
sensors

Article

An Automated System for Classification of Chronic
Obstructive Pulmonary Disease and Pneumonia
Patients Using Lung Sound Analysis

Syed Zohaib Hassan Naqvi 1,* and Mohammad Ahmad Choudhry 2

1 Department of Electronics Engineering, University of Engineering and Technology, Taxila 47080, Pakistan
2 Department of Electrical Engineering, University of Engineering and Technology, Taxila 47080, Pakistan;

dr.ahmad@uettaxila.edu.pk
* Correspondence: zohaib.naqvi@uettaxila.edu.pk

Received: 9 September 2020; Accepted: 12 November 2020; Published: 14 November 2020 ����������
�������

Abstract: Chronic obstructive pulmonary disease (COPD) and pneumonia are two of the few fatal
lung diseases which share common adventitious lung sounds. Diagnosing the disease from lung
sound analysis to design a noninvasive technique for telemedicine is a challenging task. A novel
framework is presented to perform a diagnosis of COPD and Pneumonia via application of the
signal processing and machine learning approach. This model will help the pulmonologist to
accurately detect disease A and B. COPD, normal and pneumonia lung sound (LS) data from the
ICBHI respiratory database is used in this research. The performance analysis is evidence of the
improved performance of the quadratic discriminate classifier with an accuracy of 99.70% on selected
fused features after experimentation. The fusion of time domain, cepstral, and spectral features are
employed. Feature selection for fusion is performed through the back-elimination method whereas
empirical mode decomposition (EMD) and discrete wavelet transform (DWT)-based techniques are
used to denoise and segment the pulmonic signal. Class imbalance is catered with the implementation
of the adaptive synthetic (ADASYN) sampling technique.

Keywords: chronic obstructive pulmonary disease; lung sounds; pneumonia; quadratic discriminant
analysis; feature extraction; empirical mode decomposition; discrete wavelet transform

1. Introduction

Pulmonary abnormalities encompass various lethal diseases. Chronic obstructive pulmonary
disease (COPD) and pneumonia are treatable pulmonic illness with early diagnosis and proper
prevention. Pneumonia is a pulmonary abnormality which can be caused by virus, bacteria, or fungi.
Infections. COPD subjects are also vulnerable to a high risk of pneumonia. The subjects who develop
pneumonia are more likely to die. According to United Nations Children’s Fund (UNICEF), half of the
morbidity from the recorded 5.9 million under-five deaths has caused due to infectious illnesses and
conditions in which pneumonia lies at premier rank in 2015 [1]. It is a challenging task to distinguish
pneumonia and acute exacerbation of COPD as both displays the same symptoms [2]. Exacerbations
as well as cough are commonly found in both COPD and pneumonia patients. The frequent global
pervasiveness of COPD is also evidenced by the WHO statistics. A reduction of 0.3% is estimated in
global mortality in 2016 when it is compared with estimates of 2000 as shown in Figures 1 and 2 [3].
Most importantly, COPD patients are vulnerable to a high risk of pneumonia and other related diseases
like bronchitis. Due to viral, bacterial, or both infections, COPD lies at the third position in global
mortality characterized by frequent exacerbations. It damages the lungs and blocks airways with
mucus does not allow them to function properly. Underestimation of the death rate due to COPD often
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occurs because of insufficient knowledge and variations in the diagnostic standards for the disease. The
false diagnostic rate may be greater than 70% [4]. Qualitative analysis is an alternative approach but it
is purely based on the expertise of medical experts. Lack of experience can cause irreversible loss to a
patient. In the current era, the field of computer technology has made tremendous advancements in
the early and rapid diagnosis of various adventitious sounds and pulmonary diseases from lung sound
(LS) data banks [5]. Imaging pathologies like magnetic resonance imaging (MRI) and computerized
tomography (CT) has provided the best diagnosis for pulmonary issues. Conversely, the cost of its
machines, exposure to harmful radiations, and inconvenient to deploy in rural and far-flung areas are
few bottlenecks.
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Figure 2. WHO statistics about worldwide death due to different respiratory issues in 2016 [3].

Signal analysis in conjunction with the machine learning (ML) approaches on LS analysis can
provide better results for COPD and pneumonia diagnosis [6,7]. Feature engineering to existing ML
prototypes can be a useful way to differentiate between the same adventitious sounds of different
pulmonic diseases. These bottlenecks demand an efficient, economic, convenient, and noninvasive
diagnostic methodology for the identification of pulmonic disease [8]. The need for an hour is to design
a prototype or a system capable of accurately detect and classify pulmonary diseases like COPD and
pneumonia from a simple and less intrusive modality.

2. Literature Review

Recently, machine learning (ML) schemes have been reported to identify a single lung disorder
from lung sound (LS) analysis of adventitious sounds [9]. Different schemes devised to analyze the
LS analysis via electronic auscultation is a better alternative approach to trace pulmonary diseases
against invasive and costly imaging diagnostic techniques [10–13]. Numerous studies performed on
pulmonary issues for early diagnosis but these abnormalities are quite complex and complicated. High
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cost to build large scale and well-labeled episodes are major constraints to realize this approach. On the
contrary, limited training data will raise the model overfitting and low-reliability issues [14]. Novel
predictive prototypes can incorporate both symptoms and physiological signals are being tested in
telemonitoring interventions with positive outcomes.

However, its validation needs further investigation in the diagnostics of COPD and the
identification of multiple lung diseases [15]. In time and accurate diagnosis can lower the death risk,
but the subjective nature of adventitious sounds like coughs has led to high complexity in the detection
of pneumonia, COPD, and other lung illnesses [16,17].

According to the literature review of related research work carried out in the last decade, most
of the researchers have contributed to devising methods for diagnosing pulmonary issues via LS
analysis, but a lot of efforts are still needed in this research area. Targeting single or multiple lung
diseases, changes in focus groups having lung abnormality, to measure the intensity of a particular lung
disease only, etc. are a few constraints that require attention. To the best of our knowledge, COPD and
pneumonia LS is hardly addressed collectively in the context of LS analysis via digital signal processing
(DSP) and ML techniques, so a literature review was performed targeting the studies focused on LS
analysis for detection of pulmonary abnormalities, i.e., COPD and pneumonia particularly and other
related lung illnesses in general.

A hybrid classifier is developed for a handheld device combined with the support vector machine
(SVM), a random forest (RF), and a rule-based system to provide an advanced characterization
scheme for COPD episodes in real-time. In this study, extensive data sets are required to refine the
rule-based system. The data utilized in this research has missing values which are handled through
two sub-algorithms to interpolate the missing information. However, the missing levels of the patient’s
information in the present dataset is a constraint of the presented system. Moreover, the focus on
adventitious LS analysis could enhance the system reliability but the cough sound is only monitored
in this research [11]. Cough analysis also provided an alternative way for the diagnosis of rapid
childhood pneumonia. It is implemented by the logistic regression (LR) classification method for the
identification of pneumatic and non-pneumatic subjects, i.e. asthma, and bronchitis. The classification
is performed on the statistical and wavelet features. The author highlighted that only cough is not
enough to diagnose pneumonia efficiently. This gap could be the reason for the low specificity of
the system and required investigation [12,13]. A few authors have designed a pneumonia screening
system from LS. Features are extracted from wavelet transform (WT), and power spectrum density
(PSD). The thresholding of skewness, kurtosis, and statistical analysis is performed to recognize
the pneumonia subjects from cough analysis. The researchers are reluctant to claim the maximum
authenticity of the proposed system as a large data set could change the thresholding estimates to
differentiate pneumonia and normal subjects [17–19]. In [20], the statistical analysis of COPD and
pneumonia LS is performed to design a detection system for multiple lung diseases. The research
highlighted the significant differences in various features of focused classes. These features include
harmonic-to-noise ratio, pitch, and amplitude perturbation. Furthermore, the implication of these
features to perform disease classification required attention. In another research, the spectrum of
wheezes, crackles, and stridor was estimated to authenticate its variation in focused groups affected by
nine different pulmonic diseases. These diseases include pulmonary edema, asthma, viral bronchitis,
acute asthma, tuberculosis, rheumatoid, pneumonia, epiglottis, and laryngomalacia. In this research
work, authentication is made on limited LS data in case of each disease which is insufficient. Pulmonary
issues are comprised of high complexities and equally dependent on age, gender, and other factors.
The effect of diverse focus groups in each disease is overlooked which could vary the spectrum position
of abnormal LS in diverse bands with the same illness [21]. Multichannel LS signal is investigated for
the classification of asthma, COPD, and normal classes. Statistical feature extraction form sub-bands of
the PSD and artificial neural network (ANN) classifiers provide significant outcomes on self-collected
LS data. The proposed method demonstrated the low specificity and sensitivity as compared to most of
the latest research work and required authentication on real-time or authentic data. [22]. The intensity
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of asthma is measured via wheeze analysis. The wheezing sound possessed different power spectral
distributions in different bands according to severity levels. K-nearest neighbor (KNN) performed
better than the ensemble (ENS) and SVM. The research work was based on a simulation environment
without any realization in real-time. In special cases, wheeze may even absent in asthma patients. The
data collection was made entirely from asthmatic subjects, however, the same adventitious sound is
associated with COPD subjects which can affect the system accuracy in practice [23,24]. In another
research article, a COPD diagnosis technique was based on the transfer learning (TL) approach referred
to as a balanced probability distribution (BPD). The novel design accomplished better predictive
capacity generally, even for a small COPD subject sample size and related common diseases. These
common diseases included asthma, bronchitis, pneumonia, chronic bronchitis, and emphysema.
This study mainly focused on applying the knowledge graph method on some COPD datasets and
twenty-five electronic medical records. The maximum data required for the system limits its scope to
adults only. Persons with disabilities in communication and pediatrics are unable to report dry throat,
fatigue, itching, tongue coating, aster, and confidence features as reported in the research article for
proper diagnosis. If any symptom or feature is reported due to human error then the proposed system
is unable to diagnose properly. It emerges the need for an automatic, economic, and non-invasive
system for the diagnosis of COPD [25–27]. Another study is made for the identification of pneumonia
and asthma subjects from cough sound analysis, specifically focused on the pediatric population.
The proposed study implemented the Mel frequency cepstral coefficient (MFCC), non-Gaussianity
score, and Shannon entropy features to design the diagnostic system with the ANN technique. The
system is entirely based on cough analysis to detect crackles sound. Clinically, it is not specific to
pneumonia only. Other symptoms like a fever could enhance the specificity of the pneumonia diagnosis.
Moreover, 44.4 % of the asthmatic subject also possessed the same issue which highlighted the need
for a large database for reliable diagnosis [7]. Recently, a research article is published in which a
convolutional neural network (CNN) is implemented on the LS database of the international conference
on biomedical and health informatics (ICBHI). But the research work only focused to classify the
adventitious sounds found in various pulmonic illnesses [28]. In another research, a novel approach
called variational convolutional autoencoder is presented for unbalanced data and implemented on
the same database [29].

Tremendous efforts have been made to identify COPD and pneumonia particularly, and some
other lung illnesses in general from common adventitious sounds. Digital respiratory sounds provide
valuable information for telemedicine and smart diagnostics in a non-invasive pathological detection
way by an application of signal processing. Therefore, a comprehensive investigation is needed to
devise a technique for the identification of COPD and pneumonia from common adventitious lung
sounds. It is worth mentioning the important aspects to develop an efficient, robust, and reliable
system for diagnosis of pulmonary pathologies, particularly COPD and pneumonia. It includes:

(i) Data mining to extract the relevant and significant data of LS signals which should help to develop
the diagnosis methods for COPD, pneumonia, and healthy LS.

(ii) The design of the diagnosis method must be with simple statistical features that should not burden
the system with computational cost and acquaint its performance with significant robustness.

(iii) Investigation of minimum significant features required can be prolific to perform the classification
of COPD, pneumonia, and healthy LS.

(iv) Performance analysis of various classification methodologies would be required on selected
features that are computationally smart.

3. Materials and Methods

The time and spectral characteristics of lung sound analysis can be used to differentiate between
lung sounds. There is motivation to use the cepstral-based features for the identification of adventitious
LS along with time spectral and other features. As sound is a common factor in speech and LS it is
expected that these features can outperform along with others like in speech signal classification. The
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proposed diagnostic technique is constituted of four stages: (i) data acquisition from the database,
(ii) preprocessing, (iii) feature extraction, and (iv) classification. The proposed method for diagnostics
of COPD, pneumonia, and healthy LS is presented in Figure 3. ROI extraction is carried out through the
EMD technique to keep the domain the same and avoid information loss in LS analysis. The intrinsic
mode functions encompassing the low frequencies are selected to reconstruct the LS signals of COPD,
pneumonia, and healthy subjects. After denoising, features from cepstral, time, and spectral-domain are
fused to investigate the performance of the proposed method on different machine learning algorithms
for the classification of COPD, pneumonia, and healthy subjects.
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3.1. Database

LS data of healthy and unhealthy subjects from a public respiratory sound database of the
International Conference on Biomedical and Health Information (ICBHI) is used [30]. It was compiled
for an international competition, the first challenge of IMBE’s International Conference on Biomedical
Health Informatics. The database comprises 920 LS recordings from 126 healthy and unhealthy
subjects. The unhealthy subjects included patients with COPD, upper respiratory tract infections
(URTI), bronchiectasis, asthma, and pneumonia patients, as shown in Figure 4.
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Figure 4. ICBHI respiratory database comprised of LS from various pulmonary pathologies.

In this research, 703 LS data sets of COPD, pneumonia, and a healthy subject are used. The
selected data has a standard sampling frequency i.e. 44.1 kHz. Table 1 presents the information about
recording equipment used to develop the LS database for research. Table 2 lists the demographic
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information of the focused section of the ICBHI database which consists of COPD, pneumonia, and
healthy LS.

Table 1. Recording Equipment Used to develop Lung Sound Database.

Sr. No Equipment

1. Welch Allyn Meditron Master Elite Plus Stethoscope
Model 5079-400

2. 3M Littmann 3200
3. 3M Littmann Classic II SE

Table 2. Demographic Information of Focused LS Database.

Description Detail

Total number of LS signal sets (COPD, pneumonia, healthy) 703
The sampling frequency of recording equipment 44.1 kHz

Bits/ sample 16
Average recording duration 21.5s

Number of participants 57 (50 adults & 7 children)

Gender 40 males, 17 females

Age Adults: 69.44 ± 8.24 Years,
Children: 6.06 ± 5.98 Years

3.2. Pre-Processing and Segmentation

Preprocessing is a first and critical step in signal processing. It involves the removal of the baseline
wander and high-frequency noise along with other artifacts that can corrupt the acquired signal. Heart
sound, muscles, and skin artifacts are common interrupts. The database used in the research also lacks
information about confounding noise sources. Therefore, empirical mode decomposition (EMD) [31]
and discrete wavelet transform (DWT) [32] techniques are used to segment and remove the noisy
portion of the signal.

The LS signal (raw) is demonstrated in Figures 5 and 6 in the time and frequency
domain, respectively.
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(i) Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is used in several kinds of research to decompose the
signal and extract the RIO. In the EMD technique, the signal is decomposed into its components
represented by an intrinsic nature function known as intrinsic mode functions (IMF). It has only one
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extreme between zero crossings and comprises zero mean value. An IMF is defined as a function
which satisfies the following conditions:

(a) In the whole data set, the number of extreme and the number of zero-crossings must either be
equal or differ at most by one.

(b) At any point, the mean value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero.

If L[n] is the acquired LS signal, then m1 be the mean of its upper and lower envelopes estimated
from a cubic-spline interpolation of local maxima and minima. Therefore, the first IMF can be calculated
by Equation (1):

IMF1 = L[n] − m1 (1)

By repeating the same step according to Equation (1), IMF2 can be calculated by Equation (2):

IMF11 = IMF1 − m11 (2)

Generalizing the procedure, Kth IMF may be calculated from Equation (3):

IMF1(k−1) − m1k = IMF1k (3)

In total, ten IMFs are extracted and observed experimentally. Figures 7–9 show the results of the
COPD, pneumonia, and healthy class after implementation of the EMD technique. The EMD technique
mines the signals associated with different intrinsic time scales in developing a collection of IMFs.
Hence, we can localize any event in the time as well as the frequency domain. It is important to note
that the frequency of the normal tracheal lung sound lies in the 60-600 Hz range [33]. IMF-2. IMF-3,
IMF-4 is selected after experimentation.Sensors 2020, 20, x 8 of 26 
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Figure 9. Graphical representation of IMF1-IMF10 after EMD analysis which corresponds to an LS
signal of healthy class.

The mean frequency ranges of the selected IMF in the case of COPD are IMF-2 (46.7 -412) Hz,
IMF-3 (36.2-193) Hz, IMF-4 (29.5-142) Hz. In the case of pneumonia class, the mean frequency ranges
include IMF-2 (476-5.22e+03) Hz, IMF-3 (10.6-144) Hz, and IMF-4 (8.89-114) Hz. The healthy subjects
class comprises IMF-2 (179-5.7e+03) Hz, IMF-3 (139-1.05e+03) Hz and IMF-4 (12.9-427) Hz. Therefore,
the selected ROI has a mean frequency range of 50 Hz to 5 kHz for all the classes in this study.
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Therefore, LS information in IMF-2, IMF-3, and IMF-4 is the ROI in this research work. Higher
IMFs were discarded due to the presence of noise and other lower-frequency components. LS signal is
reconstructed by the selected IMF’s. The time and frequency domain representation of the LS signal
reconstructed from IMF-2, IMF-3, and IMF-4 of raw LS signal is demonstrated in Figures 10 and 11.Sensors 2020, 20, x 10 of 26 
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(ii) Discrete Wavelet Transform
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Discrete wavelet decomposition (DWT) is a powerful tool to reduce noise by decomposing a
signal. The signal L[n] obtained after the implementation of EMD is further denoised by the application
of DWT via Equation (4):

WL[a, b] = 1/
√
|a|

∑
R

L[n]Φ
[

n− b
a

]
(4)

where a, b, Φ, and WL represents the scaling factor, translation factor, mother wavelet, and wavelet
transformation function of the input time-series L[n], respectively. High-frequency noise can be added
similarly as traces of heart sound (HS) become added during the data acquisition of LS. Therefore, DWT
is used to ensure the removal of any irrelevant signal artifact from the ROI. According to the sampling
frequency of the Nyquist sampling theorem, the sampling frequency of the experimental signal is set
as 44.1 kHz. LS is decomposed into level 1 approximation (0 Hz ~ 11,025 Hz) and detail coefficients
(11,025 Hz ~ 22,050 Hz) by the mother wavelet. The Coiflets5 wavelet [19] is used as a mother wavelet
due to its morphological resemblance i.e. shape with LS signal to perform denoising. The Coiflets5
wavelet is shown in Figure 12. The approximation coefficients contain low frequencies whereas detailed
coefficients contain high frequencies. Hard thresholding is applied to the detail coefficients. In the last
step, the L[n] signal is reconstructed from approximation and thresholded detail coefficients. Finally,
the processed signal is shown in Figures 13 and 14 in the time and frequency domain, respectively.
These figures demonstrate the LS signals with minimal presence of high-frequency noise and other
irrelevant signal artifacts before the feature extraction stage.

Sensors 2020, 20, x 11 of 26 

 

where 𝑎, 𝑏, Φ, and 𝑊௅ represents the scaling factor, translation factor, mother wavelet, and wavelet 
transformation function of the input time-series 𝐿[𝑛], respectively. High-frequency noise can be 
added similarly as traces of heart sound (HS) become added during the data acquisition of LS. 
Therefore, DWT is used to ensure the removal of any irrelevant signal artifact from the ROI. 
According to the sampling frequency of the Nyquist sampling theorem, the sampling frequency of 
the experimental signal is set as 44.1 kHz. LS is decomposed into level 1 approximation (0 Hz ~ 11,025 
Hz) and detail coefficients (11,025 Hz ~ 22,050 Hz) by the mother wavelet. The Coiflets5 wavelet [19] 
is used as a mother wavelet due to its morphological resemblance i.e. shape with LS signal to perform 
denoising. The Coiflets5 wavelet is shown in Figure 12. The approximation coefficients contain low 
frequencies whereas detailed coefficients contain high frequencies. Hard thresholding is applied to 
the detail coefficients. In the last step, the 𝐿[𝑛] signal is reconstructed from approximation and 
thresholded detail coefficients. Finally, the processed signal is shown in Figures 13 and 14 in the time 
and frequency domain, respectively. These figures demonstrate the LS signals with minimal presence 
of high-frequency noise and other irrelevant signal artifacts before the feature extraction stage. 

 
Figure 12. Graphical representation of the Coiflets 5 wavelet. 

. 

Figure 13. Time-domain graphical representation of preprocessed LS signal after denoising from DWT. 

Figure 12. Graphical representation of the Coiflets 5 wavelet.



Sensors 2020, 20, 6512 12 of 24

Sensors 2020, 20, x 11 of 26 

 

where 𝑎, 𝑏, Φ, and 𝑊௅ represents the scaling factor, translation factor, mother wavelet, and wavelet 
transformation function of the input time-series 𝐿[𝑛], respectively. High-frequency noise can be 
added similarly as traces of heart sound (HS) become added during the data acquisition of LS. 
Therefore, DWT is used to ensure the removal of any irrelevant signal artifact from the ROI. 
According to the sampling frequency of the Nyquist sampling theorem, the sampling frequency of 
the experimental signal is set as 44.1 kHz. LS is decomposed into level 1 approximation (0 Hz ~ 11,025 
Hz) and detail coefficients (11,025 Hz ~ 22,050 Hz) by the mother wavelet. The Coiflets5 wavelet [19] 
is used as a mother wavelet due to its morphological resemblance i.e. shape with LS signal to perform 
denoising. The Coiflets5 wavelet is shown in Figure 12. The approximation coefficients contain low 
frequencies whereas detailed coefficients contain high frequencies. Hard thresholding is applied to 
the detail coefficients. In the last step, the 𝐿[𝑛] signal is reconstructed from approximation and 
thresholded detail coefficients. Finally, the processed signal is shown in Figures 13 and 14 in the time 
and frequency domain, respectively. These figures demonstrate the LS signals with minimal presence 
of high-frequency noise and other irrelevant signal artifacts before the feature extraction stage. 

 
Figure 12. Graphical representation of the Coiflets 5 wavelet. 

. 

Figure 13. Time-domain graphical representation of preprocessed LS signal after denoising from DWT. Figure 13. Time-domain graphical representation of preprocessed LS signal after denoising from DWT.Sensors 2020, 20, x 12 of 26 

 

 
Figure 14. Frequency domain graphical representation of preprocessed LS signal after denoising from 
DWT. 

3.3. Feature Extraction 

Features are the major characteristics upon which a classifier distinguishes between the different 
LS classes. LS is non-stationary by nature. It is the reason that a single feature cannot forecast its 
nature. A total of 116 features were extracted which includes nineteen time-domain, 12 frequency-
domain, 26 cepstral-domain, and 59 texture-based features. The texture features [34] are extracted 
from the spectrogram of signals (hop length: 10 samples, window length: 20 samples, window type: 
Hann window, overlap:10 samples). The summary of the extracted features is presented in Table 3. 

Table 3. List of extracted features for LS analysis. 

Time Domain 
Features (19) 

Spectral (S) Domain 
Features (12) 

Cepstral 
Features 

(26) 

Texture 
Features 

(59) 
Mean, St. Deviation, Skewness, Kurtosis, Peak to 

Peak, Root Mean Square, Crest Factor, Shape 
Factor, Impulse Factor, Margin Factor, Energy, 
Peak to RMS, Root Sum of Squares, Shannon 

Energy, Log Energy, Mean Abs Deviation, Median 
Abs Deviation, Average Frequency, Jitter 

S.Mean, S.St. Deviation, 
S.Skewness, S.Kurtosis, 

S.Centriod, S.Flux, S.Rolloff, 
S.Flateness, S.Crest, 

S.Decrease, S.Slope, S.Spread 

MFCC, 
GCC 

LBP  

MFCC: Mel Frequency Cepstral Coefficient, GCC: Gammatone Cepstral Coefficients, LBP: Local 
Binary Patterns. (Appendix A lists the statistics of all features in each class). 

The issue of unbalanced data is very common in the field of e-health. It refers to the presence of 
a huge number of data elements between the various classes. Some several methods or techniques 
can be used to replicate the data of the minority classes. The adaptive synthetic sampling method 
(ADASYN) is one of these augmentation data techniques which is used [35]. It helps to balance the 
data sample of normal and pneumonia subjects with COPD subjects using an appropriate number of 
samples. 
  

Figure 14. Frequency domain graphical representation of preprocessed LS signal after denoising
from DWT.

4. Feature Extraction

Features are the major characteristics upon which a classifier distinguishes between the different
LS classes. LS is non-stationary by nature. It is the reason that a single feature cannot forecast its nature.
A total of 116 features were extracted which includes nineteen time-domain, 12 frequency-domain,
26 cepstral-domain, and 59 texture-based features. The texture features [34] are extracted from the
spectrogram of signals (hop length: 10 samples, window length: 20 samples, window type: Hann
window, overlap:10 samples). The summary of the extracted features is presented in Table 3.
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Table 3. List of extracted features for LS analysis.

Time Domain
Features (19)

Spectral (S) Domain
Features (12)

Cepstral
Features (26)

Texture
Features (59)

Mean, St. Deviation, Skewness, Kurtosis,
Peak to Peak, Root Mean Square, Crest

Factor, Shape Factor, Impulse Factor,
Margin Factor, Energy, Peak to RMS, Root

Sum of Squares, Shannon Energy, Log
Energy, Mean Abs Deviation, Median Abs

Deviation, Average Frequency, Jitter

S.Mean, S.St. Deviation,
S.Skewness, S.Kurtosis,

S.Centriod, S.Flux,
S.Rolloff, S.Flateness,
S.Crest, S.Decrease,
S.Slope, S.Spread

MFCC, GCC LBP

MFCC: Mel Frequency Cepstral Coefficient, GCC: Gammatone Cepstral Coefficients, LBP: Local Binary Patterns.
(Appendix A lists the statistics of all features in each class).

The issue of unbalanced data is very common in the field of e-health. It refers to the presence of a
huge number of data elements between the various classes. Some several methods or techniques can be
used to replicate the data of the minority classes. The adaptive synthetic sampling method (ADASYN)
is one of these augmentation data techniques which is used [35]. It helps to balance the data sample of
normal and pneumonia subjects with COPD subjects using an appropriate number of samples.

5. Classification

Classification is performed by the classifier based on the distinct features extracted and selected
in the previous stage. In this research, various classifiers were tested to observe the performance
of the proposed method. These classifiers include decision tree (DT), linear discriminant (LD),
logistic regression (LR), naïve Bayes-Gaussian (NB-G), naïve Bayes-kernel (NB-K), support vector
machine- linear (SVM-L), support vector machine-quadratic (SVM-Q), support vector machine-cubic
(SVM-C), support vector machine-fine Gaussian (SVM-FG), support vector machine-median Gaussian
(SVM-MG), support vector machine-coarse Gaussian (SVM-CG), K nearest neighbor-fine (KNN-F),
K nearest neighbor-medium (KNN-M), K nearest neighbor-coarse (KNN-Cor), K nearest neighbor-
cosine (KNN-coss), K nearest neighbor-cubic (KNN-C), K nearest neighbor-weighted (KNN-W),
ensemble boosted trees (Eboost), ensemble bagged trees (EBT), ensemble subspace discriminant (ESD),
ensemble subspace KNN (ESKNN), and ensemble rUSBossted trees (ERT) on different time-domain
(TD), frequency domain (FD), cepstral domain (CD) features and textural domain features i.e. local
binary pattern (LBP).

QD classifiers consider that each class has its covariance matrix. Specifically, the predictor
variables are not assumed to have common variance across each of the k levels in Y. Mathematically, it
is supposed that observation from the kth class is of the form X ∼ N (µk, Σk), where Σk is a covariance
matrix for the kth class. Under this supposition, the classifier assigns an observation to the class for
which is the largest via Equation (5):

δk(l) := µ>k Σ−1l−
1
2
µ>k Σ−1µk + ln(πk) (5)

δk(l) is the estimated discriminant score that the observation will fall in the kth class within the
response variable (i.e., default or not default) based on the value of the predictor variable l.

µ̂k: the average of all the training observations from the kth class.
σ̂2: a weighted average of the sample variances for each of the K classes.
π̂k: the prior probability that an observation belongs to the kth class (not to be confused with the

mathematical constant π ≈ 3.14159).
Cross-validation is a resampling technique used to assess machine learning systems on a limited

data set. Therefore, cross-validation of the system is performed on different folds. Accuracy (ACC),
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true positive (TPR), false-negative rate (FNR), positive predictive value (PPV), false discovery rate
(FDR) are the main parameters on which system performance is measured using Equations (6)–(10):

ACC =
TP + TN

TP + TN + FP + FN
(6)

TPR =
TP

TP + FN
(7)

FNR =
FN

FN + TP
(8)

PPV =
FP

FP + TP
(9)

FDR = 1− PPV (10)

In this research, cross-validation is performed on 5, 10, and 20 folds to demonstrate the system
performance. Moreover, 20% hold out validation, and 25% hold out validation is also carried out to
authenticate the outcome. All the results are generated using a Core i7 CPU 8 GB RAM, and 1 TB HDD
with MATLAB R2018a.

6. Results and Discussion

After the experimentation with different classifiers in this study, the quadratic discriminant (QD)
classifier outperformed with the minimum number of features when compared with the performance
of other classification techniques. Table 4 lists the different classifiers which have been tested on the
proposed method with different combinations of features. Graphically, Figure 15 highlighted that the
proposed technique has outperformed on SVM_FG classification method. It has achieved an accuracy
of 99.70%, 99.40%, and 99.20% on different combinations of 85, 97, and 116 features, respectively. On
the other hand, the QD classifier has provided a maximum accuracy of 98.60% with 26 features only.
Investigation and selection of significant features to accomplish maximum accuracy with minimum
features are important. It plays a key role to lower the burden of the computational cost of those features
which are not paying a significant role at the classification stage. As the proposed system is simulated
to develop a stand-alone embedded system to identify the pulmonary abnormalities in the future
so it will help to enhance the robustness of the system. The feature significance is characterized by
analyzing the scatter plot and statistics of different features presented in Appendix A. Figures 16 and 17
demonstrate the scatter plot between log energy, and GFCC-5, MFCC-10, and spectral decrease of
all classes. In Figure 16, it can be visualized that there exists a minimum correlation between LE
and GFCC-5 features of focused LS data. The minimum correlation also reflects the large spread
among feature estimates, so a classifier can perform well with features that have less correlation and
more spread between them. The same can be observed in Figure 17 regarding MFCC-10 and SDec
estimations of focused data. Therefore, it is expected that such features will play a vital role in the
classification when fed to the classifier. The significance of other features is analyzed experimentally in
the same fashion.
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Table 4. Accuracy of different classifiers on various feature groups.

FEATURE GROUPS

CLASSIFIERS

TD FD CD Texture TD+FD TD+CD FD+CD CD+
Texture

TD+
Texture

TD+FD+
CD

TD+FD+
Texture

FD+CD+
Texture

TD+FD+
CD+Texture

DT 87.30% 86.80% 94.50% 92.50% 89.50% 95.40% 94.60% 94.60% 93.70% 95.00% 94.20% 94.60% 95.00%
LD 76.40% 76.50% 91.10% 73.90% 82.70% 93.40% 93.60% 92.00% - 94.20% - 93.70% -
QD - 84.70% 98.60% - - - - - - - - - -
LR - - - - - - - - - - - - -

NB-G 59.30% 68.00% 82.40% - 69.20% 73.40% 79.80% - - 75.10% - - -
NB-K 66.80% 71.10% 88.30% 41.70% 73.00% 85.50% 88.90% 47.10% 43.50% 85.90% 44.70% 48.00% 48.50%

SVM-L 79.30% 80.10% 94.90% 83.90% 85.30% 96.00% 95.30% 95.50% 91.30% 96.00% 91.90% 96.10% 95.90%
SVM-Q 91.00% 88.70% 97.90% 92.10% 94.40% 98.10% 98.30% 97.80% 95.60% 98.10% 96.00% 97.90% 98.00%
SVM-C 93.60% 93.50% 98.50% 58.00% 97.00% 98.70% 98.50% 96.00% 88.00% 98.60% 94.20% 98.60% 98.60%

SVM-FG 94.60% 91.30% 96.20% 91.40% 97.30% 97.20% 95.80% 99.70% 97.20% 97.20% 98.10% 99.40% 99.20%
SVM-MG 85.60% 82.90% 98.40% 79.60% 91.40% 98.60% 98.80% 97.10% 90.40% 98.70% 92.20% 97.80% 97.80%
SVM-CG 70.00% 75.40% 90.80% 61.40% 79.70% 94.00% 93.10% 85.70% 73.50% 93.20% 78.70% 89.90% 90.70%
KNN-F 92.70% 91.60% 97.90% 93.80% 95.00% 97.50% 97.50% 98.00% 94.30% 97.00% 95.50% 97.80% 97.00%
KNN-M 87.50% 84.90% 94.10% 86.70% 89.40% 94.00% 92.60% 94.30% 90.00% 92.90% 89.80% 93.20% 93.00%

KNN-Cor 65.80% 71.40% 80.60% 71.30% 74.80% 84.10% 81.00% 81.80% 70.30% 84.20% 76.30% 81.30% 87.70%
KNN-Cos 88.10% 86.00% 94.90% 87.50% 90.20% 94.60% 94.60% 95.20% 90.90% 94.40% 91.00% 94.30% 94.80%
KNN-C 87.90% 85.00% 93.80% 86.60% 88.80% 93.60% 92.40% 94.30% 89.90% 92.00% 89.50% 92.90% 92.40%
KNN-W 89.60% 88.40% 9.60% 90.10% 91.10% 94.20% 93.30% 94.50% 91.40% 93.30% 91.00% 93.70% 93.20%
Eboost 84.80% 83% 96.40% 89.30% 90.50% 96.60% 96.60% 96.60% 94.70% 96.30% 94.50% 96.70% 96.70%

EBT 93.80% 91.50% 97.10% 94.90% 95.70% 97.30% 96.90% 97.90% 96.30% 97.20% 97.00% 97.50% 97.60%
ESD 71.70% 72.30% 88.70% 71.40% 79.50% 92.30% 91.60% 90.00% 81.40% 93.10% 85.30% 93.30% 94.00%

ESKNN 68.70% 77.30% 97.50% 92.00% 74.90% 69.30% 83.40% 97.70% 69.00% 74.60% 75.40% 84.20% 74.70%
ERT 77.00% 78.80% 91.20% 84.40% 84.20% 92.40% 92.90% 92.40% 88.40% 92.80% 88.30% 92.80% 93.00%
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Table 5 lists the significant features that are selected for the classification of pulmonary pathologies
after observing their scatter plots. Experimentation on the system’s implementation with different
classifiers proved the optimum performance of the QD technique. The system achieved 99.7% accuracy
with the QD classifier when implemented with 25 features only. It accomplished the achievement of
78.44% feature reduction by using the backward elimination method [36] to reduce the time complexity
and unnecessary computation. The mathematical description of the substantial features is provided in
Table 6. These features have provided an essential basis for the classification of COPD, pneumonia,
and healthy LS. Standard deviation (SD) in the time domain provides the signal information about
its spread from the mean. In the frequency domain, spectral standard deviation (SSD) provides the
spread of signal frequencies from its mean. Variation in signal strength in COPD and pneumonia
LS is compared with healthy LS class by the log energy (LE). The peak to peak (PP) value returns
the highest and lowest value difference in the LS signal [24]. Spectral skewness (SSkw) estimates the
distribution symmetry of the spectral magnitude about their arithmetic mean. It specifies the extent
of non-similarities among spectral magnitudes. It has a low value for flat and a high value for the
vibrational spectrum. The spectral kurtosis (SK) estimates the resemblance of spectral magnitude
distribution with a gaussian distribution. Its main application is to figure out the occurrence of peaks
in the LS signal spectrum. The high value of spectral kurtosis is due to high peaks in the spectrum of an
LS segment. Spectral roll-off (SRO) quantifies the spectrum concentration. The spectral decrease (Sdec)
calculates that how steeper spectral envelope decrease over frequency. The spectral flux (SF) estimates
the variation in the shape of the spectrum by calculating the average difference among consecutive
STFT frames [16]. MFCC and GFCC belong to the cepstral features class. We have adopted to use it
in LS pathologies motivated by its performance in speech recognition and its robust nature in noise
reduction [37].

Table 5. List of Selected Features Extracted and Performance evaluation.

Selected Features from Time, Frequency, and Cepstral Domain Classifier Performance
Outcome

Time (Standard Deviation, Peak to Peak, Log Energy), Spectral
(Spectral Standard Deviation, Spectral Skewness, Spectral Kurtosis,
Spectral Flux, Spectral Roll Off, Spectral Decrease), Cepstral (MFCC

(3-10), GFCC (3-10))

Quadratic
discriminant

Overall
Accuracy

99.70%

Table 6. Mathematical Description of the selected features for classification of LS signal L[n].

Feature Mathematical Representation

Standard Deviation (SD) SD =

√∑N
i=1(Li−LMean)

2

n where L : L[n]

Peak to Peak (PP) PP = Lmax − Lmin Where Lmax and Lmin is the minimum and
maximum value in the time domain

Log Energy (LE) LE = log
[∑N

i=1(|Li|)2
]

Spectral Standard Deviation (SSD) σ =

√∑N
i=1(Li−|LMean |)

2

n where L : L[ω]

Spectral Skewness (SSkw) SSkew = 2
n

[∑n/2−1
i=1 (|Li |−|LMean |)

3

σ3

]
where L : L[ω]

Spectral Kurtosis(SK) SK = 2
n

[∑n/2−1
i=1 (|Li |−|LMean |)

2

σ4

]
− 3 where L : L[ω]

Spectral Flux (SF) SK = 2
i

√∑i/2−1
i=0

(∣∣∣Ln,i
∣∣∣− ∣∣∣Ln, i−1

∣∣∣)2

Spectral Roll Off (SRO)

If mth DFT coefficient corresponds to the spectral roll-off of

the kth frame, then
∑n

i=1 Lk(i) = C
FL∑

i=1
Lk(i) C is the adapted

percentage: 95% and L : L[ω]
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Table 6. Cont.

Feature Mathematical Representation

Spectral Decrease (SDec) SDec =
∑i/2−1

i=1
1
i (|Li |−|L0 |)∑1/2−1

i=1 |Li |
where L : L[ω]

Mel frequency cepstral coefficient
(MFCC)

In MFCC, (i) Frame blocking or windowing to get 50 to
60ms. (ii) Performing a discrete Fourier transform (iii)
computing logarithm of the signal. (iv) Deforming the
frequencies on a Mel scale, followed by applying the
discrete cosine transform (DCT). Mel scale is calculated
as follows:
Mel Scale = 2595 log10

(
1 + f

700

)
‘f’ refers to frequency ranges from 0 to fs.

Gammatone Frequency Cepstral
Coefficient (GFCC)

In GCC, (i) Firstly, the signal is passed through gammatone
filter bank which consists of 64 Channels. (ii) Take the
absolute value at each channel and reduce it to 100 Hz as a
way of time windowing. (iii) Take cubic root on the
time-frequency representation. (iv) Deforming the
frequencies on an equivalent rectangular bandwidth (ERB)
scale Apply DCT to derive cepstral features. ERB scale is
calculated as follows.
ERB = Alog10 (1 + hz(0.00437)) where

A =
1000loge(10)
(24.7)(4.37) ‘hz’ refers to frequency ranges i.e. 0-fs.

Graphically, the system accuracy on different classifiers with selected feature sets is demonstrated
in Figure 18. It demonstrates that QD showed 99.70% accuracy upon selected features as compared to
any other classifier when denoising is performed by WT.
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Figure 19 shows the confusion matrix of the proposed diagnosis methodology for the identification
of COPD, pneumonia, and healthy LS without denoising. It demonstrates the classification performance
of the proposed system for all classes. It can be observed that without denoising the true positive
rate of COPD, pneumonia, and healthy LS diagnosis are 98%, 93%, and 82% respectively. In the case
of pneumonia, 11%, and 8%, samples are falsely predicted as COPD and healthy class respectively
overall depicts an 18% false-negative rate. In the normal or healthy class, 0% of samples were wrongly
predicted as COPD whereas 7% of healthy samples are classified as pneumonia, equivalent to a 7%
false-negative rate. In the COPD class, <1% of samples are wrongly identified as normal while 2% of
COPD samples are falsely identified as pneumonia cases.
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Experimentation performed with the DWT denoising technique after selecting the ROI via EMD
technique has improved the true positive rate of all classes to greater than 99%. This is demonstrated
in Figure 20. It can be seen that from a total of 631 COPD samples, only three samples are falsely
identified. Similarly, two normal and one pneumonia samples are wrongly identified by the system
from the overall 670 and 636 samples, respectively.Sensors 2020, 20, x 4 of 26 
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Figure 20. System confusion matrix (QD classifier) after denoising.
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5, 10, 15, and 20 fold cross-validation is performed to authenticate the system performance
which can be observed in Table 7. Variation in folds for cross-validation has not affected the system’s
robustness. Almost the same accuracy has been achieved in each case. The hold-out technique is also
performed to validate system performance. The system achieved 99.70% and 99.80% when the 20% and
25% hold out validation method is implemented. In the 20% hold-out method, data is divided into two
portions for training and testing i.e. 80% and 20%. 80% of the data is used for training whereas 20% of
data is used for testing. this gives a better indication of how well the proposed method performs on
unseen data.

Table 7. Cross-validation of the proposed method with different folds.

Evaluation Classes ACC
%

TPR
%

FNR
%

PPV
%

FDR
%

(5, 10, 15, and 20) Fold
Cross-Validation

COPD
99.6

>99 <1 99 1
Normal >99 <1 100 0

Pneumonia >99 <1 >99 <1

20% Hold Out
Validation

COPD
99.7

99 1 100 0
Normal 100 0 100 0

Pneumonia 100 0 99 1

25% Hold Out
Validation

COPD
99.8

100 0 99 1
Normal 99 1 100 0

Pneumonia 100 0 100 0

ACC: Mean accuracy, TPR: True Positive, FNR: False Negative Rate, PPV: Positive Predictive Value, FDR: False
Discovery Rate.

Different studies have been performed on the classification of pulmonary diseases. The proposed
technique has outperformed in comparison with various published techniques to identify the pulmonary
abnormalities from LS analysis in terms of the number of features, accuracy sensitivity, and specificity
of the method.

According to the best of our knowledge, there is a single previous research work on COPD and
pneumonia LS, but the main aim of that study was to analyze the acoustic parameters from respiratory
signals in COPD and pneumonia patients. These parameters were not further utilized by the researcher
to classify the COPD and pneumonia LS [20]. Nevertheless, the number of extracted features in some
existing research works is less than the proposed technique but it can only identify a single pulmonary
illness from LS analysis [6,12,18,25,26]. Details are presented in Table 8.

Table 8. Comparative analysis of the purposed technique with similar lung pathology methods.

Class Number of Features Accuracy (%)

Pneumonia [12] 13 87.87
Pneumonia [6] 18 90.06

Pneumonia [18] 7 99.70
COPD [25] 25 85.10
COPD [26] 27 95.10

COPD, pneumonia (This method) 25 99.70

Regarding the comparative study and performance evaluation, there should be similar methods,
but even the most recent literature mainly focused on COPD, pneumonia, and healthy LS identification
is limited. That’s the reason the comparison of this research work with similar methods is difficult,
although we believe this research represents an innovative step towards screening of COPD, pneumonia,
and healthy LS. The proposed technique has provided an efficient approach with outstanding
classification accuracy. It has outperformed as compared to existing techniques on other multiple
pulmonic pathologies from LS analysis due to its simple statistical features, low computation, and
accuracy [6,7,12,20,22,24,25,28,29]. The performance analysis of the proposed diagnostic technique with
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existing pulmonic pathologies methods is shown in Table 9. As mentioned, these techniques focused
on different combinations of lung disease and there is a lack of research in which LS classification is
performed for COPD and pneumonia identification only. Therefore, the presented research work is
a progressive and fruitful initiative to explore the use of LS for the identification of normal, COPD,
and pneumonia subjects.

Table 9. Performance analysis of the proposed diagnosis methodology for COPD and pneumonia
identification with current techniques on lung pathologies.

Classes Method Results (%)

Crackles, Crackles+ Wheeze,
Normal, Wheeze [5] STFT, WT, SVM ACC: 49.86

Normal, Pneumonia [6] SA ACC: 91.98 SEN:92.06 SPE: 90.68
Pneumonia and Asthma [7] NN SEN: 89, SPE:100

Normal, Pneumonia [12] WT, LR
ANN

SEN: 94
SPE:63

Normal, Pneumonia [18] EMD, KNN ACC: 99.7
Normal, COPD and Pneumonia [20] SA -

Normal Asthma and COPD [22] ANN
ACC:60.33
SEN: 65
SPE:54.2

Normal, Asthma, Bronchitis [24] EMD, KNN ACC: 99.3
COPD [25] KT ACC: 85.1
COPD [26] KG, ML ACC:95.1
COPD, Healthy, Pneumonia,
Asthma, Bronchiectasis, Bronchiolitis [29] CNN SEN: 98.8

SPE:98.6
Crackles, Crackles+ Wheeze,
Normal, Wheeze [28] CNN ACC i: 65.5

ii: 63.09
Normal, COPD, Pneumonia
(This Method) EMD, WT, QD ACC: 99.8%

Knowledge graph: KG, Short-time Fourier Transform: STFT, Linear regression: LR, Statistical analysis: SA, Neural
network: NN, Knowledge transfer: KT, ACC: Mean accuracy. SEN: Sensitivity, SPE: Specificity.

7. Conclusions

In this article, an efficient method is proposed for the classification of pulmonary pathologies
from LS analysis. It provides a non-invasive, convenient to use, and low-cost solution for diagnosis of
COPD and pneumonia issues which are one of the leading causes of death worldwide. The research
work is based on the ICBHI open access LS database which endorses the authenticity of the focused
data in the development of the proposed method. ROI extracted through EMD and further denoising
via DWT has proven the best approach to unfold the main information required for feature extraction,
verified by the statistical analysis of extracted features. Feature reduction through the back elimination
method and experimentation on different feature sets using various classification techniques has
established the best performance of the quadratic discriminant classifier with 25 features only. The
proposed study has performed classification with 99.7% accuracy, TPR>99%, and FNR<1%. The
system cross-validation result on different folds as well as hold out validation method substantiates the
reported accuracy. The use of simple statistical features also ensures the minimal computational cost of
presented research work. The proposed method is purely based on automated LS analysis. No clinical
information is needed like other techniques based on knowledge graphs. Although various studies
have been found on different lung diseases, to the best of our knowledge, we have found a lack of
research targeting particularly the solution for COPD and pneumonia issues via signal processing and
machine learning approach. Therefore, the proposed research work is a progressive and innovative
approach to the diagnosis of COPD and pneumonia. The proposed method will help to monitor
pulmonary health in COPD and pneumonia patients. It is ready to embed approach due to the simple
technique. Furthermore, it is a promising method to assist pulmonologists as a counterpart to their
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clinical diagnosis. Implementation of the proposed technique on specific hardware and designing a
stand-alone portable system for pulmocare can be done to bring this research one step ahead. The
performance analysis of the presented research work needs authentication on self-collected data.
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Appendix A. Feature Statistics of All Classes

Table A1. Feature Statistics of All Classes.

Features COPD Pneumonia Normal

Mean −1.72656 × 10−5
± 7.0 × 10−4 −2.03 × 10−6

± 8.79 × 10−5
−1.63359 × 10−4

± 7.0 × 10−4

Standard Deviation 5.163751 × 10−2
± 5.13 × 10−2 1.49 × 10−2

± 1.02 × 10−2 2.482 × 10−2
± 2.2773 × 10−2

Skewness −1.5 × 10−2
± 2.62 1.5910−1

± 1.61 4.7830 × 10−1
± 1.9630

Kurtosis 134.169± 2241.2391 1.59 × 102
± 1.52 × 102 1.59± 2.433818

Peak_to_Peak 1.410± 9.02 × 10−1 6.01 × 10−1
± 3.55 × 10−1 7.15 × 10−1

± 3.725 × 10−1

Root_Mean_Square 5.164 × 10−2
± 5.14 × 10−2 5.164 × 10−2

± 5.14 × 10−2 2.482 × 10−2
± 2.278 × 10−2

Crest_Factor 19.138± 10.612 −2.03 × 10−6
± 8.79 × 10−5 23.196± 15.770

Shape_Factor 2.837± 1.034 1.49 × 10−2
± 1.02 × 10−2 3.557± 0.984

Impulse_Factor 58.137± 51.088 1.59 × 10−1
± 1.61 89.250± 80.107

Margin_Factor 13082.53± 35130.948 1.59 × 102
± 1.52 × 102 49152.215± 79027.13

Energy 4676.043± 9996.639 6.01 × 10−1
± 3.55 × 10−1 1085.5845± 2096.891

Peak_to_Root_Mean_Square 20.731± 11.642 1.49 × 10−2
± 1.02 × 10−2 24.585± 16.806

Root_Sum_of_Squares 48.498± 48.246 2.19 × 101
± 6.33 23.310± 21.399

Shannon_Energy 7387.506± 11252.795 3.39± 9.47 × 10−1 3021.558± 4586.466
Log_Energy −10006818.89± 1718189.627 7.87 × 101

± 4.21 × 10−1 −12431065.34± 1398211.96
Mean_Absolute_Deviation 2.104 × 10−2

± 2.542 × 10−2 4.09 × 104
± 5.02 × 104 8.181 × 10−3

± 9.453 × 10−3

Median_Absolute_Deviation 6.718 × 10−3
± 1.216 × 10−2 2.97 × 102

± 4.25 × 102 1.449 × 10−3
± 1.947 × 10−3

Average_Frequency 4.643 × 10−3
± 1.067 × 10−2 2.40 × 101

± 8.09 5.4196 × 10−3
± 1.252 × 10−2

Jitter 14560.686± 35699.968 1.40 × 101
± 9.60 16136.403± 39412.294

Spectral Mean 624.722± 1123.544 1.21 × 103
± 1.45 × 103 1035.002± 1421.975

Spectral Std_Deviation 990.575± 1590.132 −1.26 × 107
± 1.38 × 106 1195.782± 1506.922

Spectral Skewness 3.3043± 2.877 5.22 × 10−3
± 4.45 × 103 2.378± 1.664

Spectral Kurtosis 23.602± 37.359 1.19 × 10−3
± 1.03 × 10−3 12.437± 14.021

Spectral Centriod 458.586± 119.633 6.93 × 10−4
± 7.92 × 10−4 451.540± 101.3461

Spectral Flux 1.666 × 10−3
± 0.001.216 × 10−3 1.70 × 104

± 2.36 × 104 7.20957 × 10−4
± 3.6273 × 10−4

Spectral Rolloff 4769.686± 892.684 3.78 × 102
± 6.97 × 102 4874.620± 1002.519

Spectral Flateness 4.637 × 10−2
± 4.340 × 10−2 6.71 × 102

± 1.22 × 103 4.4622 × 10−2
± 4.339 × 10−2

Spectral Crest 5.88 × 10−1
± 6.694 × 10−2 4.16± 1.99 5.896 × 10−1

± 6.69 × 10−2

Spectral Decrease −3.560± 9.69 × 10−1 2.63 × 101
± 1.82 × 101 −3.6488± 0.9344

Spectral Slope −8.811 × 10−3
± 8.338 × 10−3 4.13 × 102

± 1.12 × 101 −5.181 × 10−3
± 4.0841 × 10−3

Spectral Spread 842.519± 79.572 5.27 × 10−4
± 2.89 × 10−4 836.339± 65.276

MFCC_1 11.903± 2.190 4.41 × 103
± 4.59 × 102 8.7944± 1.7834

MFCC_2 3.335± 1.180 2.70 × 10−2
± 1.71 × 10−2 3.4474± 1.0772

MFCC_3 5.382 × 10−1
± 6.749 × 10−1 6.15 × 10−1

± 3.77 × 10−2 0.4647± 0.5036
MFCC_4 0.552367871± 0.384043217 −3.95± 5.64 × 10−1 0.3742± 0.3563
MFCC_5 0.25597491± 0.28060119 −2.89 × 10−3

± 1.62 × 10−3 0.3547± 0.2468
MFCC_6 0.331806541± 0.201000215 8.11 × 102

± 8.25 0.40014± 0.1958
MFCC_7 0.117074904± 0.189924798 7.56± 1.68 0.03602± 0.1994
MFCC_8 0.133825725± 0.176784491 3.61± 9.24 × 10−1 −2.59993 × 10−3

± 0.1555
MFCC_9 0.084564833± 0.143536172 9.22 × 10−1

± 4.78 × 10−1 8.5559 × 10−2
± 9.6075 × 10−2

MFCC_10 0.125658833± 0.1157861 6.51 × 10−1
± 4.04 × 10−1 0.157698± 0.0956

MFCC_11 5.238 × 10−2
± 9.380 × 10−2 2.29 × 10−1

± 3.40 × 10−1 −9.523 × 10−3
± 7.8486 × 10−2

MFCC_12 6.680 × 10−2
± 9.548 × 10−2 2.88 × 10−1

± 2.54 × 10−1 1.3285 × 10−2
± 6.8225 × 10−2

MFCC_13 4.071 × 10−2
± 8.991 × 10−2 9.31 × 10−2

± 1.90 × 10−1 6.2124 × 10−2
± 5.60953 × 10−2

GFCC_1 −12.543± 2.100 1.64 × 10−1
± 1.31 × 10−1 −16.1741± 1.4561

GFCC_2 4.906± 1.232 1.19 × 10−1
± 7.72 × 10−2 4.3728± 1.289

GFCC_3 −1.098± 1.046 1.53 × 10−1
± 6.93 × 10−2 −1.2546± 0.83673

GFCC_4 8.29 × 10−1
± 3.818 × 10−1 7.82 × 10−1

± 8.73 × 10−2 0.85812± 0.43814
GFCC_5 7.0217 × 10−1

± 3.312 × 10−1 1.06 × 10−1
± 6.22 × 10−2 −0.786189± 0.3036

GFCC_6 2.518 × 10−1
± 2.127 × 10−1 6.75 × 10−2

± 4.55 × 10−2 0.5097± 0.1516
GFCC_7 −1.938 × 10−1

± 1.329 × 10−1
−1.69 × 101

± 1.43 −0.23444± 0.1582
GFCC_8 3.90 × 10−2

± 1.230 × 10−1 5.24± 8.27 × 10−1 0.06708± 0.1302
GFCC_9 −1.071 × 10−1

± 8.980 × 10−2
−9.81 × 10−1

± 1.01 −0.1885± 0.0957
GFCC_10 1.294 × 10−2

± 7.857 × 10−2 9.97 × 10−1
± 3.55 × 10−1 7.4638 × 10−2

± 7.218 × 10−2

GFCC_11 −6.509 × 10−2
± 5.778 × 10−2

−7.78 × 10−1
± 3.77 × 10−1 −3.019 × 10−2

± 6.7388 × 10−2

GFCC_12 5.228 × 10−3
± 6.801335 × 10−2 2.82 × 10−1

± 1.59 × 10−1 3.5798± 4.61594 × 10−2

GFCC_13 −6.276 × 10−2
± 4.806 × 10−2

−2.05 × 10−1
± 8.46 × 10−2 −5.3772 × 10−2

± 3.463 × 10−2
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