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Abstract: High accuracy and reliable navigation in the underwater environment is very critical for the
operations of autonomous underwater vehicles (AUVs). This paper proposes an adaptive federated
interacting multiple model (IMM) filter, which combines adaptive federated filter and IMM algorithm
for AUV in complex underwater environments. Based on the performance of each local system,
the information sharing coefficient of the adaptive federated IMM filter is adaptively determined.
Meanwhile, the adaptive federated IMM filter designs different models for each local system. When the
external disturbances change, the model of each local system can switch in real-time. Furthermore,
an AUV integrated navigation system model is constructed, which includes the dynamic model of
the system error and the measurement models of strapdown inertial navigation system/Doppler
velocity log (SINS/DVL) and SINS/terrain aided navigation (SINS/TAN). The integrated navigation
experiments demonstrate that the proposed filter can dramatically improve the accuracy and reliability
of the integrated navigation system. Additionally, it has obvious advantages compared with the
federated Kalman filter and the adaptive federated Kalman filter.

Keywords: AUV; federated Kalman filter; integrated navigation; information sharing coefficient;
interacting multiple model (IMM)

1. Introduction

Autonomous underwater vehicle (AUV) is an efficient underwater working platform that has
been widely used for various underwater tasks in the areas of oil and gas industry, ocean mapping,
archaeological exploration, military reconnaissance missions, search and rescue operations, etc. [1–5].
Over the past few decades, AUV has been developed rapidly, due to its great value of application [4,5].
Accurate navigation and positioning is not only a prerequisite for AUV to perform underwater
operations, but also a technical guarantee for its safe return [3,6]. Navigation and positioning is one
of the benchmark technologies to evaluate the level of development and the maturity of engineering
application of AUV [1,3,4]. However, because of the complexity of ocean environment, how to make
AUV reach the operation site accurately and return safely is still a challenging issue [4,5].

Currently, most of AUVs adopt a strapdown inertial navigation system (SINS) as the reference
navigation system [3,7]. SINS is an independent navigation system that is able to provide comprehensive
navigation information, including the velocity, position, and attitude [8,9]. However, because of the
errors of inertial sensors, the navigation solution of SINS diverges over time [10,11]. Hence, SINS is
often aided by other navigation systems, such as Doppler velocity log (DVL) [2,7,12], magnetometer [7],
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depth sensor [11], terrain aided navigation (TAN) [13–16], acoustic long baseline (LBL) [17],
vision navigation [18], and so on [6]. In [11], an underwater navigation system composed of a
high-rate SINS and low-rate aided sensors was designed, and the aided sensors consisted of a DVL,
an inclinometer, a depth sensor, and a global positioning system (GPS). In [7], the Technion autonomous
underwater vehicle (TAUV) was discussed, and its navigation system was composed of a SINS
integrated by a DVL, a pressure sensor, and a magnetometer. Due to the lack of underwater maps
for terrain based navigation, Nygren et al. [15] proposed a new method that uses a multibeam sonar
and a linear Kalman filter to accommodate low sampling frequency. The above studies utilize various
navigation sensors to aid SINS, and the navigation performance of AUVs has been effectively improved.

The decentralized filtering methods in a multi-sensor information fusion system have attracted
the increasing attention of researchers [19]. Compared with the centralized filtering methods,
the decentralized filtering methods dramatically reduce the computational effort and increase the
fault-tolerant capability of the integrated navigation system [20,21]. Among the decentralized filtering
methods, the decentralized federated filter created by Carlson [20–23] is most well known.

According to the principle of the decentralized federated filter, the local filters are designed to
be suboptimal filters that provide the global optimal estimation [20,24]. In [21], Carlson discussed a
federated filter that was applied to integrated and fault-tolerant navigation systems. The superiority
of fault tolerance, estimation accuracy, and computation speed was demonstrated by the numerical
simulation results and real-time implementations. However, the information distribution principle
in the federated filter was designed to be at a fixed ratio, which means that each local system
has a fixed information coefficient [19,25,26]. However, in practical applications, the performance
and estimated accuracy of the local system is continually changing with the complex navigation
environment [3,7,27,28]. In order to increase the performance of the federated filter, Shen et al. [25]
proposed a new adaptive federated Kalman filter with time-varying information sharing coefficients
on the basis of observability analysis for unmanned ground vehicles (UGV) integrated navigation.
Xiong et al. [19] designed a novel dynamic vector-form information sharing method based on the
analysis of the error covariance matrix and the observability matrix for the federated filter in a
highly dynamic environment. Wang et al. [29] proposed an adaptive information sharing factor
federated filter (AISFF) which can adaptively adjust the information sharing factor to improve the
reliability of autonomous navigation for Unmanned Surface Vehicles (USVs). The above research has
optimized the information distribution principle of federated filter, and the navigation accuracy has
been effectively improved. However, when underwater environment in concerned, ocean currents,
turbulence, changes in salinity and temperature, and other underwater phenomena can influence
the models of AUV integrated navigation systems [1,4,30]. In fact, as the errors and disturbances
are usually time-varying and change with the underwater environment, it is difficult to model them
accurately [5,7,31], which will lead to greater inaccuracies of AUV integrated navigation systems.
Therefore, how to achieve accurate and reliable navigation capability in the underwater environment
is a challenging problem to be settled.

In this paper, a new adaptive federated IMM filter is designed for AUV integrated navigation
systems. The information sharing coefficient of the adaptive federated IMM filter is dynamically
adjusted according to the performance of each local system. Aiming to enhance the accuracy and
reliability of AUV operations in a complex underwater environment, this paper studies the IMM
algorithm and combines it with the adaptive federated filter. Then, an AUV integrated navigation
system model that includes the system error dynamics model, SINS/DVL and SINS/TAN measurement
models is constructed. The vehicle integrated navigation experiments demonstrate the high accuracy
and reliability of the proposed adaptive federated IMM filtering method.

The structure of this paper is organized as follows: the federated Kalman filter is presented in
Section 2. In Section 3, the adaptive federated Kalman filter is designed, then the adaptive federated
IMM filter is proposed and analyzed in detail. In Section 4, the AUV integrated navigation system model
is constructed in detail. Thirty groups of vehicle integrated navigation experiments are conducted to
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demonstrate the validity of the proposed method in Section 5. Finally, the conclusions are drawn in
Section 6.

2. Federated Kalman Filter

The state equation of a linear discrete-time system i can be presented as follows [22,32]:

Xi
k = Φ

i
k,k−1Xi

k−1 + Γ
i
k−1Wi

k−1 (1)

Zi
k = Hi

kXi
k + Vi

k (2)

whereΦi
k,k−1 is the (n × n) state transition matrix; Γi

k−1 is the (n × r) system noise matrix; Wi
k−1 is the

(r × r) system noise matrix; Xi
k is the (n × 1) state estimate; Hi

k is the (m × n) measurement matrix; Vi
k is

the measurement noise matrix; Zi
k is the (m × 1) measurement value.

In Equation (1), both Wi
k−1 and Vi

k are assumed as the zero-mean Gaussian white noise, and their
covariances are:

E[Wi
jW

i
k

T] = σ jkQi
k−1

E[Vi
jV

i
k

T] = σ jkRi
k

E[Wi
jV

i
k

T] = 0
(3)

In Equation (3), Qi
k−1 ≥ 0, Ri

k > 0, σ jk is the Kronecker function, and σ jk =

{
0 (k , j)
1 (k = j)

.

The federated Kalman filter contains a composite master filter and N independent local filters.
The schematic diagram of the federated Kalman filter is presented in Figure 1. In summary,
the implementation steps of the federated Kalman filter can be presented as follows:

(1) Information sharing:

Define the symbols with the superscript “g” as the parameters of the global filter. The system
information Qg

k , Pg
k and X̂g

k are allocated according to the following information allocation
principles [21,22]: 

Qi
k = β−1

i Qg
k

Pi
k = β−1

i Pg
k

X̂i
k = X̂g

k , i = 1 · · ·N, m
(4)

where βi represents the information sharing coefficient, βi > 0. Meanwhile, it satisfies the following
information conservation principle:

N∑
i=1

βi + βm = 1 (5)

(2) Time updating:

The N independent local filters and the master filter and conduct the time updating of the
information separately according to the following equations: X̂i

k/k−1 = Φi
k/k−1X̂i

k−1

Pi
k/k−1 = Φi

k/k−1Pi
k−1Φ

i
k/k−1

T + Γi
k−1Qi

k−1Γ
i
k−1

T, i = 1 · · ·N, m
(6)

(3) Measurement updating:

Because the master filter only plays the role of information fusion and it has no measurement
information, the master filter has no process of measurement updating. The N independent local
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filters conduct the measurement updating of the information separately according to the following
equations [22,23]: (Pi

k)
−1

= (Pi
k/k−1)

−1
+ (Hi

k)
T
(Ri

k)
−1

Hi
k

(Pi
k)
−1

X̂i
k = (Pi

k/k−1)
−1

X̂i
k/k−1 + (Hi

k)
T
(Ri

k)
−1

Zi
k, i = 1, 2, · · · , N

(7)

(4) Information fusion:

The local estimation state of each local filter is fused based on the following two equations, and the
global optimal estimation can be obtained:

Pg
k =

[
(P1

k)
−1

+ (P2
k)
−1

+ · · ·+ (PN
k )
−1

+ (Pm
k )
−1

]−1
(8)

X̂g
k = Pg

k

[
(P1

k)
−1

X̂1
k + (P2

k)
−1X̂2

k + · · · + (PN
k )
−1X̂N

k

+(Pm
k )
−1X̂m

k

] (9)
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3. Adaptive Federated IMM Filter

3.1. Adaptive Federated Kalman Filter

When given a matrix Pi ∈ Cm×n, there are unitary matrix Yi = [λi,1 λi,2 · · · λi,m] and unitary matrix
Λi = [µi,1 µi,2 · · · µi,n] that satisfy the following relationship:

Yi
TPiΛi =

[
ξi 0c,n−c

0m−c,c 0m−c,n−c

]
(10)

where ξi = diag(ξi, 1, ξi, 2, · · · , ξi, r), ξi, 1 > ξi, 2 > · · · > ξi, r > 0, c = rank(Pi). The Equation (10) is the
singular value decomposition of the matrix Pi, and ξi, 1, ξi, 2, · · · , ξi, r are the singular values of the
matrix Pi.

Define Pi((pλµ)n×n) as the covariance matrix of local filter i, and pλµ represents the cross-covariance
of local filter i between state λ and state µ. Then the singular value ξi of the matrix Pi contains both
the information of auto-covariance and the information of cross-covariance in each system’s state
estimation. Therefore, the covariance matrix of local filter i contains the information of the estimation
error, and it reflects the filtering performance of local filter i. Based on the above analysis, this paper
determines the information sharing coefficient dynamically from the global filter to the local filter.
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In local filter i, ξi(k) is defined as the sum of singular values of the covariance matrix Pi(k) at filtering
step k, and it can be expressed as follows:

ξi(k) =
n∑

l=1

ξi,l(k) (11)

Firstly, the information sharing coefficient βm of the master filter is selected, then the information
sharing coefficients of local filters can be obtained according to the following equation:

βi(k) =
1/ξi(k)

1/ξ1(k) + 1/ξ2(k) + · · ·+ 1/ξN(k)
(1− βm) , i = 1, 2, · · · , N (12)

where βi(k) represents the information sharing coefficient of local filter i at filtering step k.
The information sharing coefficients of the adaptive federated Kalman filter satisfy the

following relationship:

0 ≤ βi(k) ≤ 1,
N∑

i=1

βi(k)+ βm = 1 (13)

Consequently, the process of system information distribution can be expressed as:
Qi

k = βi(k)
−1Qg

k
Pi

k = βi(k)
−1Pg

k
X̂i

k = X̂g
k , i = 1 · · ·N, m

(14)

3.2. Adaptive Federated IMM Filter

When the system has discrete uncertainties together with continuous uncertainties in the dynamic
or measurement model, the IMM algorithm is a very effective method [32–36]. The IMM algorithm has
shown superior performance with a low computational burden in a variety of applications, such as
target tracking [37–40], mobile node localization [41], and motion planning [42]. However, there are
few studies about the application of the IMM algorithm to the underwater navigation system. There are
also few studies about the combination of the IMM algorithm and the federated filter. Focused on the
above problems, this paper designs a novel adaptive federated IMM filter that combines the adaptive
federated filter and the IMM algorithm to enhance the accuracy and reliability of the AUV operations
in complex underwater environments. In the proposed method, each local system includes different
models, and when the underwater environment changes the model for each local system can switch in
real-time. Therefore, the proposed method can use the most accurate mixed model to describe the
current state of the local system.

Assume there are S states of motion in the system, then there should be S motion models
accordingly. The state equation of model q can be described as follows:

Xq(k) = Φq(k|k− 1)Xq(k− 1) + Γq(k− 1)Wq(k− 1) (15)

In addition, the measurement equation of model q can be presented as follows:

Zq(k) = Hq(k)Xq(k) + Vq(k) (16)

where Wq(k− 1) is the uncorrelated zero-mean Gaussian white noise, and its conversance matrix is
Qq(k− 1). The Markov probability transfer matrix determines the transfer between each of the model,
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and the element epq represents the probability of the model p transferring to the model q. The probability
transfer matrix is represented as follows:

E =


e11 · · · e1s
· · · · · · · · ·

es1 · · · ess

 (17)

The IMM algorithm runs recursively, and each recursion is mainly divided into the following
four steps:

(1) Interactive input (model q):

Based on the estimation state X̂p(k − 1) and the model probability µp(k − 1) of each filter at the
filtering step k − 1, the mixed estimation state X̂0q(k − 1), and the covariance matrix P0q(k − 1) is
obtained, and the mixed estimation results are regarded as the initial states of the current recursion.
The specific parameters are calculated as follows:

The prediction probability of the model q can be represented as

cq =
s∑

p=1

epqµp(k− 1) (18)

The mixed probability of the model p transfer to the model q is

µpq(k− 1) = epqµp(k− 1)/cq (19)

The mixed estimation state of the model q is represented as

X̂0q(k− 1) =
s∑

p=1

X̂p(k− 1)µpq(k− 1) (20)

Then the mixed covariance matrix estimation of the model q is represented as

P0q(k− 1) =
s∑

p=1
µpq(k− 1)

{
Pp(k− 1) +

[
X̂p(k− 1) − X̂0q(k− 1)

]
·

[
X̂p(k− 1) − X̂0q(k− 1)

]T
} (21)

(2) Kalman filtering (model q):

Take X̂0q(k − 1), P0q(k − 1) and Z(k) as the input of the Kalman filter, then the estimation state
X̂q(k) and the estimation covariance matrix Pq(k) can be updated.

The prediction state is
X̂q(k|k− 1) = Φq(k|k− 1)X̂0q(k− 1) (22)

The prediction covariance matrix is

Pq(k|k− 1) = Φq(k|k− 1)P0q(k− 1)Φq (k|k− 1)T + Γq(k)Qq(k)Γq(k)
T (23)

The gain of the Kalman filter is

Kq(k) = Pq(k|k− 1)H(k)T
[
H(k)Pq(k|k− 1)H(k)T + R(k)

]−1
(24)

The estimation state X̂q(k) is

X̂q(k) = X̂q(k|k− 1) + Kq(k)
[
Z(k) −H(k)Xq(k|k− 1)

]
(25)
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Then the estimation covariance matrix Pq(k) is

Pq(k) =
[
I−Kq(k)H(k)

]
Pq(k|k− 1) (26)

(3) Model probability updating (model q):

The likelihood function is applied to update the model probability µq(k), the likelihood function
of the model q can be presented as

ϑq(k) =
1

(2π)n/2
∣∣∣Tq(k)

∣∣∣1/2
exp

{
−

1
2
ρq(k)

TT−1
q (k)ρq(k)

}
(27)

where
ρq(k) = Z(k) −H(k)X̂q(k|k− 1) (28)

Tq(k) = H(k)Pq(k|k− 1)H(k)T + R(k) (29)

Then, the probability of the model q is

µq(k) = ϑq(k)cq/c (30)

where c is a normalization constant, and c =
s∑

q=1
ϑq(k)cq.

(4) Interactive output:

Based on the probability of each model, the estimation result of each filter can be combined,
then the mixed estimation state X̂(k) and the mixed covariance matrix estimation P(k) can be calculated.

Consequently, the mixed estimation state can be presented as

X̂(k) =
s∑

q=1

X̂q(k)µq(k) (31)

In addition, the mixed estimation covariance matrix can be presented as

P(k) =
s∑

q=1

µq(k)
{
Pq(k|k− 1) +

[
X̂q(k) − X̂(k)

][
X̂q(k) − X̂(k)

]T
}

(32)

In general, the whole output results of the IMM algorithm are the combined values of all filters,
and the weight factor of each filter is the model probability that represents the accuracy of the current
motion state of the system. The schematic diagram of the proposed adaptive federated IMM filter is
presented in Figure 2.
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4. AUV Integrated Navigation System Model

4.1. System Error Dynamics Model

This paper defines “east-north-up (ENU)” as the navigation frame, and “right-forward-up” as the
body frame. The SINS’ state equation in a continuous-time system can be constructed as follows:

.
X(t) = F(t)X(t) + G(t)W(t) (33)

where X(t) is the (n × 1) state estimation,
.

X(t) is the (n × 1) one step predicted state, F(t) is the (n × n)
state transition matrix, G(t) is the system noise matrix, and W(t) is the zero-mean Gaussian white noise.

In the model of the AUV integrated navigation system, fifteen dimensions’ states are selected to
establish the equation of states. The system’s states can be expressed as follows:

X(t) =
[
φE,φN,φU, δVE, δVN, δVU, δL, δλ, δh, εx, εy, εz,∇x,∇y,∇z

]T
(34)

where ϕE, ϕN, and ϕU are the misalignment angles; δVE, δVN and δVU are the velocity errors; δL,
δλ and δh are the latitude error, longitude error, and height error, respectively; εx, εy, and εz are the
gyro drifts; and ∇x, ∇y and ∇z are the accelerometer biases.

The instruction angular velocity and gyro bias influence the attitude angle error of the SINS.
The attitude error equations in ENU axes are as follows:

.
φE = φN(ωie sin L + VE

RN+h tan L) −φU(ωie cos L + VE
RN+h ) −

δVN
RM+h

+δh VN

(RM+h)2 − εE
(35)

.
φN = −φE(ωie sin L + VE

RN+h tan L) −φU
VN

RM+h − δLωie sin L + δVE
RN+h

−δh VE

(RN+h)2 − εN
(36)

.
φU = φE(ωie cos L + VE

RN+h ) + φN
VN

RM+h + δL(ωie cos L + VE
RN+h sec2 L)

+ δVE
RN+h tan L −δh VE tan L

(RN+h)2 − εU
(37)

where L is the latitude, RM is the radius of curvature in meridian, and RN is the radius of curvature in
prime vertical.



Sensors 2020, 20, 6806 9 of 25

The output of inertial components is processed by the SINS to obtain the navigation data.
The analytical relationship between the accelerometer output and the carrier’s velocity can be described
by the velocity error equation. The velocity error equations in ENU axes are as follows:

δ
.

VE = φU fN −φN fU + δVN
(
2ωie sin L + VE tan L

RN+h

)
− δVU

(
2ωie cos L + VE

RN+h

)
+δVE

VN tan L−VU
RN+h + δL

[
2ωie(VU sin L + VN cos L) + VNVE

RN+h sec2 L
]

+δh VUVE−VNVE tan L
(RN+h)2 +∇E

(38)

δ
.

VN = φE fU −φU fE − δVN
VU

RM+h − δVU
VN

RM+h − δVE · 2
(
ωie sin L + VE tan L

RN+h

)
−δL

(
2VEωie cos L +

V2
E

RN+h sec2 L
)
+ δh

[
VNVU

(RM+h)2 +
V2

E tan L

(RN+h)2

]
+∇N

(39)

δ
.

VU = −φE fN + φN fE + δVN
2VN

RM+h + δVE · 2
(
ωie cos L + VE

RN+h

)
−δL · 2VEωie sin L− δh

[
V2

N

(RM+h)2 +
V2

E

(RN+h)2

]
+∇U

(40)

The position error equations in ENU axes are as follows:

δ
.
L =

δVN

RM + h
− δh

VN

(RM + h)2 (41)

δ
.
λ =

δVE

RN + h
sec L + δL

VE

RN + h
tan L sec L− δh

VE sec L

(RN + h)2 (42)

δ
.
h = δVU (43)

4.2. System Measurement Model

The measurement equation of the AUV integrated navigation system can be expressed as follows:

Z(t) = H(t)X(t) + V(t) (44)

In the AUV integrated navigation system, SINS is chosen as the basic navigation system, and the
aided navigation sensor can be chosen according to the actual situation. In this paper, DVL and TAN are
chosen as the aided navigation sensors. Therefore, there will be two integrated system measurement
equations that are discussed respectively as follows:

(1) SINS/DVL measurement equation

The DVL provides velocity information for the AUV. As shown in Equation (45), the measurement
information of the SINS/DVL measurement equation consists of the difference between the east
velocity VSE, north velocity VSN and up velocity VSU exported by the SINS and the east velocity VDE,
north velocity VDN and up velocity VDU exported by the DVL.

ZSINS/DVL(t) =


VSE −VDE

VSN −VDN

VSU −VDU

 =

δVSE − δVDE + ζE

δVSN − δVDN + ζN

δVSU − δVSU + ζU


=


01×3 1 0 0 01×9

01×3 0 1 0 01×9

01×3 0 0 1 01×9

X(t) + VSINS/DVL

(45)

where δVSE, δVSN, δVSU are the east velocity error, north velocity error and up velocity error of the
SINS, respectively; δVDE, δVDN, δVSU are the east velocity error, north velocity error and up velocity
error of the DVL, respectively; ζE, ζN, ζU are the measurement noises of the SINS/DVL integrated
navigation system, they are the independent zero-mean Gaussian white-noise sequences.
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(2) SINS/TAN measurement equation

The TAN provides position information for the AUV. As shown in Equation (46), the measurement
information of the SINS/TAN measurement equation consists of the difference between the latitude
LSINS, longitude λSINS and height hSINS exported by the SINS and the latitude LTAN, longitude λTAN
and height hTAN exported by the TAN.

ZSINS/TAN(t) =


LSINS − LTAN
λSINS − λTAN
hSINS − hTAN

 =

δLSINS − δLTAN + ηL

δλSINS − δλTAN + ηλ
δhSINS − δhTAN + ηh


=


01×6 1 0 0 01×6

01×6 0 1 0 01×6

01×6 0 0 1 01×6

X(t) + VSINS/TAN

(46)

where δLSINS, δλSINS, δhSINS are the latitude error, longitude error and height error of the SINS,
respectively; δLTAN, δλTAN, δhTAN are the latitude error, longitude error and height error of the TAN,
respectively; ηL, ηλ, ηh are the measurement noises of the SINS/TAN integrated navigation system,
they are the independent zero-mean Gaussian white-noise sequences.

5. Experimental Results and Discussions

5.1. Experimental Settings

In order to verify the proposed adaptive federated IMM filtering method in the AUV integrated
navigation system, an integrated navigation experiment in a real system was conducted. The vehicle
experiment was carried out outdoors in Beijing, China. The approximate location was east longitude
116◦ and north latitude 39◦. To simulate the output of DVL and the output of TAN in the AUV
integrated navigation system, an odometer and a GNSS receiver were adopted. The odometer
provided measurement values of velocities and the GNSS receiver provided measurement values of
positions, respectively, in the integrated navigation experiment. Figure 3 shows the experimental
vehicle platform that includes the SINS, GNSS receiver, odometer, navigation computer, power source,
and communication lines. The SINS and the odometer used in the experiments are shown in
Figures 4 and 5, respectively.
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When the integrated navigation experiment was conducted, the reference baseline information was
provided by a high-accuracy GNSS/SINS integrated navigation system consisting of a high-accuracy
SINS and a GNSS receiver. The reference information system provides precise information on attitudes,
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velocities, and positions during the whole experiment. The experimental integrated navigation
system that is implemented with the proposed adaptive federated IMM filtering method includes a
low-accuracy SINS, a GNSS receiver, and an odometer. The detailed specifications of the instruments in
the experimental integrated navigation system are listed in Table 1. The update frequency of the SINS
was 200 Hz, and the cycle of attitude solution was 5 ms. The data update cycles of the odometer and the
GNSS receiver were all 1 s. To realistically simulate the output of the DVL and the output of the TAN in
the underwater environment, noises were added to the outputs of the odometer and the GNSS receiver.
To be more specific, during the time intervals of 0–150 s, 150–300 s, and 300–600 s, measurement
noises of different levels and different properties were added to the output of the odometer and the
output of the GNSS receiver, respectively. Furthermore, the measurement noises added to the output
of the odometer and the output of the GNSS receiver were also different from each other. Moreover,
the integrated navigation experiment was designed to be close to the experiment in AUV integrated
navigation system.
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Table 1. Specifications of the instruments in the integrated navigation experiment.

Instruments Parameters Accuracy

SINS

three-axis gyro random constant drifts
three-axis gyro random noise

three-axis accelerometer random constant biases
three-axis accelerometer random noise

1.0◦/h (1σ)
0.25◦/h1/2 (1σ)

0.1 mg (1σ)
0.04 µg /Hz1/2 (1σ)

Odometer Velocity 120 pulse/circle
GNSS receiver Position 10 m (1σ)
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In the adaptive federated IMM filtering method, the specific parameters of the probability transfer
matrix E are set as follows:

E =


0.9 0.05 0.05

0.05 0.9 0.05
0.05 0.05 0.9

 (47)

The variance matrix of measurement noise in the SINS/DVL integrated navigation system is R1

= diag [0.1 m/s, 0.1 m/s]2. In the proposed adaptive federated IMM filtering method, there are three
models for the SINS/DVL integrated navigation system, and the variance matrices of the measurement
noise for those three models are R1, 3R1, 8R1, respectively.

The variance matrix of measurement noise in the SINS/TAN integrated navigation system is R2 =

diag [10 m, 10 m]2. In the proposed adaptive federated IMM filtering method, there are three models
for the SINS/TAN integrated navigation system, and the variance matrices of the measurement noise
for those three models are R2, 5R2, 10R2, respectively.

In the integrated navigation experiment, the test vehicle ran on the road, and the power source
powered the SINS, the GNSS receiver, the odometer, and the high-accuracy GNSS/SINS reference
baseline system. Then the real-time output data of the experimental integrated navigation system and
the reference baseline system were transmitted to the navigation computer via communication lines.
In the whole integrated navigation experiment, the navigation computer recorded the sensor data in
real-time for subsequent processing.

5.2. Experimental Results and Discussions

To compare the integrated navigation effect under different filtering methods, the federated
Kalman filter, the adaptive federated Kalman filter, and the adaptive federated IMM filter were
separately applied in the real experiment. The integrated navigation experiment lasted for 600 s.
Figure 6 shows the estimation trajectories of the integrated navigation experiment by using the three
filtering methods. In Figure 6, the black line represents the true trajectory, the blue line represents the
estimation trajectory of the federated Kalman filter, the green line represents the estimation trajectory
of the adaptive federated Kalman filter, and the red line represents the estimation trajectory of the
adaptive federated IMM filter. It can be seen from Figure 6 that all three filtering methods can be
used for integrated navigation. But from the partially enlarged figure, the estimation trajectory of
the adaptive federated IMM filter is the closest to the true trajectory compared with the estimation
trajectories of the adaptive federated Kalman filter and the federated Kalman filter. The estimation
trajectory of the adaptive federated Kalman filter is closer to the true trajectory compared with that of
the federated Kalman filter. It indicates that among the three filtering methods, the proposed adaptive
federated IMM filter can achieve the highest accuracy of integrated navigation, and the adaptive
federated Kalman filter is second, followed by the federated Kalman filter.

To further analyze the results of integrated navigation by using the three filtering methods in
detail, the attitude angles, velocities, and positions of the integrated navigation system are presented,
respectively, in this paper. The estimation curves of heading angle and heading angle error are
presented in Figures 7 and 8, respectively. From Figure 7, the heading angle of the test vehicle changes
between 100◦ and −50◦ in the whole integrated navigation experiment, and it has a big range of change.
The estimation values of the heading angle based on the three filtering methods can all track the change
of the true heading angle, but the estimation accuracies are different.
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It can be seen from Figure 8 that the estimation values of heading angle error of the federated
Kalman filter are the biggest. The estimation values reach the maximum value of 9.38◦ around 100 s,
and after that they reduce to 2.68◦ at 600 s. The estimation values of the adaptive federated Kalman filter
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are smaller than that of the federated Kalman filter. Its estimation values reach the maximum value of
6.31◦ around 100 s, and after that they reduce to 1.05◦ at 600 s. Comparatively, the estimation values of
the adaptive federated IMM filter is the smallest. Its estimation values reach the negative maximum
value of −0.63◦ around 50 s, then after that the estimation values tend to stabilize around 0.26◦, and they
are little influenced by the change of external disturbances. This is because the proposed adaptive
federated IMM filter uses different models for each local system, when the external disturbances
change the model for each local system can switch in time. Therefore, the adaptive federated IMM filter
can use the most accurate model to describe the current state of each local system, and the estimation
values of heading angle error can be effectively reduced.

The estimation curves of pitch angle and pitch angle error are presented in Figures 9 and 10,
respectively. In Figure 9, the pitch angle of the test vehicle changes between 2◦ and −3◦ in the integrated
navigation experiment. Although the estimation values of pitch angle from the three filtering methods
are close to the true pitch angle, there still are some differences.
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It can be seen from Figure 10 that when using the federated Kalman filter, the estimation values
of pitch angle error reach the maximum value of 0.89◦ around 60 s, and after that they begin to
reduce to smaller values with some fluctuations. When using the adaptive federated Kalman filter,
the estimation values reach the maximum value of 0.57◦ around 60 s, and after that they begin to
reduce with fluctuations smaller than that of the federated Kalman filter. In contrast, when using the
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adaptive federated IMM filter, the estimation values reach the maximum value of 0.50◦ around 30 s,
and after that they quickly form pattern more stable than the other two filtering methods.

Correspondingly, the estimation curves of roll angle and roll angle error are shown in Figures 11
and 12, respectively. As shown in Figure 11, the roll angle of the test vehicle changes between 2.5◦

and −2.5◦ in the integrated navigation experiment. The estimation values of the roll angle of all three
filtering methods are close to the true roll angle, but there are still some differences.
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It can be seen from Figure 12 that when using the federated Kalman filter, the estimation values of
roll angle error reach a negative maximum value of −0.65◦ around 20 s and a positive maximum value
of 0.75◦ around 90 s, and they are greatly affected by the external noises. When using the adaptive
federated Kalman filter, the estimation values of roll angle error reach a negative maximum value
−0.33◦ around 20 s and a positive maximum value of 0.57◦ around 90 s, and they are less affected by
the external noises. In contrast, when using the adaptive federated IMM filter, the estimation values
only reach a negative maximum value of −0.22◦ around 20 s, and after that, the estimation values
become distinctly more stable than those from the other two filtering methods.

The estimation curves of east velocity and east velocity error are shown in Figures 13 and 14,
respectively. As shown in Figure 13, the east velocity changes between −20 m/s and 15 m/s.
The estimation values of east velocity of three filtering methods can all track the change of the
true east velocity, but their estimation accuracy is different. From the partially enlarged figure,
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the estimation values of east velocity of the adaptive federated IMM filter is the closest to the true
east velocity.
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As shown in Figure 14, when using the federated Kalman filter, the estimation values of east
velocity error have large fluctuations within 300 s, with a maximum value of 1.68 m/s around 200 s.
When using the adaptive federated Kalman filter, the estimation values reach a maximum value of
1.05 m/s around 200 s, and the fluctuations are smaller than those of the federated Kalman filter.
Comparatively, when using the adaptive federated IMM filter, the estimation values keep stable in the
whole process, and its fluctuations are the smallest among the three filtering methods. This is because
the proposed adaptive federated IMM filter can switch the model of each local system in time when the
external disturbances change, and the most accurate model can be established to describe the current
motion state.

The estimation curves of north velocity and north velocity error are shown in Figures 15 and 16,
respectively. From Figure 15, the north velocity changes between 0 and 20 m/s. It can be seen
from the partially enlarged figure that the estimation values of north velocity by using the adaptive
federated IMM filter is the closest to the true north velocity compared with that by using the other two
filtering methods.
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As shown in Figure 16, when using the federated Kalman filter, the estimation values of north
velocity error have a couple of big fluctuations within 350 s, and the estimation values reach a negative
maximum value of −1.99 m/s around 50 s. Therefore, its estimation values are greatly affected by
the external noises during the integrated navigation experiment. When using the adaptive federated
Kalman filter, the estimation values reach a negative maximum value of −0.99 m/s around 110 s,
and the fluctuations are distinctly smaller than those using the federated Kalman filter. Comparatively,
when using the adaptive federated IMM filter, its estimation values have the smallest fluctuations
among all three filtering methods.

The estimation curves of latitude and latitude error are shown in Figures 17 and 18, respectively.
Because the position is the integral of velocity, the estimation curves of position are smoother than
that of velocity. From Figure 17, the estimation curves by using all the filtering methods can track the
change of latitude, but the estimation values of latitude by using the adaptive federated IMM filter are
the closest to the true latitude among the three filtering methods.

From Figure 18, the estimation values of latitude error by using the federated Kalman filter exist
big fluctuations and they reach a negative maximum value of −13.10 m around 300 s. The estimation
values by using the adaptive federated Kalman filter reach a maximum value of 7.29 m around
100 s, and its estimation values have smaller fluctuations than that using the federated Kalman filter.
In contrast, when using the adaptive federated IMM filter, the estimation values of latitude error are
distinctly more stable than that using the other two filtering methods.
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Correspondingly, the estimation curves of longitude and longitude error are shown in Figures 19
and 20, respectively. As shown in Figure 19, the estimation values of longitude by using the adaptive
federated IMM filter are closer to the true longitude compared with that using the federated Kalman
filter and the adaptive federated Kalman filter.

Moreover, it can be seen from Figure 20 that when using the federated Kalman filter the estimation
values of longitude error reach a maximum value of 37.44 m around 200 s, and they are greatly affected
by the external disturbances. When using the adaptive federated Kalman filter, the estimation values
reach a maximum value of 27.59 m around 200 s, and they are less affected by the external disturbances
than that using the federated Kalman filter. Comparatively, when using the adaptive federated IMM
filter, the estimation values of longitude error are the least affected by the external disturbances and
they keep stable in the whole process of integrated navigation.

Consequently, the estimation curves of position error are shown in Figure 21. It can be seen that
the estimation curves of position error of the federated Kalman filter have some large fluctuations
during the 600 s of integrated navigation, and its estimation values reach a maximum value of 37.49 m
around 200 s. When using the adaptive federated Kalman filter, the estimation values reach a maximum
value of 27.73 m around 200 s, and the fluctuations are smaller than that using the federated Kalman
filter. By contrast, when using the adaptive federated IMM filter, the estimation values of position
error are the least affected by the external disturbances, and the fluctuations are the smallest among the
three filtering methods. The mean absolute errors (MAEs) of position error when using the federated
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Kalman filter, the adaptive federated Kalman filter, and the adaptive federated IMM filter are 10.87 m,
7.36 m, 3.82 m, respectively. As a result, the position error when using the adaptive federated IMM
filter was reduced by 64.86% and 48.10%, respectively, compared with the federated Kalman filter
and the adaptive federated Kalman filter. In summary, the MAEs and standard deviations (STDs) of
integrated navigation errors when using the three filtering methods are listed in Table 2.
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In the AUV integrated navigation experiment, the external environment is complex and
time-varying, and the disturbances in the underwater environment are bigger than those on the
land. Therefore, the outputs of the DVL and the TAN are easily disturbed by the underwater
environment, and the output accuracy of the DVL and the TAN is decreased and is unstable. When the
beams of the DVL are unable to reach the seabed, the accuracy of the SINS/DVL measurement model is
decreased. When the underwater map information is inaccurate in some places, or the underwater
terrain is relatively flat, the SINS/TAN measurement model is unable to provide accurate position
information. To solve this problem, the proposed adaptive federated IMM filter is designed to
adaptively adjust the information sharing coefficients of the local SINS/DVL system and the local
SINS/TAN system during the integrated navigation experiment. Figure 22 shows the values of the
information sharing coefficient in the adaptive federated IMM filter. It can be seen that, when the
performance of each local system changes, the information sharing coefficients of the local SINS/DVL
system and the local SINS/TAN system are adjusting in real time.
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Table 2. The mean absolute errors (MAEs) and standard deviations (STDs) of integrated navigation
errors by the three filtering methods.

Parameter Errors
Federated Kalman Filter Adaptive Federated Kalman Filter Adaptive Federated IMM Filter

MAE STD MAE STD MAE STD

Heading Angle (◦) 3.99 1.97 1.54 1.35 0.33 0.12
Pitch Angle (◦) 0.25 0.20 0.22 0.10 0.21 0.07
Roll Angle (◦) 0.14 0.23 0.14 0.13 0.13 0.07

East Velocity (m/s) 0.23 0.59 0.14 0.34 0.02 0.22
North Velocity (m/s) 0.14 0.60 0.05 0.30 −0.02 0.25

Latitude (m) −0.99 4.20 −0.62 2.79 −0.26 1.64
Longitude (m) 4.58 11.68 2.76 7.79 0.78 3.97
Position (m) 10.87 7.59 7.36 4.72 3.82 2.13
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Moreover, the model probabilities of the local SINS/DVL system and the local SINS/TAN system
in the proposed adaptive federated IMM filter are presented in Figures 23 and 24, respectively. It can
be seen that during the process of integrated navigation, the model probability of each local system
switches in real-time, and the most accurate model can be established to describe the current state of
the local system.
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The three filtering methods are coded with C++ and the integrated navigation experiments are
run on a computer with Intel Core i7-6500 CPU at 2.50 GHz. The implementation times of the three
filtering methods in single step run (a single prediction and update step) are listed in Table 3. It can be
seen from Table 3 that the implementation time of the proposed adaptive federated IMM filter in single
step run is 2.96 × 10−3 s. Therefore, the proposed filtering method can ensure running in real-time
during the integrated navigation experiments, and it is fast enough in real-world applications.

Table 3. The implementation times of the three filtering methods in single step run.

Filtering Methods Time (s)

Federated Kalman Filter 9.61 × 10−4

Adaptive Federated Kalman Filter 9.72 × 10−4

Adaptive Federated IMM Filter 2.96 × 10−3

In order to further compare the federated Kalman filter, the adaptive federated Kalman filter,
and the adaptive federated IMM filter in the process of integrated navigation, this study designed a
total of 30 groups of vehicle integrated navigation experiments on a real platform. The test vehicle’s
moving trajectories, running speeds, and conditions of the road surface are entirely different in those
experiments. In each experiment, the SINS, GNSS receiver, odometer were restarted before working.
The line charts of the MAEs of position errors in 30 groups of integrated navigation experiments are
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shown in Figure 25, and the MAEs of position errors in 30 groups of integrated navigation experiments
are listed in Table 4.
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Figure 25. The mean absolute errors (MAEs) of position errors in 30 groups of integrated
navigation experiments.

Table 4. The MAEs of position errors (m) in 30 groups of integrated navigation experiments.

Number Federated Kalman Filter (m) Adaptive Federated Kalman Filter (m) Adaptive Federated IMM Filter (m)

1 10.87 7.36 3.82
2 13.06 9.51 4.23
3 11.87 8.43 4.06
4 10.12 7.14 3.35
5 14.42 10.67 4.78
6 10.07 8.11 3.24
7 11.25 7.68 3.89
8 13.43 9.95 5.21
9 11.98 8.51 4.09
10 10.49 7.04 3.26
11 10.86 7.56 3.08
12 13.65 10.04 5.33
13 15.51 11.27 4.56
14 12.90 7.57 3.18
15 11.35 7.84 3.77
16 12.57 9.21 4.39
17 11.87 8.64 3.31
18 10.76 7.45 2.89
19 12.30 8.93 4.41
20 15.83 10.94 5.42
21 11.74 8.87 4.60
22 10.18 7.16 3.14
23 9.59 7.03 3.91
24 10.94 7.81 4.07
25 10.89 8.10 4.35
26 9.75 7.23 3.57
27 13.70 11.25 5.04
28 11.66 7.59 4.11
29 10.52 7.14 3.36
30 11.78 8.10 4.53

From Figure 25 and Table 4, it can be seen that in those vehicle integrated navigation experiments,
the position errors determined when using the adaptive federated IMM filter are obviously smaller
than those determined when using the federated Kalman filter and the adaptive federated Kalman
filter. By calculation, the mean position errors of 30 groups of integrated navigation experiments by
using the federated Kalman filter, the adaptive federated Kalman filter, and the adaptive federated
IMM filter are 11.86 m, 8.47 m, and 4.03 m, respectively. As a result, the mean position error determined
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when using the adaptive federated IMM filter was reduced by 66.02% compared with the federated
Kalman filter and 52.42% compared with the adaptive federated Kalman filter. The position errors of
those vehicle integrated navigation experiments further illustrate that the proposed adaptive federated
IMM filter can effectively improve the accuracy of integrated navigation, and it has obvious advantages
compared with the federated Kalman filter and the adaptive federated Kalman filter.

6. Conclusions

In this paper, an adaptive federated IMM filter for the AUV integrated navigation system is
presented. The adaptive federated IMM filter combines an adaptive federated filter and IMM algorithm
to improve the accuracy and reliability of the AUV integrated navigation system in the complex
underwater environment. The information sharing coefficient of the adaptive federated IMM filter is
adaptively adjusted when the performance of each local system changes. Meanwhile, each local system
of the integrated navigation system includes different models, with the change of the underwater
environment, and the adaptive federated IMM filter can use the most accurate mixed model to describe
the current state of the local system. Furthermore, an AUV integrated navigation system model
that includes the system error dynamics model, SINS/DVL and SINS/TAN measurement models
was established.

In order to verify the effectiveness of the adaptive federated IMM filter, a total of 30 groups of
vehicle integrated navigation experiments on a real platform were performed. The experimental
results show that the proposed adaptive federated IMM filter has obvious advantages compared with
the federated Kalman filter and the adaptive federated Kalman filter. The research presented in this
paper provides a new idea for AUV integrated navigation system in the underwater environment.
Further work will focus on the practical application of AUV in the underwater environment to validate
the performance of the proposed method.
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