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Abstract: The accurate terrain classification in real time is of great importance to an autonomous
robot working in field, because the robot could avoid non-geometric hazards, adjust control scheme,
or improve localization accuracy, with the aid of terrain classification. In this paper, we investigate
the vibration-based terrain classification (VTC) in a dynamic environment, and propose a novel
learning framework, named DyVTC, which tackles online-collected unlabeled data with concept
drift. In the DyVTC framework, the exterior disagreement (ex-disagreement) and interior disagreement
(in-disagreement) are proposed novely based on the feature diversity and intrinsic temporal correlation,
respectively. Such a disagreement mechanism is utilized to design a pseudo-labeling algorithm,
which shows its compelling advantages in extracting key samples and labeling; and consequently,
the classification accuracy could be retrieved by incremental learning in a changing environment.
Since two sets of features are extracted from frequency and time domain to generate disagreements,
we also name the proposed method feature-temporal disagreement adaptation (FTDA). The real-world
experiment shows that the proposed DyVTC could reach an accuracy of 89.5%, but the traditional time-
and frequency-domain terrain classification methods could only reach 48.8% and 71.5%, respectively,
in a dynamic environment.

Keywords: autonomous robot; non-geometric hazards; terrain classification; dynamic
environment; vibration

1. Introduction

Robotic terrain classification refers to the process of a mobile robot classifying the terrain, on which
it is traversing or will traverse, as one of the predefined classes [1]. An accurate terrain classification
method is of great importance to an autonomous robot performing field tasks which usually need to
traverse a variety of terrains like sand, grass, gravel, or clay [2,3]. For example, if a wheeled robot
decides to traverse the sandy ground, its wheels may sink into the sand; and therefore, the robot could
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only move at an extreme low speed or even be trapped. To prevent the robots from suffering from such
non-geometric hazards, the mobile robots must have the ability of terrain classification [4]. For another
example, the robotic pose estimation, calculated by the kinematics model, which includes the slip
parameters decided by the traversing terrains, usually benefits a lot from robotic terrain classification,
especially in the situation without reliable global positioning systems [5–8]. Apart from hazards
avoidance and pose estimation, many existing works have demonstrated that the performances of
many other robotic fundamental functions, such as energy savings, route planning, gait control, etc.,
can be improved significantly from an accurate terrain classification method [9–13]. Therefore, terrain
classification and its relevant research have received great attention from the DARPA Grand Challenge
and Mars Exploration Plan [14].

As a non-interactive approach, the visual terrain classification method can recognize not only the
traversing terrain, but also the terrains traversed or that will be traversed [15–17]. However, it suffers
from two issues: (i) vision cannot work in extreme illumination (glare or dark); (ii) vision may be confused
by the covering materials, thus it cannot recognize the real terrain [18–20]. Therefore, the interactive
terrain classification, which are often implemented by means of acoustics [21,22], haptics [23,24],
or vibration [25,26], is becoming more and more promising in robotic environment perception.
The acoustic terrain classification has not been intensively studied, because its robustness against
environmental noises cannot be guaranteed [27]. The haptic terrain classification is usually realized
by means of tactile sensor arrays mounted on the robot–terrain contact area, thus it is more suitable
for legged robots [28]. More than sound and contact force, the robot–terrain interaction generated
vibration provides sufficient information to discriminate different types of terrains [29]. The time series
collected by an accelerometer is the mixture of vibration and gravitational acceleration. As a result that
gravity is almost time-invariant, the vibration can be easily recovered from the accelerometer readings;
and therefore, the vibration-based terrain classification (VTC) method has incomparable advantages
over the acoustic one. Additionally, unlike the haptic one, the VTC can be applied to both wheeled
and legged robots. Hence, this paper concentrates on the vibration-based terrain classification.

Although a large body of terrain classification methods based on VTC have been investigated,
most of them are achieved by supervised learning without considering the unlabeled upcoming
vibration data [25,30–34]. In fact, we cannot guarantee a sufficient sampling of training dataset, so it is
nature to resort to the semi-supervised or unsupervised machine learning tools for VTC. This idea
was first proposed for safely operation of planetary exploration rovers [35]. In their work, co- and
self-training approaches are employed, and two modalities, vibration and vision, are used to constitute
two independent views, thus enabling the vibration- and vision-based classifiers to learn and develop
mutually. Meanwhile, the vision-based classifier learns by itself when visions are collected on the
different patches of vibration. More work that concerns the semi-supervised or unsupervised learning
applying to the field of terrain classification can be found in [36–38]. These methods could be used in
static environments, where the offline training dataset and the online testing dataset are independent
and identically distributed (iid). However, if the training dataset is obtained from a certain area
of grassland and the testing dataset from another, it is highly possible that the two datasets are
non-iid since the two areas differ in moisture, roughness, or some other aspects. Hence, the dynamic
environment could give rise to a degradation in predicting incoming vibration samples by using the
classifier learned from the offline training dataset [39].

In this paper, we propose a vibration-based terrain classification framework for autonomous
robots working in a dynamic environment (named DyVTC), mainly to suppress the affect rendered
by data drift, during the period that manual labels do not arrive. First, according to different feature
extraction methods, we construct the time- and feature-domain classifiers from the vibration view.
Second, considering the potential temporal correlation in the traversed terrain patches, we introduce
the Bayesian filter to correct the terrain predictions output by the two classifiers. Third, in terms
of the classifier- and filter-output terrain predictions of the two domains, we propose a novel
disagreement-based learning algorithm, which can be read as the most valuable contribution of
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our work. In the learning algorithm, the concept of ex- and in-disagreement are introduced, which is
verified to be powerful to extract key samples and label them in high accuracy.

The rest of the paper is organized as follows. Section 2 covers the framework description of the
proposed terrain classification method, as well as the details of some key steps, including feature
extraction, classification algorithm, Bayesian filter, domain fusion, and pseudo-labeling algorithm.
Section 3 presents the experimental verification, including the description of the experimental robot
and data collection, performance evaluation of classifier and Bayesian filter, and comparative study
between the existing methods and ours. The paper is concluded in Section 4.

2. Methodology

The framework of the proposed DyVTC is shown in Figure 1. A single vibration point provides
an extreme limited information, so we should use a vibration frame, which is composed of a certain
number of successive vibration points, to extract its representative features. All vibration frames
are transformed into samples both in the time and frequency domain. Based on the labeled time-
and frequency-domain vibration samples, two classifiers are obtained by batch training, respectively.
The above process is offline. When the mobile robot is operating outdoors, online-collected vibration
samples are fed into the pre-trained classifiers; and then, the classifier-output terrain predictions are
fed into Bayesian filter to yield a better terrain prediction. Meanwhile, the classifier- and filter-output
terrain predictions are analyzed based on the mechanism of ex- and in-disagreement; and therefore,
some key samples could be extracted and labeled in high accuracy. When these pseudo-labeled
samples accumulate to some extent, they are used to re-train the classifiers incrementally. The rest of
the section expatiates on some key steps in the DyVTC.
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Figure 1. Framework of the proposed dynamic vibration-based terrain classification (DyVTC). The rectangular
and elliptical blocks represent operations and dataset, respectively. The rectangles without corners represent
models. We use the color blue to highlight the online parts.
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2.1. Feature Extraction

We use an accelerometer to detect the acceleration along the vertical axis at 100 Hz, thus obtaining
the acceleration time series. Due to the presence of gravity, the accelerometer does not detect a
pure motion vibration, but the vertical acceleration mixed with gravitational acceleration. Hence,
we subtract the gravitational acceleration constant from the acceleration time series, and therefore
obtain the vibration time series. Furthermore, the vibration time series is split into vibration frames,
each of which contains n vibration points. To guarantee a real-time terrain classification, each vibration
frame overlaps the successive one by 50%. Define a vibration frame by a = (a1, a2, · · · , an). Now we
are in the position to extract features from a in the frequency domain and time domain.

2.1.1. Frequency-Domain Features

The expression of time series in the frequency domain is usually beneficial to simplify the
mathematical analysis and understand the signal components. The discrete Fourier transform (DFT) is
such a powerful tool to yield the amplitude spectrum of the time series, thus being intensively used in
the analysis of time series. The N-point DFT on the vibration frame a is defined by [40]

Ak =
N−1

∑
i=0

aie−j 2πki
N , k = 0, 1, ..., N − 1, (1)

where j2 = −1, k is the frequency. The implementation of DFT often employs an efficient algorithm,
which is well known as fast Fourier transform (FFT). For an N-point FFT, the parameter N is typically
specified as a power of 2 or a value that can be factored into a product of small prime numbers. In the
case N > n, the vibration frame a should be padded using zeros; that is, the terms from an+1 to aN are
specified as zeros.

The accelerometer usually work at a frequency of up to 100 Hz. If the terrain classification is
desired to work at 1 Hz, which means the prediction should be given every second, then we use the
128-point FFT to transform the vibration frames into their spectrums. If treating the spectrum as the
feature directly, the feature is a 128-dimensional vector. In order to reduce the feature dimension, we
sample some entries uniformly from the spectral vector to constitute the feature.

2.1.2. Time-Domain Features

Other than the frequency domain, we also extract the features in the time domain directly.
A 10-dimensional feature vector φ = (φ1, φ2, · · · , φ10) is obtained, and its entries are shown in Table 1.
It is noted that φ5 can be extended by setting τ = 1, 2, · · · , n− 1. However, according to the Khintchine’s
law, it should be guaranteed that τ � n to bound the estimation error of φ5. In this paper, we choose
τ = 1.

2.2. Support Vector Machine

Let {(x1, y1), ..., (xm, ym)} denote the training set, where m is the size of the training set and
yi ∈ {±1}. Support vector machine (SVM) aims to construct a separating hyperplane between two
classes of points that maximizes the margin between the hyperplane and support vectors [41]. Usually
the hyperplane cannot be found in the original sample space. For such a nonlinear classification
task, kernel technique is applied to map the original data to a high-dimensional feature space by
ϕ : x → ϕ(x). Inner product of points in feature space is then conducted implicitly by a kernel function.
In our work, we use two common kernel functions that are linear kernel κ(xi, xj) = x′i xj, and Gaussian

kernel κ(xi, xj) = exp(− ‖xi−xj‖2

2σ2 ), where σ denotes the width of the Gaussian kernel. Soft margin is
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used to regularize the trade-off between minimizing the training error and maximizing the margin.
Therefore, an SVM can be described as the following optimization problem [42]

min
ω,b,ξ

1
2
‖ω‖2 + λ

m

∑
i=1

ξi (2)

s.t. yi
(
ω′ϕ(xi) + b

)
≥ 1− ξi (3)

ξi ≥ 0, i = 1, 2, ..., m (4)

where ω is the vector normal to the hyperplane, b is a scalar bias, and λ is the soft margin parameter.
Multi-class classification task of SVM can be performed using one-versus-one approach. The SVM
model can be updated online using incremental SVM (i.e., [43]). As a result that only the support
vectors participate in the learning process, the incremental SVM reduces the training time greatly and
seldom loses accuracy.

Table 1. Entries of the time-domain feature.

Name Equation Description

Zero-crossing
number (ZCN) φ1 = ∑n

i=2 I(aiai−1 < 0)

I(·) is an indicator function, which outputs 1
if the expression in (·) holds, or 0 otherwise.
This feature is an approximation of the
frequency of a.

Mean φ2 = 1
n ∑n

i=1 ai

Although the gravitational acceleration has
been subtracted, the mean of a may
considerably diverge from zero for some
course terrains.

ZCN in ā φ3 = ∑n
i=2 I(āi āi−1 < 0)

āi = ai − φ2. φ3 is a complement to φ1,
which avoids φ1 ≈ 0 for even high-frequency
vibration signal when the robot is traversing
coarse terrains.

Variance φ4 = 1
n ∑n

i=1 (ai − φ2)
2 Intuitively, the variance is higher when the

terrain becomes coarser.

Autocorrelation φ5 = 1
(n−τ)φ4

∑n−τ
i=1 (ai − φ2) (ai+τ − φ2)

τ < n is an integer indicating time difference.
As a measure of non-randomness, φ5 gets
larger with a stronger dependency between
ai and ai+τ .

Maximum φ6 = max(a) φ6 indicates the biggest bump of the terrain.

Minimum φ7 = min(a) φ7 indicates the deepest puddle of the terrain.

`2-norm φ8 =
√

∑n
i=1(ai)2

φ8 reflects the energy of a. If φ2 → 0, φ9 has
the similar function as φ4. Instead, we can
also use the `1-norm, i.e., φ∗8 =

√
∑n

i=1 |ai|.

Impulse factor φ9 = n(φ6 − φ7)/φ∗8 φ9 measures the impact degree in a.

Kurtosis φ10 = 1
n ∑n

i=1 (ai − φ2)
4/φ2

4 − 3 φ10 measures the deviation degree of the a
with Gaussian distribution.

2.3. Bayesian Filter

The recursive form of Bayesian filter can be seen in [44]. Define χt as the state at time t, ct the
measurement, and Ct = {c1, c2 · · · , ct} the measurement set. The purpose is to acquire P(χt|Ct), the a
posteriori possibility distribution function (pdf) of χt conditioned on Ct. Given P(χt−1|Ct−1), we have
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P(χt|Ct−1) =
∫
P(χt|χt−1)P(χt−1|Ct−1)dχt−1, (5)

P(χt|Ct) =
P(ct|χt)P(χt|Ct−1)∫
P(ct|χt)P(χt|Ct−1)dχt

, (6)

where P(χt|Ct−1) denotes the a priori pdf of χt conditioned on Ct−1.
Define χt as the state at time t, ct the measurement, and Ct = {c1, c2 · · · , ct} the measurement

set. The purpose is to acquire P(χt|Ct), the a posteriori possibility distribution function (pdf) of χt

conditioned on Ct. Generally speaking, analytic solutions to Equations (5) and (6) are unavailable
in most cases, so the estimation problem for continuous state is seldom tackled by Bayesian filter.
However, if the state is discrete and its number is not too large, the Bayesian filter is a practicable
method to solve such a state estimation problem. In terrain classification, the state at time t is defined
as χt ∈ {1, 2, · · · , `} where i = 1, 2, · · · , ` denotes the terrain ID. The measurement ct ∈ {1, 2, · · · , `}
is the classifier-output terrain predictions. Given P(χt−1|Ct−1), we have

P(χt = i|Ct−1) =
`

∑
j=1
P(χt = i|χt−1 = j)P(χt−1 = j|Ct−1), (7)

P(χt = i|Ct) =
P(ct = j|χt = i)P(χt = i|Ct−1)

∑`
i=1P(ct = j|χt = i)P(χt = i|Ct−1)

, (8)

where P(χt|Ct−1) denotes the a priori pdf of χt conditioned on Ct−1, P(χt = i|χt−1 = j) denotes the
probability that the mobile robot moves from terrain j to i at time t, and P(ct = j|χt = i) denotes the
probability of the classifier outputting terrain j conditioned on terrain i. Meanwhile, we observe that
the denominator of Equation (8) is a normalizer.

Applying the Bayesian filter to improve the terrain classification is on the premise of knowing
P(χ0|C0), P(ct|χt) and P(χt|χt−1). First, the initial a posteriori pdf P(χ0|C0), where C0 denotes a set of
no measurements, describes the distribution of the terrain at which the mobile robot locates initially.
If the initial terrain is known, then we have P(χ0 = i|C0) = 1 and P(χ0 6= i|C0) = 0 when locating
at terrain i; otherwise, P(χ0|C0) is assumed to be uniform distribution, namely, P(χ0 = i|C0) = 1

`

for i = 1, 2, · · · , `. Second, P(ct|χt), which is required during the measurement-update procedure,
is determined by the confusion matrix. Third, P(χt|χt−1), which is required during the time-update
procedure, describes the correlation of the sampled terrain series. Given ` terrains, an `× ` square
matrix M with elements mij = P(χt = i|χt−1 = j) is defined. The diagonal elements mii where
i = 1, 2, · · · , ` should be assigned a relatively large value not greater than 1, based on the heuristic that
terrain is spatially continuous. The off-diagonal elements mij where i 6= j can be determined by the
terrain distribution in a map. For example, if terrain i possesses more area than terrain j, then mij < mji.
It should be guaranteed that the sum of a row equals 1. A general and simple setup of M is that mii = µ

for i = 1, 2, · · · , ` and mij =
1−µ
`−1 for i 6= j.

2.4. Pseudo-Labeling Algorithm

The pseudo-labeling algorithm aims to extract key samples, and label them in a high accuracy.
The term key samples is denoted as the unlabeled samples that cannot be correctly classified. Now we
introduce a new term named interior disagreement (in-disagreement). For each domain, we have two
terrain predictions at the same time. The classifier outputs are read as the a priori terrain predictions,
while the filter outputs as the a posteriori terrain predictions. If the a priori and a posteriori terrain
predictions of the same domain at a certain time are different, then this phenomenon is referred to as
in-disagreement. The term a priori ex-disagreement means the a priori terrain predictions at a certain time
of the two domains are different. Similarly to the a priori ex-disagreement, the a posteriori ex-disagreement
is denoted by that the a posteriori terrain predictions at a certain time of the two domains are different.
Based on the in- and ex-disagreement, we propose the following heuristic rules:
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1. If one domain (denoted as the 1st domain) appears in-disagreement at a certain time, the sample
is likely to be a key sample of the 1st domain.

2. Based on the first rule, if at the same time, the other domain (denoted as the 2nd domain) does not
appear in-disagreement, and there is no a posteriori ex-disagreement between the two domains,
then the 2nd-domain terrain prediction is likely to be a reliable label to the 1st-domain key sample.

3. If in-disagreement appears in both domains, but there is no a posteriori ex-disagreement,
the filter-output terrain prediction can be used to label the samples from both domains.

4. If neither in-disagreement nor ex-disagreement appears at a certain time, the sample is likely to
be classified correctly, thus not a key sample.

Now we present the algorithm in detail. Define γ ∈ {T, F} as the domain type, where T stands for
time domain, and F for frequency domain. In the γ domain, upon feeding a sample xγ

t , the γ-domain
classifier outputs the a priori terrain prediction cγ

t ; and then, the Bayesian filter outputs the a posteriori
terrain prediction ĉγ

t . The pseudo-labeling algorithm is shown in Algorithm 1. As a result that the rules
are proposed on the mechanism of in- and ex-disagreement, we name it in- and ex-disagreement-based
pseudo-labeling (IE). The proposed IE is a sample that is an efficient method to extract and label key
samples, which will be verified in Section 3.

Algorithm 1 In- and Ex-Disagreement-Based Pseudo-Labeling Algorithm (IE)

Input: The unlabeled samples xT
t and xF

t , the a priori terrain predictions cT
t and cF

t , the a posteriori

terrain predictions ĉT
t and ĉF

t , where t = 1, 2, · · · , K.

Output: Pseudo-labeled sample sets LT and LF, for time and frequency domain, respectively.

1: set LT , LF ← ∅
2: for t = 1 to K do

3: if cT
t = ĉT

t and cF
t 6= ĉF

t and ĉT
t = ĉF

t then

4: LF ← LF ∪ (xF
t , ĉT

t )
5: end if
6: if cF

t = ĉF
t and cT

t 6= ĉT
t and ĉT

t = ĉF
t then

7: LT ← LT ∪ (xT
t , ĉF

t )
8: end if
9: if cT

t 6= ĉT
t and cF

t 6= ĉF
t and ĉT

t = ĉF
t then

10: LF ← LF ∪ (xF
t , ĉT

t ), LT ← LT ∪ (xT
t , ĉF

t )
11: end if
12: end for
13: return LT and LF

2.5. Fusion of Terrain Predictions

In ensemble learning, voting, including the majority, plurality, and weighted voting, are general
schemes to fuse different predictions [45]. However, they cannot be used to our fusion task directly,
since we only have two domains. Two dedicated schemes follow:

The 1st fusion scheme is

o1
t =

{
ĉT

t , if p̂T
t > wp̂F

t ,
ĉF

t , if p̂T
t ≤ wp̂F

t ,
(9)

where o1
t denotes the fused terrain prediction using the 1st fusion scheme, p̂γ

t denotes the confidence of
ĉγ

t . The weight w > 0 assigns the two a posteriori terrain predictions different weights, which are often
set as a number larger than 1 because the frequency domain usually outperforms the time domain.
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The 2nd fusion scheme is

o2
t =M

{
v̂T

t + wv̂F
t

1 + w

}
, (10)

where o2
t denotes the fused terrain prediction using the 2nd fusion scheme, v̂γ

t denotes the confidence
vector of the γ-domain Bayesian filtering at time t. The weight w > 0 should be a number larger than
1. The functionM{·} returns the index of the largest element in the vector. As a result that the terrain
IDs correspond to the vector indices,M{·} returns the terrain prediction.

The mentioned fusion schemes fuse the a posteriori terrain predictions, while they can be also used
to fuse the a priori terrain predictions.

3. Experimental Verification

In this section, we first present the description of the experimental robot, the experimental
terrains, and the details of the experimental data collection. Second, we demonstrate the performance
of the traditional terrain classification methods when data drift exists. Thirdly, we exhibit how the
Bayesian filtering improves the classification results. Finally, a comparative study is done to verify the
effectiveness of the proposed DyVTC.

3.1. Experimental Data Collection

The experimental robot and its electronic system structure and signal flows are shown in Figure 2.
The robot is 340 mm in length, 270 mm in width, 230 mm in height, and 2.6 kg in mass. The diameter and
width of the wheels are 130 mm and 60 mm, respectively. With a power supply of 12 V, the robot could
traverse coarse grounds at the speed of up to 1.5 m/s. An accelerometer–gyroscope–magnetometer
integrated sensor (MPU9250) and an odometry constitute the sensor system. The main configurations
of odometry, gyroscope, accelerometer, and magnetometer are exhibited in Table 2. The odometry
is actually four incremental encoders which are directly mounted on the motor shafts to perceive
the motor rotational speeds; and consequently, the odometry outputs the robot’s moving speed.
The accelerometer–gyroscope–magnetometer integrated sensor can be used to obtain the robot pose
and the vibration. The micro control unit (MCU) reads the Z-axis accelerometer at 100 Hz. Meanwhile,
the robot moving speed and pose are measured every second, which evaluates the robot motion modes.
The robot is controlled with a smart phone, by sending commands to the robot via Bluetooth. The MCU
is a development board of Arduino Mini Pro which is used to realize some simple and fundamental
operations, such as data gathering, motor control, and command receiving. While the robot is working,
all data are stored in the local memory (a T-Flash card); and next, the card is unplugged from the robot,
connected, and transferred to a desktop computer (3.20 GHz, 8 GB RAM).

Accelerometer & 

Odometry Inside

Gyroscope Accelerometer Magnetometer

Memory

MCU

Controller

Computer

DriverMotor

Encoder

Bluetooth

PMW

I2C

USB

SPI

SW

Figure 2. A four-wheeled mobile robot for experiment. The left figure shows the robot photograph,
and the right one shows its electronic system structure and signal flows.
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Table 2. Specifications of sensors.

Sensor Specifications

Odometry 540 pulse per round; resolution: 0.67 deg.
Gyroscope range: ±250 deg/s; initial ZRO * tolerance: ±5 deg/s; total RMS † noise: 0.1 deg/s.
Accelerometer range: ±2 g; initial ZGO ‡ tolerance: ±80 mg; total RMS noise: 8 mg.
Magnetometer range: ±4800 uT.

* zero-rate output; † root mean square; ‡ zero-gravity output.

All algorithms will be evaluated on the computer based on the gathered data. Among the terrains
listed in [46], we select six terrains on which a robot is most likely to traverse to do the experiment.
As shown in Figure 3, some of them are artificial terrains (e.g., asphalt road), while some are natural
ones (e.g., natural grass). These terrains are different in rigidity, roughness, and flatness. The segments
of vibration time series collected on the six terrains and the corresponding terrain photographs are
shown in Figure 3. Compared with other terrains, it is observed that the interaction between the robot
and the cobble path generates a highly distinguishable vibration. The vibration has higher frequency,
larger magnitude, and weaker autocorrelation, because the cobble path is relatively rigid and irregular.
The vibrations of the other five terrains may not be easy to discriminate intuitively because of their
slight differences; however, they still can be found in terms of their variation tendency.

-5

0

5

natural grass

-5

0

5

asphalt road

-5

0

5

cobble path

-5

0

5

artificial grass

-5

0

5

sand beach

-5

0

5

plastic track

Figure 3. Photos of the traversed terrains and the corresponding segments of vibration time series.
From top to bottom, the experimental terrains are: natural grass, asphalt road, cobble path, artificial
grass, sand beach, plastic track, respectively. They are abbreviated as NG, AR, CP, AG, SB, and PT,
respectively. The Y axis represents acceleration (m/s2).
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Different motion states might also cause the data drift, but it could be eliminated by the sufficient
data collection, as the number of motion states are relatively limited. Hence, in our experiment of data
collection, we control the experimental robot to wander on the six terrains at a speed ranging from the
minimum speed (0.2 m/s) to the maximum speed (1.1 m/s) and in different motion modes (e.g., circular
and linear motion), which avoids the data drift from an insufficient experiment. We collect the vibration
data in two different environments, thus obtaining two vibration datasets: D1 and D2. lIntuitively
speaking, (i) the grass in garden and roadside may be different in height, (ii) the natural grass gets
harder under fine weather, while softer after raining, and (iii) the soil is harder at night than that in the
daytime because of the lower temperature. Environment One and Environment Two both include the
aforementioned 6 terrains, but are different in location, weather, and temperature. For each dataset,
the vibration time series are segmented into vibration frames by every 100 points with 50% overlap,
and therefore, D1 and D2 are transformed into S1 and S2 which are composed of vibration frames.
As shown in Figure 4a, S1 is divided into S1.1 and S1.2, each of which contains 3000 frames. Similarly,
as shown in Figure 4b, S2 is divided into S2.1, S2.2, S2.3, and S2.4, each of which contains 3000 frames.
In addition, according to different feature extraction methods, S1.1 is transformed into two sample
sets, where ST

1.1 and SF
1.1 are derived by using time-domain features and frequency-domain features,

respectively. Analogously, we have (ST
1.2, SF

1.2), (S
T
2.1, SF

2.1), (S
T
2.2, SF

2.2), (S
T
2.3, SF

2.3), and (ST
2.4, SF

2.4).

S1.2S1.1

D1

Subsets

Extraction

Connection

S1

(a) Constitution of S1.1 and S1.2.

S2.4S2.3S2.2S2.1

D2

Subsets

Extraction

Connection

S2

(b) Constitution of S2.1, S2.2, S2.3, and S2.4.

Figure 4. Illustration of data constitution.

3.2. Performance Evaluation of Classifier

To evaluate the classifier performance in a static environment, i.e., the training and test data
are both gathered in Environment One, we train two classifiers on ST

1.1 and SF
1.1, and test them on

ST
1.2 and SF

1.2, respectively. The Gaussian kernel is employed for the time-domain classifier. As for
the frequency-domain classifier, because the feature vector is of high dimension, we employ a linear
kernel. We use the confusion matrix to show the classification performance. The rows of the confusion
matrices represent the real terrains, while the columns represent the predicted terrains. The trained
time- and frequency-domain SVM model can achieve the accuracies of 85.4% and 86.5%, which are
acceptable to a field robot. It is observed that the main confusion exists between the terrains of natural
gas (NG) and sand beach (SB). Compared with other terrain, NG and SB are both natural terrains,
and have the similar rigidity and unevenness. In addition, the terrain of plastic track (PT) cannot be
easily classified. The classifier CT cannot distinguish PT and asphalt road (AR) perfectly, while CF
are confused in PT and artificial grass (AG). The terrains of PT, AR, and AG are all artificial terrains,
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which are made to enhance pedestrian or vehicle’s traversability, so they usually have the similar
characteristics in rigidity, roughness, and flatness.

To evaluate the classifier performance in a dynamic environment, we use the classifiers trained
on ST

1.1 and SF
1.1 to predict ST

2.1 and SF
2.1, respectively. Due to the data drift, the accuracies on ST

2.1 and
SF

2.1 could only reach 48.8% and 71.5%, respectively. As illustrated in Figure 5a,b, the data drift causes
many confusions. In the time domain, only 0.6% of AG samples and 7.1% of PT samples could be
classified correctly. Most AG samples are misclassified as NG, AR, and SB. In particular, 45.7% of the
PT samples are misclassified as NG. Obviously, the SVM model trained on ST

1.1 cannot distinguish
AG from other terrains on ST

2 . In the frequency domain, as demonstrated in Figure 6a,b, the classifier
performs much better under data drift, but only about 33% of NG and SB samples can be classified
correctly. The performance degradation of SVM model is caused by data drift. In our experiment,
NG is the most changeful terrain, hence becoming the main class that confuses the classifier.

The fusion accuracies with different w are shown in Figure 7. It is observed that the fusion of
the time- and frequency-domain classifiers could increase the classification accuracy slightly, with an
appropriate w. The time-domain classifier performs much worse than the frequency-domain one,
so the increase of fusion accuracy is not significant.

The offline terrain classification, which means the classifiers performing on ST
1 /SF

1 , could achieve
a maximum accuracy of 92.7%. The offline classification accuracy is improved. However, the online
terrain classification, which means the classifiers performing on ST

2 /SF
2 , does not see a significant

improvement. The online classification accuracy can be increased by about only 1% if ω could be
appropriately set. If we have no a priori knowledge on the two views and do not know which is better,
then the coefficient ω is usually assigned by 1.

NG AR CP AG SB PT

NG
AR
CP
AG
SB
PT

82.5 2.7 0.0 0.0 11.4 3.3
1.8 85.5 0.0 6.2 1.6 5.7
0.0 0.0 100.0 0.0 0.0 0.0
0.0 1.9 0.0 89.4 0.8 9.3
14.0 1.7 0.0 3.7 75.8 4.8
3.7 4.4 0.0 7.5 4.1 78.0

0

20

40

60

80

100

(a) Performance of time-domain classifier trained on ST
1.1 testing on

ST
1.2. The accuracy is 85.4%.

NG AR CP AG SB PT

NG
AR
CP
AG
SB
PT

58.8 3.0 0.0 0.2 24.3 20.5
14.9 57.5 0.0 3.0 12.8 17.7
0.0 0.0 100.0 0.0 0.0 0.0
48.6 27.2 0.0 0.6 17.4 9.7
38.6 3.2 0.0 0.0 54.5 5.7
45.7 6.8 0.0 0.0 9.1 7.1

0

20

40

60

80

100

(b) Performance of time-domain classifier trained on ST
1.1 testing on

ST
2.1. The accuracy is 48.8%.

Figure 5. Normalized confusion matrices (in %) of SVM-based terrain classification on sample set S2.
NG, AR, CP, AG, SB, PT denote natural grass, asphalt road, cobble path, artificial grass, sand beach,
plastic track, respectively.
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NG AR CP AG SB PT
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74.6 1.4 0.0 1.5 20.8 1.0
1.2 95.9 0.0 0.0 3.0 0.0
0.0 0.0 99.8 0.0 0.2 0.0
1.2 0.0 0.0 83.4 3.4 13.3
15.1 4.7 0.0 2.3 77.2 0.8
0.8 0.0 0.0 10.3 0.2 87.8
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20

40
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80
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(a) Performance of frequency-domain classifier trained on SF
1.1 and

tested on SF
1.2. The accuracy is 86.5%.

NG AR CP AG SB PT

NG
AR
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AG
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PT

33.8 0.2 0.0 22.5 7.5 54.1
0.6 89.1 0.0 0.8 9.6 0.0
0.0 0.0 100.0 0.0 0.0 0.0
1.7 0.2 0.0 93.0 3.8 2.0
29.5 0.9 0.0 30.2 33.8 8.5
2.1 0.0 0.0 8.5 0.6 83.2

0

20

40

60

80

100

(b) Performance of frequency-domain classifier trained on SF
1.1 and

tested on SF
2.1. The accuracy is 71.5%.

Figure 6. Normalized confusion matrices (in %) of SVM-based terrain classification on a sample set S2.
NG, AR, CP, AG, SB, PT denote natural grass, asphalt road, cobble path, artificial grass, sand beach,
plastic track, respectively.
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1st fusion scheme in static environment
2nd fusion scheme in static environment
1st fusion scheme in dynamic environment
2nd fusion scheme in dynamic environment

Figure 7. Fusion accuracies of the time- and frequency-domain classifiers with different weights.

3.3. Performance Evaluation of Bayesian Filter

Now we are in the position to evaluate the Bayesian filter improving the classifier-output
terrain predictions. Here, we exhibit the details of the Bayesian filter correcting the classifier’s
outputs, as shown in Figure 8. Taking the temporal correlation in sample stream into consideration,
the prediction of the current terrain is not only based on the current vibration frame any more, but a
combination of the current vibration frame and the previous terrain prediction. Hence, as shown in
Figure 8a,b, the incorrect predictions by the classifier at time 1674, 1676, 2837, 2838, 2840, 2841, 2852,
2854, 2855 can be corrected by the Bayesian filter. The Bayesian filter regards the classifier-output
terrain predictions as observations. Due to the introduction of temporal correlation, which results in the
lags in response to the variation of observations, the Bayesian filter outputs incorrect predictions at time
1663, 1665–1667, as shown in Figure 8b. Such lags can be found in Figure 8c as well. Furthermore, it is
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known that the Bayesian filter has the ability of tracking the observations. Therefore, as the Figure 8c
demonstrated, the Bayesian filter fails if the classifier outputs incorrect terrain predictions continuously.

2835.0 2837.5 2840.0 2842.5 2845.0 2847.5 2850.0 2852.5 2855.0

NG
AR
CP
AG
SB
PT

(a) Segment 1

1660.0 1662.5 1665.0 1667.5 1670.0 1672.5 1675.0 1677.5 1680.0

NG
AR
CP
AG
SB
PT

(b) Segment 2

160.0 162.5 165.0 167.5 170.0 172.5 175.0 177.5 180.0

NG
AR
CP
AG
SB
PT

(c) Segment 3
Figure 8. Filtering details exhibition. • denotes real terrain, ◦ denotes classifier-output terrain predictions,
◦ denotes filter-output terrain predictions. NG, AR, CP, AG, SB, PT denote natural grass, asphalt road,
cobble path, artificial grass, sand beach, plastic track, respectively.

Denote the sets CT
1 , CF

1 , CT
2 , and CF

2 by the outputs of CT(ST
1 ), CF(SF

1 ), CT(ST
2 ), and CF(SF

2 ), where
ST

1 ⊂ ST
1 and SF

1 ⊂ SF
1 denote the testing set of ST

1 and SF
1 , respectively. Feeding these classifier’s

output set into the Bayesian filter, the classification results are increased by approximately 5% to 10%.
The filtering accuracies with different µ are exhibited in Figure 9. It is observed that the accuracies
almost reach 97% and 98% with the Bayesian filter performing on CT

1 , CF
1 , which means the offline

classification accuracy increases by approximately 10%. On the other hand, filtering on CT
2 and CF

2
does not see such an effectiveness, which increases the classification by approximately 7% only.

The influences on Bayesian filtering and pseudo-labeling algorithm of different diagonal elements
are shown in Figure 10. The term “true” means the number of the extracted samples that are not
key samples (i.e., the samples that can be classified correctly), while “false” means the number of key
samples (i.e., the samples that cannot be classified correctly). The term “all” means the number of
the extracted samples. The terms “true-positive”, “false-positive”, and “all-positive” mean the numbers
of the true samples, false samples, and all samples which could be correctly labeled by the proposed
pseudo-labeling algorithm, respectively. It is observed that the Bayesian filter could increase the
classification accuracy to some extent. In the time domain, the increasing accuracy varies from 1.6% to
4%, and peaks when the diagonal element exceeds 97%. Such an accuracy promotion could be found
in the frequency domain more apparently. Furthermore, the pseudo-labeling algorithm could extract
more false and false-positive samples with the diagonal element getting larger, both in the time and
frequency domain. On the contrary, the number of true and true-positive samples does not increase
significantly. Therefore, the pseudo-labeling algorithm could reach a high performance with a larger
diagonal element.
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Figure 9. Accuracies of filtering results with different µ. The upper figure is for time domain, while the
lower one for frequency domain.
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Figure 10. The influences on Bayesian filtering and pseudo-labeling algorithm of different diagonal
elements. The right axis corresponds to filter. The left axis corresponds to false, false-positive, true,
true-positive. The left figure is for time domain, while the right one for frequency domain.

3.4. Comparative Study of Adaptation in a Dynamic Environment

As shown above, the classifier trained on S1 cannot achieve a high accuracy on S2 for the presence
of data drift. Now we are in the position to evaluate how DyVTC could retrieve the classification
accuracy by incremental learning on the data chunks. As aforementioned, the terrain classification in a
dynamic environment has rarely been investigated. We construct some terrain classification methods
by applying the existing learning algorithms. The performances of the proposed DyVTC and those
constructed ones will be evaluated. The 9 methods are shown as follows:

• IE1: The proposed DyVTC. IE is the abbreviation of in- and ex-disagreement.
• IE2: Similar to IE1, we use the a priori ex-disagreement, instead of a posteriori ex-disagreement.



Sensors 2020, 20, 6550 15 of 19

• IE3: Similar to IE1, we use both a priori and a posteriori ex-disagreement, which are combined
using logical OR.

• CT.95: Using co-training algorithm (see [47]) to tackle such a terrain classification problem.
The confidence threshold is 0.95.

• CT.8: Similar to CT.95, but the confidence threshold is 0.8.
• ST.95: Using the self-training algorithm for both domains. The similar idea can be found in [35,36].

The confidence threshold is 0.95.
• ST.8: Similar to ST.95, but the confidence threshold is 0.8.
• KM.95: Using an advanced fuzzy k means (see [48]) semi-supervised clustering algorithm to label

the newly collected samples. The confidence threshold is 0.95.
• KM.8: Similar to KM.95, but the confidence threshold is 0.8.

The performances of pseudo-labeling algorithms are shown in Table 3. It is observed that
the IE1 outperforms all the other algorithms in accuracy. The IE1 algorithm could only extract
100–200 samples from the whole 3000 samples, and the true-positive accuracy is 0. However, most of
the extracted samples are key samples and these key samples could be labeled in an extremely high
accuracy (over 95%). Hence, as shown in Figure 11, such a pseudo-labeling algorithm could increase
the classification accuracy on S2. The IE2 and IE3 are the variants of IE1. IE2 could extract many
true samples and label them in 100% accuracy, but its false-positive accuracy is 0%. This indicates
IE2 cannot bring valuable information, and thus cannot increase nor decrease the classification
accuracy. All indices of IE3 are the sums of the corresponding indices of IE1 and IE2, and consequently,
the performance of IE3 is between those of IE1 and IE2. We can also observe that the pseudo-labeling
accuracies of IE2 and IE3 decrease at learning steps 2 and 3, but the classifier accuracy does not
decrease. This is because IE2 and IE3 have high true-positive accuracy, which guarantee that the
classifier accuracy does not decrease after update. In conclusion, it is the best to use a posteriori
ex-disagreement in the pseudo-labeling algorithm.

Table 3. Comparison of pseudo-labeling algorithms performing on S2.1.

METHOD

IE1 IE2 IE3 CT.95 CT.8 ST.95 ST.8 KM.95 KM.8

TIME
DOMAIN

True
True-Positive
Accuracy

8
0
0%

71
71
100%

79
71
89.8%

753
702
93.2%

1005
886
88.2%

716
653
91.2%

1096
868
79.2%

658
610
92.7%

1542
1071
69.5%

False
False-Positive
Accuracy

157
152
96.8%

37
0
0%

194
152
78.4%

491
462
94.1%

963
834
86.6%

155
112
72.3%

503
378
75.1%

566
43
7.6%

1653
186
11.3%

All
All-Positive
Accuracy

165
152
92.1%

108
71
65.7%

273
223
81.7%

1244
1164
93.6%

1968
1720
87.4%

871
765
87.8%

1599
1246
77.9%

1224
653
53.3%

3195
1257
39.3%

FREQ
DOMAIN

True
True-Positive
Accuracy

9
0
0%

65
65
100%

74
65
87.8%

765
645
84.3%

1232
881
71.5%

1175
708
60.3%

1691
862
51.0%

5
3
60.0%

2298
1985
86.4%

False
False-Positive
Accuracy

146
143
97.9%

51
0
0%

197
143
72.6%

98
65
66.3%

354
211
59.6%

75
43
57.3%

260
132
50.8%

0
0
0.0%

910
175
19.2%

All
All-Positive
Accuracy

155
143
92.3%

116
65
56.0%

271
208
76.8%

863
710
82.3%

1586
1092
68.9%

1250
751
60.0%

1951
994
50.9%

5
3
60.0%

3208
2160
67.3%

The CT.95 and CT.8 could increase the accuracy of the time-domain classifier but decrease that of
the frequency-domain classifier, which is caused by the unequal performances of the two domains.
The frequency-domain classifier performs much better, so it acts as a supervisor of the time-domain
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classifier. The ST.95 and ST.8 do not utilize a mutual learning mechanism, thus they have no effect on
the classifier accuracy. The KM.95 and KM.8 only work under clustering assumption which is seldom
satisfied when data drift occurs. Hence, the classifier accuracy decreases after updating using the KM
methods. In conclusion, the IE methods could increase the classifier accuracy by incremental learning,
but the others cannot work or even are counterproductive.
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(h) KM.95
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Figure 11. Accuracies of iterative incremental learning. The pseudo-labeling algorithm is conducted
on S2.1, S2.2, and S2.3, while the classifier is re-trained incrementally at the end of S2.1, S2.2, and S2.3.
The original classifier which is trained on S1.1 is tested on S2.1, while the updated classifiers are tested
on S2.2, S2.3, and S2.4. The fusion is based on the 2nd scheme. The marker definitions follow: •
denotes fusion accuracy; ◦, M, and ∗ denote the frequency-domain filter, classifier, and pseudo-labeling
accuracy, respectively; ◦, M, and ∗ denote the time-domain filter, classifier, and pseudo-labeling
accuracy, respectively.

The time cost is shown in Table 4. It can be observed that IE1, IE2, and IE3 take the shortest
time to generate the pseudo-labeled sample set, while KM.95 and KM.8 is the most time-consuming.
Unlike KM.95 and KM.8, which could only work after a data chunk is collected completely, IE1, IE2,
IE3, CT.95, CT.8, ST.95, ST.8 could generate the pseudo-labeled samples at the time when a vibration
frame prediction is finished, so the time cost of pseudo-labeling of these methods could be ignored.
For the incremental learning part, compared with CT, ST, and KM, IE1 and IE3 use less pseudo-labeled
samples to train the last classifier incrementally, but are the most time-consuming. This is because the
majority of the pseudo-labeled samples generated by IE1 and IE3 are correctly-labeled key samples,
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which leads to the changing of classifier. Even so, IE1 and IE3 could be done within one second, which
guarantees the real-time application.

Table 4. Time cost (in microsecond).

Method Pseudo Labeling Incremental Learning

IE1 12 584
IE2 13 152
IE3 16 651
CT.95 62 195
CT.8 147 237
ST.95 73 213
ST.8 196 281
KM.95 359 204
KM.8 838 323

4. Conclusions

In this paper, we propose a novel vibration-based terrain classification method for autonomous
robots working in a dynamic environment, mainly to suppress the affect rendered by data drift,
during the period that manual labels do not arrive. We mainly propose an ex- and in-disagreement-based
learning algorithm, which is verified to be powerful to extract key samples and label them in high
accuracy. In order to activate such a learning framework, we divide the vibration view into two domains,
which may produce ex-disagreements; and introduce the Bayesian filter to correct the classification
results, which may produce in-disagreements. The real-world experiment shows that the proposed
DyVTC could reach an accuracy of 89.5%, which outperforms the existing VTC methods.
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