45.864, θ = θ̂ ∼= 1.329 × 10−4, and σ = σ̂ ∼= 2.745 ×
10−7. The lines labelled as ‘maximal’ and ‘minimal’ are connecting the extremal values of simulated
autocorrelation functions at all lags.
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5. Quantitative Analysis of Noise Models

In this section, we present and discuss the quantitative performance of the previously described
noise models. For each model, the parameters were chosen to best fit the location data. The process
of selecting which of these models best describes the data, called model selection, is a large and
complex field in statistics; thus, we leave detailed explanation to the technical literature, e.g., [55] and
references therein.

There are three properties of model selection criteria: consistency, efficiency, and parsimony.
Consistency means that the criterion selects the true model with probability approaching unity with
increasing sample size provided the true model is among those considered. However, nothing
guarantees that the true model is simple and tractable; thus, it is also necessary to measure how much
error one might make by accepting a model knowing that it is not the true model. Efficiency is a
measure of this property; as the sample size becomes large, the error in predictions using the selected
model becomes indistinguishable from the error obtained using the best model among the candidates.
Parsimony dictates that if all measures are equal for two competing statistical models, the preferred
one should be the simpler model.

The most common model selection criteria use the likelihood function, L, and introduce some
penalty proportional to the model complexity. Akaike’s Information Criterion (AIC) is defined as
AIC = −2 ln(L) + 2k, where k is the number of fit parameters in the model [56,57]. The best model has
the smallest AIC value—it encodes the most information using the least number of fitted parameters.
The AIC has a definite minimum value with respect to k, and the appropriate order of the model is
determined by the value of k at this minimum. The AIC is biased for small samples, and a bias-corrected
version (AICc) is gaining popularity [43]. Here, we analyse time series with n > 105 and k ≈ 10, so we
can ignore this correction. Other criteria have been developed, e.g., Bayesian Information Criterion
(BIC), which more severely penalises the introduction of extra model parameters by replacing the 2k
term with k + k ln (n).

Regarding the model selection criteria, AIC and AICc are both inconsistent, while BIC is only
asymptotically consistent. Meanwhile, AIC is efficient, while BIC is not. Therefore there is no clear
choice between AIC and BIC. The latter is asymptotically consistent as the sample size approaches
infinity, while the former selects models that have acceptable predictive power [58].

We use AIC, as it is almost universally accepted. While it does not validate a statistical model,
it determines relative probabilities between alternative models. We compare AIC values for a selection
of models. Table 2 shows AIC scores for model fits of latitude, longitude, and altitude at four geographic
locations. For each location, we individually fitted different noise models using the same observation
datasets. For the AR(p), MA(q), and the ARMA(p, q), we increased the number of parameters involved.
Occasionally the statistics routine was unable to converge for the MA(q) processes. In these cases,
the corresponding entry in Table 2 is left empty.

Table 2 clearly shows that the Gaussian white noise model, irrespective of the geographic
location or the coordinate, is the worst-performing noise model. All of its AIC values are positive,
indicating a very low likelihood that the observations are described by the model. The MA models
also seem a poor fit to the data, although one may increase the order of the model, q, to achieve
lower AIC scores. Our standard numerical routine, based on the Yule–Walker method [37], could not
converge. In contrast, an AR model with increasing order fit best among the noise models examined.
Although both the ARMA(p, q) and Ornstein–Uhlenbeck models could achieve comparable AIC values
(with the exception of the North Stradbroke Island dataset), the quantitative comparison of AIC values
always favoured the high-order AR model. We note here that slightly lower AIC values could be
achieved for autoregressive models by increasing their order, but the gain is becoming negligible
around p ≈ 10 (see Figure 7).

Figure 7 also captures two typical phenomena: For low values of p, the AR(p) models do
improve significantly with increasing values of p, but there is a ‘kink’ in the AIC curve around
approximately p = 10, where some improvement can be still achieved by increasing p, but these may
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not be worthwhile considering the increasing computational workload. In many GPS applications,
the sampling period is often shorter than a few minutes or an hour, so the aim of developing a noise
model is to focus on the short-term behaviour of the time series. For this reason, the choice of p = 9
seems a good compromise between modelling performance and computational load (cf. Table 2).
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Figure 7. The Akaike’s Information Criterion (AIC) score for autoregressive (AR) models of increasing
order using the Dunedin GPS altitude dataset recorded on 15 August 2014, scaled relative to the AIC
score for p = 1.

Table 2. AIC values (rounded) of noise models for GPS time series.

Thursday Island Gauss AR(9) MA(1) MA(3) ARMA(1, 1) OU

Latitude 368,278 −419,119 240,593 −391,014 −390,082
Longitude 490,408 −358,983 369,403 −201,441 −212,528
Altitude 616,549 −151,204 488,436 −106,982 −107,027

Port Douglas ARMA(1, 1)

Latitude 1,080,721 −1,104,629 749,275 −1,048,908 −1,031,940
Longitude 1,254,838 −415,461 927,860 −887,968 −1,016,929
Altitude 1,445,244 −844,480 1,112,076 −924,883 −659,902

North Stradbroke ARMA(2,2)

Latitude 616,991 −846,881 417,772 160,425 −54,584 4099
Longitude 552,469 −847,589 369,864 138,410 48,340 5140
Altitude 991,469 −638,245 783,784 549,365 280,719 401,359

Dunedin ARMA(2,2) OU

Latitude 2,827,919 −4,855,973 −4,762,660
Longitude 2,202,644 −5,333,179 945,600 −5,343,304 −5,292,592
Altitude 4,380,261 −4,351,240 3,112,342 −4,360,823 −4,114,385

In summary, the Gaussian white noise model is the worst fit to the observation. The next worst
model, according to the AIC, is a low-order MA process, followed by the Ornstein–Uhlenbeck model.
A higher-order AR scores better, with the higher-order AR processes scoring best. The AR process has
the further advantage of robust parameter estimation.

6. Discussion

The use of Gaussian white noise models is very common in sensor fusion algorithms that
incorporate GPS data (Hamilton 1994). We have shown here that the assumption of uncorrelated noise
does not capture important features of real-world GPS data. Fitting a Gaussian white noise model
results in an artificially large variance and does not account for the observed autocorrelations. Analysis
of location data shows that the error between the position measurement and the ‘true’ location shows
strong autocorrelation up to approximately an hour. We proposed stochastic noise models that take
into account such autocorrelation. Estimating the model parameters for the Ornstein–Uhlenbeck and
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AR models based on likelihood maximisation is straightforward where either the analytic solution
is known or the numerical algorithm is well known and can be performed efficiently. Conversely,
estimating the parameters for the MA or ARMA models is more involved and computationally
expensive. If the stochastic process is known to be non-stationary, then the MA model is non-invertible,
and further measures are required to estimate the model parameters. Here, we mention an alternative
approach for supporting the suitability of novel noise models. One can calculate the second moment
of the residuals, 〈E2

t 〉, using single-path or multipath ensemble averaging for the observed time series
and the one generated by the model. However, this approach is left for future analysis.

Autoregressive processes of moderate order provide a sufficient noise model for the signal
returned by the commercial GPS device, and the extra computational cost compared to that of a naive
Gaussian white noise model is negligible. Increasing the order of the autoregressive process results in
lower AIC values, indicating that, from the purely statistical perspective, the likelihood maximisation
outweighs the increase in complexity. However, for the less accurate GPS units, the higher-order
AR processes are only slightly more likely than the first-order AR(1) process. For an AR(1) process,
we would advise a discretised Ornstein–Uhlenbeck process, which brings several advantages. First,
the sampling period of the device is explicit in its formulation; thus, variable sampling periods can
easily be fit into this description. Second, the other parameters of an Ornstein–Uhlenbeck process give
clear insight into the noise characteristics: θ describes how the rate measurements revert towards the
mean µ, while σ indicates the amount of noise present between each measurement.

Wendel and Trommer [59] analysed the effect of time-correlated noise on the applicability of
classical Kalman Filtering, and proposed new filter equations. The noise models we proposed here
can thus be incorporated into a Kalman Filter or Bayesian inference algorithms and provide both an
estimate for the location along with quantified uncertainty. In addition, recent work [60] has shown
that there are practical algorithms for sensor fusion in multi-dimensional systems that allow arbitrary
noise distributions and approach the computational efficiency of Kalman Filtering.
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Appendix A. Short Description of the QQ-Plot Method for Testing Normality

Before constructing non-Gaussian noise models, it is desirable to show that the distribution
of noise is significantly different from a Gaussian distribution [23]. We thus carried out three
normality tests for each coordinate (latitude, longitude, and altitude): the d’Agostino–Pearson test [25],
the Lilliefors test [26], and the graphical QQ-plot method [61]. In Section 2, we demonstrated the
deviation of the residuals from a Gaussian distribution. Here, a short description of the QQ-plot
method is provided.

The central concept of the QQ-plot method is that of the quantiles, a measurable functional of
the empirical distribution, such as the sample mean and sample median. The empirical distribution
function, Fn, of a sample of size n, is defined as Fn(x) = P∗n ((−∞, x)), or, in words, the ratio of
elements of the sample that are less than x. The symbol ∗means that the probability is estimated by
the observed frequency. Assuming that Fn(x) converges in probability to a distribution function F(x)
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as n → ∞, we can define the quantile, ζp, of order p as ζ(p) = sup(x| F(x) ≤ p). Here, the usage
of sup guarantees that this definition remains meaningful even if F(x) has points of discontinuity.
As a function of p, the quantile ζ(p) is the inverse function of F(x). A widely used example of a
quantile is the median, which is simply ζ( 1

2 ), i.e., the value x̂ of the sample for which half of the
observations are smaller than x̂, and half of them are higher than x̂. Similarly, we may divide up the
entire range of the random variable into segments in a way that the number of samples belonging into
each segment are the same. In the sample quantile ζ∗n(p) = x`, where ` = [np] + 1, xk is equal to the
k-th smallest value of the sample.

The sample quantiles provide us a graphical approach to check whether the sample comes from
a given probability distribution, G(x). Let us assume that X1, X2, . . . are independent, identically
distributed random variables, with E[X] = 0 and Var[X] = σ2 < ∞. Even if the observed values
do not satisfy these mild conditions, after normalisation, the two conditions can be fulfilled. Let G
denote the distribution function of the standard normal distribution, while Fn stands for the empirical
distribution function of S∗n, where

S∗n =
1√
nσ2

(X1 + X2 + . . . ) .

One measure of whether the sample {x1, x2, . . . } comes from a standard normal distribution is
the ‘closeness’ of Fn and G. The closeness is visually represented in a two-dimensional plot, where
the abscissa is the t-th quantile, ζ(t), while the ordinate is the t-th sample quantile, ζ∗(t). The closer
they are, the closer the points are to the diagonal. The plot of points (ζ(t), ζ∗(t)) for t ∈ R is called the
quantile–quantile plot, or, in short, the QQ-plot.
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