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Abstract: The desire to remain living in one’s own home rather than a care home by those in need of
24/7 care is one that requires a level of understanding for the actions of an environment’s inhabitants.
This can potentially be accomplished with the ability to recognise Activities of Daily Living (ADLs);
however, this research focuses first on producing an unobtrusive solution for pose recognition where
the preservation of privacy is a primary aim. With an accurate manner of predicting an inhabitant’s
poses, their interactions with objects within the environment and, therefore, the activities they are
performing, can begin to be understood. This research implements a Convolutional Neural Network
(CNN), which has been designed with an original architecture derived from the popular AlexNet,
to predict poses from thermal imagery that have been captured using thermopile infrared sensors
(TISs). Five TISs have been deployed within the smart kitchen in Ulster University where each
provides input to a corresponding trained CNN. The approach is evaluated using an original dataset
and an F1-score of 0.9920 was achieved with all five TISs. The limitations of utilising a ceiling-based
TIS are investigated and each possible permutation of corner-based TISs is evaluated to satisfy a
trade-off between the number of TISs, the total sensor cost and the performances. These tests are
also promising as F1-scores of 0.9266, 0.9149 and 0.8468 were achieved with the isolated use of four,
three, and two corner TISs, respectively.
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1. Introduction

There is a growing need for environments that not only facilitate 24/7 care but also fulfil the desire
for one’s privacy at home. An environment that can provide such necessities is known as a smart
environment and has been defined as being able to not only acquire but also apply the knowledge
gained from the environment and those in it to improve the experience within the environment [1].
Effectively providing automated care within an environment while providing sufficient privacy can be
a challenging and potentially contradictory objective. The need for this type of care environment arises
from the frequently highlighted fact that the world’s population will increase from 7.7 to 8.5 billion
by 2030 and that by 2050 the number of people aged over 65 will outnumber those aged from 15–24,
with projections showing that 16% of the world’s population will be aged 65 or older [2]. It can,
therefore, be anticipated that the number of people requiring care (either in their own home or a secure
and safe environment) will increase and so the need to provide “aging in place” will become more
significant. Findings have shown that to elderly people, “aging in place” means that they would be
able to continue to live with a degree of independence and autonomy [3]. Facilitating feelings of
familiarity and security have been shown to be important aspects of providing “aging in place” and so
allowing someone to remain living at home rather than a care home is vital. This has been reinforced
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by the fact that those who have moved into institutionalised life have often lost motivation for their
own self autonomy and experienced feelings of isolation and depression [4].

Delivering the capability to provide 24/7 monitoring of those in need of care would significantly
benefit the healthcare professionals who have responsibility for such care. Expecting healthcare
professionals to be able to provide 24/7 care is neither realistic nor cost effective. Installing sensors
within the home is one way to allow for automated monitoring. Video cameras could potentially
be used, however, this would contradict the previously stated need for privacy as concerns for the
lack of privacy provided by video cameras have previously been expressed [5]. Thermal sensors
could provide a balance between descriptive data and privacy as images of the environment and its
inhabitants would be able to be captured while omitting any of their discernible features.

For suitable monitoring, it would be necessary to use sensors integrated throughout the home to
recognise and understand inhabitants’ actions in the context of daily life within the home. Such an
action is called an Activity of Daily Living (ADL) and covers all activities performed in full autonomy
in day to day life. Recognising the ADLs of a home’s inhabitants can, e.g., allow for accurate detection
of abnormal behaviour during the completion of activities, resulting in the detection of cognitive
decline [6]. Identifying such decline and providing warnings can be highly beneficial to caregivers.
Prior to detecting ADLs, it is important to understand how they are constructed as each ADL consists of
subactivities. An example of this can be highlighted by the ADL “making a tea/coffee,” where the ADL
itself can be made up of tasks such as “using the fridge, “opening the coffee cupboard” and “using the
kettle.” There are significant differences between each of these subactivities in terms of the inhabitant’s
body shape or “pose” when performing the subactivities. In this case, thermal-based sensors could be
used to classify the poses as they can effectively detect sources of heat, without identifying discernible
characteristics of the inhabitant, and thus provide a detailed and unobtrusive description of the
inhabitant’s pose. Accurately recognising the poses being performed can, therefore, be extremely
helpful in understanding the ADL being performed and potentially, the quality of its execution in
relation to assessments such as the Katz index [7].

There is potential that the accuracy and efficiency of providing “aging in place” can suffer due
to the common need for privacy measures, however, the unobtrusive and low-resolution nature of
the thermal sensors used in this work are a viable solution. Attempting automated and constant care
using sensors can, however, involve practical limitations of integrating sensors within the environment.
The challenge, therefore, is to find the correct balance between accuracy, privacy and practicality in the
approach to monitoring a smart environment.

The primary contributions of the research described in this paper are:

1. Investigation of the capabilities of utilising five thermal sensors to provide multiple perspectives
of a smart environment in conjunction with a Convolutional Neural Network to provide an
unobtrusive and noninvasive approach to recognising full body poses/actions.

2. Practical limitations of using a ceiling sensor are considered and the use of only the sensors
providing lateral views is tested. The various permutations and combinations of the sensors
are investigated to determine the trade-off between performance, cost and the number of
required sensors.

The remainder of the paper is structured as follows: Section 2 presents background and related
work; Section 3 discusses the proposed methodology for pose recognition using deep learning and
describes the experiments conducted to find the best performing sensor permutation; Section 4 presents
an analysis of the results obtained from the experiments; finally, Section 5 presents discussion and
conclusions along with details of limitations and future work.

2. Background

To understand the behaviour of an environment’s inhabitant, it is important to detect and recognise
the ADLs that are performed within the environment. Sensors can be used to collect data from known
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performances of ADLs to train machine learning algorithms to recognise the same ADLs from future
unseen data. Some sensors that can be used to collect this descriptive data are wearable and image
capture devices. Wearable devices can be placed on a person’s body to collect data as they perform
actions or ADLs. The data captured for each action acts almost as a fingerprint in its uniqueness for
classification tasks in which an inhabitant’s actions must be described to a machine learning algorithm.

Body worn accelerometers can be used to collect data that is descriptive of the wearer’s actions.
The pose or activity being performed can be represented numerically in the form of features extracted
from the sensor data. The study in [8] used body worn accelerometers to capture physiological data
from the performances of activities such as walking, running and jumping. The signal retrieved by
the sensors was first segmented to determine the beginning and ending of the activity and from this
segment, various features were extracted. The extracted features most useful for the classification of
the activity were then selected and any remaining features were deemed redundant and subsequently
discarded. The selected features were provided as the input for the random forest and C4.5 decision tree
machine learning algorithms where the output was a prediction of the activity class label. Once their
respective results were compared, it was found that the random forest produced the marginally better
performance with a 99.90% recognition rate, whereas the C4.5 decision tree achieved 99.87%.

Wearable devices were also successfully integrated for gesture recognition in [9]. In this study,
a flexible bracelet for electromyography (EMG) gesture recognition that boasted flexible solar panels
to charge the battery was proposed. The device consisted of four EMG sensors, and a selection of
features for EMG preprocessing were extracted for the classification problem. Of the tested features,
the Discrete Wavelet Transform (DWT) achieved the highest accuracy score and so was used in the final
application. The Support Vector Machine (SVM) was chosen as the classification algorithm to train and
test where the data was broken down into three datasets made up of different volunteers. To determine
the overall performance, fivefold cross-validation was applied. The five classes of gesture that were
targeted in this study were rest position, hand open, power grasp and pronation and supination of the
wrist. The experiment consisted of 3 people performing gestures while wearing the device. An average
accuracy of 94% was achieved while avoiding being intrusive in nature. Issues, however, may arise
from the utilisation of wearable sensors for gesture recognition solutions if the inhabitant forgets to
wear the device or decides not to wear it at all due to discomfort [10]. In the case of elderly people,
the residents may not accept such a system due to a lack of user friendliness and the need for specific
training for using the device [10,11]. The sensor’s battery life and constant need for recharging can
also limit the implementation of such a solution where there is a necessity for 24/7 monitoring within
the home [12].

Image capture devices such as visible spectrum video cameras can detect a person’s full range of
motion and so can be utilised to recognise the actions performed within the home. The importance of
this recognition capability is indicated by the study completed in [13] as detecting abnormal behaviour
can subsequently highlight potential health problems. An RGB-D video camera was positioned in the
ceiling to provide a top-down view of the environment where the camera was used to collect image
and depth data to locate the person as well as the 3D positions of their head and hands in each frame.
Sequences of the 3D positions were analysed during the completion of various activities so that the
Hidden Markov Model (HMM) could be trained to recognise activities from such head and hand
position sequences. An F1-score of 0.8000 was achieved with the HMM that utilised only the sequence
of head positions for its input.

An analysis on 3D posture data was conducted in [14], which included the recognition of various
gestures using an RGB-D camera. A Microsoft Kinect was used to capture images of the person from
which numerous joints were detected that would act as the features to aid in the classification of the
posture. A K-means clustering method detected the postures and for the classification of each posture,
an SVM was used. Each activity to be classified was defined as a unique sequence of known postures.
In one of the tests performed on the novel dataset, Kinect Activity Recognition Dataset, the 18 classes
of activities were split into two categories: gestures and actions. The gestures involved examples such
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as Bend, High Arm Wave and Horizontal Arm Wave while the actions included Drink, Phone Call and Walk.
The test was conducted to find how accurately the image-based system could classify the gestures
and actions that were based on similar postures. After the data samples of each subject were split into
two-thirds training and one-third testing, the gestures were recognised with an accuracy of 93.00%.

For classification tasks, there are various machine learning algorithms to select from.
Machine learning algorithms, such as SVMs and random forests, utilise a training dataset from
which descriptive and unique features are extracted. It is important that the extracted features are
effective at training the algorithm to accurately predict the classes within unseen data samples [15].
Nevertheless, [16] states that once the task of extracting features becomes almost as challenging as the
problem for which the machine learning model is used, this method of learning may not be suitable.
Alternatively, a more advanced manner of learning called deep learning can be used. Deep learning
algorithms obtain knowledge from experience where simple concepts are used to build complex
concepts. For example, corners and contours are simple concepts that can be combined to be defined
as edges, subsequently representing the concept of a person. It is also detailed in [16] that concepts are
built on top of one another, establishing multiple layers and a “deep” architecture.

A Convolutional Neural Network (CNN) is a type of deep learning neural network designed
to process series and image data. With the capability of automatically selecting features from the
input data, it can be useful to employ a CNN for recognition-based tasks involving images of 3D
shapes. Such tasks have previously been fulfilled using CNNs to recognise 3D shapes [17]. This work
was motivated by the theory that rather than using 3D shape descriptors, a 3D shape could be better
recognised using a series of views of the 3D shape rendered as 2D images. The Multiview CNN
(MVCNN) was designed by capturing 12 unique 2D views of the 3D shape that was to be recognised
and inputting the 2D images separately into the CNN. View-based features were then extracted and
inputted into a view-pooling layer. The shape descriptor was finally obtained by passing the extracted
features through the final part of the network. The network primarily consisted of five convolutional
layers, three fully connect layers and a softmax classification layer. After pretraining the network with
ImageNet [18], all of the 2D views for each 3D shape were used to finalise the training. The work
was evaluated on the Princeton ModelNet dataset [19] and compared against various other works.
The MVCNN outperformed each of the state-of-the-art descriptors. The MVCNN was fine-tuned
on the 2D views of the 3D shapes from the ModelNet training set. This fine-tuning bolstered the
performance, obtaining 89.9% classification accuracy. This accuracy was a 12.8% increase from a
state-of-the-art 3D shape descriptor, demonstrating how 3D objects within an environment can be
successfully recognised using a CNN without the need of 3D shape descriptors. Using multiple 2D
images representing various views of the object were instead shown to be a superior solution.

As there is potential for video cameras to have an intrusive nature [5] a different method of image
capture can be facilitated to avoid this. Various approaches for the preservation of privacy using
thermal imagery have been proposed, such as preserving privacy during the digitisation of the thermal
image, altering the sensor noise to remove facial features and the use of exposure bracketing to preserve
privacy in thermal high-dynamic range (HDR) images [20]. In the first approach, sensor values that fell
within the human temperature range were detected as the image was digitised and so their pixels were
zeroed. This prevented any successful recognition of a person’s face. The second approach was also
conducted during the creation of the image where microbolometer voltages and gain amplification of
the thermal device were altered to permit only image noise that would hide a person’s facial features.
The same gesture dataset consisting of 20 examples of 10 hand gesture classes was used for both
approaches to determine how well the gestures could be classified following the approach’s application.
A multiclass bag-of-words SVM-based classifier was trained, and an accuracy of 97% was achieved
with both approaches. In the third approach, areas within a thermal image equating to the temperature
range of human skin were removed by either overexposing or underexposing the pixels, while HDR is
maintained throughout the rest of the image.
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There has been a concern highlighted that even if a system was not designed to report images,
the images could still be accessed if the system was hacked. The study in [21] proposed an approach
to detecting and identifying people while the captured data preserved their privacy. The system,
called Lethe, used limited memory storage and data transmission so that full thermal images would
not be compromised in the event of the system being hacked. Two thermal cameras were stacked on
top of one another in a door frame to collect data as people walked through the door. Values that fell
within the range of human skin temperature were used for person detection where the direction of
movement was determined by comparing the current frame with the previous frame. Height was
chosen as the feature to detect a person’s identity as only the pixel representing the top of a person’s
head, within a single thermal camera’s Field of View (FOV), was required to determine their height.
Both cameras calculated a height value, which was used alongside the person’s distance from the
cameras to estimate their physical height. The experiment found that Lethe could predict the direction
of a person’s movement with an overall accuracy of 99.70%. In a best case example, 3 participants
were identified, as they passed though the doorway several times, with an accuracy of 99.10%. Pairs of
participants, with a difference of 5 cm or greater in their height when walking, were identified with
96.00% and an accuracy of 92.90% was achieved for differences of 2.5 cm. In total, 21 values were
required in the thermal camera’s memory for this approach, resulting in a memory requirement of
33 bytes. Only 0.69% of an image could, therefore, ever be stored on the 60 × 80 pixel thermal camera
that was used in this study. A low data rate hardware transmitter was also used in the attempt to
preserve privacy. The transmissions from the device were expected to last a minimum of 0.366 s,
therefore, the data rate was only required to be 30 bytes per second. The limited memory storage
alongside the low data rate ensured that full thermal images could not be taken from the device.

Thermopiles use thermal energy as their input in order to output a voltage in the range of tens
of hundreds of millivolts. This voltage is directly proportional to the local temperature difference on
the thermopile. The thermopiles can be used to provide a level of spatial temperature averaging [22],
therefore, the imaging solution can be realised and has been done so through the development of
thermopile 2D arrays [23]. The thermopile infrared sensor (TIS) devices generate temperature values
of the local space that are stored within arrays whose sizes range from 8×8 to 120x84 The temperature
values generated at any given instant can be used to generate a thermal image by scaling the values
to the range of 0–255. In such a case, each value would represent a pixel’s grey level. This would
result in the hottest aspects of the image being represented by pixels closer to the upper limit of the
range (white) with the colder portions being represented by pixels closer to the lower limit (black).
The thermal images produced can clearly show the heat signature of the person within a monitored
space, however, no discernible characteristics of the person’s body or their face can be seen [24].

In contrast to the previously highlighted privacy preserving approaches, our work utilises
the low-resolution images captured by TISs. High-resolution thermal images have proven to be
advantageous while preserving privacy [20,21] where the facial features of a person were successfully
hidden while maintaining a high-quality image for the rest of the scene. A high resolution was
particularly practical in [21] as identifying the pixel representing the top of a person’s head allowed
for the eventual estimation of their height, therefore, facilitating the identification of the person.
A low-resolution image would not allow for an accurate determination of the top of the head,
subsequently hindering the system’s capability to use height to accurately differentiate between people.
For our work, however, only the differences in shape of the inhabitant’s heat signature between
different pose classes and their position within the frame are needed from the data, therefore, the TIS
provides sufficient information. The low resolution of the data benefits our approach as no image
processing techniques are necessary to remove characteristics of the person’s face from the data,
therefore, if a system incorporating TIS data was hacked, privacy would still be preserved. Unlike the
previously detailed work that is able to maintain a high resolution for the environment within the
images, the low-resolution TIS data is unable to include details of the environment. This feature is
not, however, necessary for our work’s application area and, instead, our work benefits from a lack
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of environmental detail as images of one’s home cannot be recorded, subsequently improving the
privacy preservation.

In our previous work with TISs, we proposed an approach for inferring basic activities performed
within a smart kitchen, such as using the fridge and sitting at the kitchen table [25]. This was
accomplished by combining knowledge of the inhabitant’s pose with the object that was “nearest” to
the person at the time of the pose performance. The “nearest” object was determined using the ceiling
TIS frame to calculate the Euclidean distance between the person and each kitchen object, whereby if
the shortest distance was less than an empirically chosen threshold, the person was deemed “near” the
object. The pose prediction and “nearest object” calculation pairing was used in conjunction with one
another to infer the most likely activity being performed, e.g., when the person bent down while near
the fridge, it was inferred that the fridge was being used.

Seven poses were selected for classification: left arm extended forwards, right arm extended
forwards, left arm extended sideward, right arm extended sideward, bending, sitting and both arms
down. Random forest, SVM and complex decision tree machine learning models were each utilised to
classify the poses and a comparison was conducted where the random forest was found to be the best
performing model. Both the training data and the testing data were captured using two TISs integrated
within the environment. One TIS was embedded in the ceiling to provide a top-down perspective of
the pose performances and one was positioned in a corner of the room to provide a lateral perspective.
For each pose performance, the person’s heat signature was detected within both the ceiling TIS frame
and the corner TIS frame. From the person’s heat signature in both TIS frames, 14 unique features were
extracted, upon which both features vectors were combined to result in a feature vector consisting
of 28 feature values. This feature vector was used as the random forest’s input where a prediction
for the pose was the subsequent output. The poses were classified at a rate of 88.91% and the nearest
objects were calculated with an accuracy of 81.05%. The activities were inferred with an accuracy of
91.47%, therefore, demonstrating how low-resolution thermal imagery could be effectively utilised for
the prediction of poses and, resultantly, the inference of activities.

As shown by our previous work, using TIS data to recognise the poses being performed can
provide an understanding of the activities an inhabitant conducts within the smart environment,
while preserving privacy. It was believed, however, that the pose recognition rate could be significantly
improved from what was achieved in our previous work. The work conducted in this paper,
therefore, introduces two major changes to the previous pose recognition approach. The first change
was that the number of TISs deployed in the smart kitchen was increased from two to five. It was
hypothesised that introducing the means of capturing additional perspectives of each pose performance
would reduce misclassifications that resulted from either the person not being detected by a TIS or part
of their pose being occluded. How CNNs could be used with the TIS data in place of the random forest
machine learning algorithm was the second change. Where a single random forest was previously
used and relied on feature level fusion for its input, in this work, CNNs were used to correspond with
each of the five TISs where the inputs were the TIS data recorded by each corresponding TIS. A minor
change to the approach was with regards to the number of pose classes. The differentiation between
the left and right arm whenever the inhabitant was extending an arm outward was determined to be a
redundant feature of the previous approach as, ultimately, it was only the extension of the arm itself
that was required to understand the actions of the inhabitant. For this reason, the work presented in
this paper does not include predictions for the specific arm that was being extended outwards during
the completion of a pose, only that an arm was being extended outwards.

This work is a low-level component of our overall proposed framework for ADL recognition,
which is depicted in Figure 1. This paper expands upon the pose recognition approach to improve
classification accuracy so that, ultimately, we will be able to improve upon our subactivity inference
rate in future work when we investigate the use of subactivity sequences to detect and predict ADLs.
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Figure 1. Our frame work for the production of an Activity of Daily Living (ADL) recognition approach
where the pose recognition stage is investigated in this work.

3. Materials and Methods

This section details the materials required for the experiment with regards to the sensors, the data
and the CNN architecture. In addition, discussed are the methods employed to determine the most
accurate permutation of TISs and CNNs that maintains a sufficient level of practicality.

3.1. Thermopile Infrared Sensor Details

A smart kitchen environment, located within Ulster University [26], was used for the deployment
of TISs. Within the smart environment, there are common kitchen objects: kettle, microwave overhead
cupboards, fridge and a kitchen table with four surrounding chairs. Images of the smart environment
are presented in Figure 2.
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Figure 2. (a) Photograph capturing the kitchen bench, fridge and overhead cupboards within the smart
environment and (b) photograph depicting the kitchen table and chairs in the smart environment.

TISs were installed in each of the room’s four corners and one TIS was embedded in the ceiling.
The deployment of TISs offered four lateral views of pose performances and one top-down view.
A top-down perspective of the environment is visualised in Figure 3 where the positions of each TIS
are labelled. The laterally positioned sensors were stabilised using tripods and were each maintained
at the same height. The TISs were integrated with the SensorCentral [27] middleware, allowing for the
captured thermal data to be exported as a JSON object.
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Figure 3. Top-down visualisation of the smart kitchen with labelled locations of each thermopile
infrared sensors (TIS).

Each TIS operated at a frame rate of approximately 8 frames per second. To provide synchronisation
for the data capture, whenever images were recorded by the TISs, their timestamps were also stored
for comparison. If there was a difference of 500 ms or more between the capture of any of the frames,
the frame capture was not considered to have been synchronised and the frames were discarded.

3.2. Thermal Imagery for Training and Testing the CNN

The TISs were first used to capture the training data, which consisted of five pose classes:
Arm Forward, Arm Side, Arms Down, Bend and Sitting. The classes were selected as the poses are
commonly performed during the completion of activities within the kitchen. Accurate classification
of the poses, therefore, could eventually be used to provide further knowledge with respect to the
ADLs being performed. Examples of how each pose appeared to the TISs are presented in Table 1.
The inhabitant performed the poses in the centre of the environment while periodically changing the
direction they faced, allowing for the TISs to record variations in each pose class. The five TISs were
used to record 500 unique instances of each pose class, resulting in a total of 2500 individual pose
performances within the training dataset.

The training data was captured over several days to account for varying ambient temperatures
as a significant rise in the ambient temperature would increase the amount of image noise,
consequently raising the difficulty of detecting a person. A significant decrease in the ambient
temperature, however, would allow for easier detection of the inhabitant as there would be a greater
difference between human body temperature and the temperature of the environment, along with
the objects within it. There were, however, no considerable changes between the data captured on
each day. Each training TIS image was manually reviewed and annotated with the pose class that was
performed within the image. Manual annotation was also conducted for the test dataset in order to
provide the ground truth with which the pose predictions for the test data could be compared for
calculation of the experiment results. The capture of Sitting by C2 in Table 1 is depicted in Figure 4
where the image has been enlarged and zoomed in on the inhabitant’s face. The image exemplifies how
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the data used in this work was successful in protecting the privacy of the inhabitant as no definable
characteristics of the inhabitant’s face are visible.

Table 1. Examples of the five classes as seen from each thermopile infrared sensor (TIS) viewing angle.

Pose Ceiling
Sensor

C1
Sensor

C2
Sensor

C3
Sensor

C4
Sensor

Arms Down
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difference between human body temperature and the temperature of the environment, along with 
the objects within it. There were, however, no considerable changes between the data captured on 
each day. Each training TIS image was manually reviewed and annotated with the pose class that 
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as a significant rise in the ambient temperature would increase the amount of image noise, 
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was performed within the image. Manual annotation was also conducted for the test dataset in order 
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The training data was captured over several days to account for varying ambient temperatures 
as a significant rise in the ambient temperature would increase the amount of image noise, 
consequently raising the difficulty of detecting a person. A significant decrease in the ambient 
temperature, however, would allow for easier detection of the inhabitant as there would be a greater 
difference between human body temperature and the temperature of the environment, along with 
the objects within it. There were, however, no considerable changes between the data captured on 
each day. Each training TIS image was manually reviewed and annotated with the pose class that 
was performed within the image. Manual annotation was also conducted for the test dataset in order 
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difference between human body temperature and the temperature of the environment, along with 
the objects within it. There were, however, no considerable changes between the data captured on 
each day. Each training TIS image was manually reviewed and annotated with the pose class that 
was performed within the image. Manual annotation was also conducted for the test dataset in order 
to provide the ground truth with which the pose predictions for the test data could be compared for 
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Figure 4. (a) TIS image depicting the sitting class where the circle indicates the region that is enlarged
and (b) enlarged region of the inhabitant’s face.

3.3. Architectural Design of the Convolutional Neural Network

In our previous work with TIS data, more traditional classifiers such as the random forest,
SVM and decision tree were used with thermal imagery for classification purposes. The results that
were achieved showed the approach to be successful, however, it was intended to improve upon the
attained classification accuracy. The approach proposed within this work involved the deployment
of additional TISs within the environment, to provide an increased number of viewing angles for
each pose performance. It was also decided to investigate how CNNs could potentially improve the
pose recognition rate achieved by the previously tested classifiers. This design choice was made due
to the ability of CNNs to automatically extract low to high level features from raw image data for
classification. In this work, five separate CNNs were trained, where each CNN corresponded with one
of the five TISs. Each CNN was trained using only the thermal data captured by its respective TIS.
Nevertheless, the CNNs maintained the same architectural design.

The CNN structure implemented for this experiment was initially based on the widely used
AlexNet [28]. For our approach to pose recognition, modifications were made to the AlexNet
architecture to improve the effectiveness of the network for the low-resolution thermal data captured
by TISs. For a detailed explanation of AlexNet, readers may refer to [28]. Our CNN architecture is
depicted in Figure 5, and it consisted of 30 layers in which eight were learnable: five convolutional
and three fully connected. Unlike AlexNet, the output from the third fully connected layer was input
into a five-way softmax layer as there were only five class labels rather than 1000. The only additional
layer type included in our architecture, which is not used in AlexNet, was the batch normalisation
layer. This addition facilitated faster network training due to the resulting higher learning rates,
subsequently allowing for more efficient experimentation of the network. A batch normalisation layer
was added after each of the five convolutional layers and before the activation functions, as such
functions can result in non-Gaussian distributions [29].

Irrespective of the additional batch normalisation layers and the potential risk for overfitting
that their inclusion created, the dropout layers used in AlexNet were maintained within our network.
Experimentation also found that the omission of the dropout layers resulted in a worse training
performance. A range of the hyperparameters for each convolutional layer were altered where the
stride of the first convolutional layer was changed from four to one as irrespective of the detrimental
impact that a smaller stride could have towards training speed, it ultimately favoured accuracy in
comparison to a larger stride [30]. The number of filters for each of the five convolutional layers were
reduced in AlexNet from 96, 256, 384, 384 and 256 to 8, 16, 32, 64 and 128, respectively. Due to the
low-resolution images used in our approach, it was estimated that the number of patterns that could
be detected from the data would be much lower than the RGB images used to train AlexNet. It was,
therefore, hypothesised that it would be more appropriate to use a lower number of filters for the less
complex low-resolution imagery. The number of filters increased with each new convolutional layer so
that the deeper layers could effectively analyse the increasingly higher detail features, as performed
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with the architecture created in [30]. Like AlexNet, response-normalisation and max-pooling layers
followed the first and second convolutional layers and a third max-pooling layer followed the
fifth convolutional layer. The ReLU (Rectified Linear Unit) activation function was also maintained
with AlexNet, however, the placement of the ReLU layers within our architecture was different.
Instead of following each convolutional and fully connected layer, the ReLU layers followed each
batch normalisation layer.
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Figure 5. The proposed Convolutional Neural Network (CNN) architecture. Step one represents the
image input layer, steps two to six represent the convolutional layers and their intervening pooled
and normalisation layers and steps seven to nine show the fully connected layers. The cross-channel
normalisation, batch normalisation, Rectified Linear Unit (ReLU) and dropout layers are not
depicted here.

The image input layer was provided images of size 30 × 32 × 1 where the first convolutional layer
applied 8 sliding convolutional filters of size 11 × 11 × 1 with a one-pixel stride. Due to the single
pixel stride, the ‘same; padding hyperparameter used for the first convolutional layer in AlexNet was
maintained so that the spatial output size remained the same as the input size for the layer. The second
convolutional layer applied 16 sliding convolutional filters of size 5 × 5 × 8 to the output of the first
convolutional layer once the output had passed through its respective pooling and normalisation
layers. The third convolutional layer applied 32 sliding filters of size 3 × 3 × 16 to the pooled and
response-normalised output of the second convolutional layer. The fourth convolutional layer used
64 sliding filters of size 3 × 3 × 32 where the fifth convolutional layer utilised 128 sliding filters of size
3 × 3 × 64.

3.4. Evaluation Methodology

The five TISs were used to capture a total of 2500 unique pose performances in which 500 frames
of each of the five pose classes were recorded. As previously stated, each of the five TISs had a
corresponding CNN where the CNNs were trained only with the frames captured by their respective
TISs. The thermal data delegated to training each CNN was stratified and 10-fold cross-validation was
implemented, leaving 90% of the data for training and 10% for validation. Each CNN was trained
with its 90% training partition and validated with the 10% validation partition to give an indication
of the capabilities to predict poses from the CNN’s respective TIS viewing angle. The process was
repeated 10 times, allowing a different 10% partition of the data to act as the validation data each
time, resulting in 10 models. The model that achieved the highest accuracy score with its respective
validation partition was selected as the CNN for the particular TIS viewing angle to later apply to the
test dataset for the final results. With respect to the checkpoint rule applied by the deep learning model
throughout the training phase, the most recently updated model was saved, irrespective of the results
it attained with the validation data. This training process was conducted for each of the TISs’ CNNs.



Sensors 2020, 20, 6932 12 of 26

The test dataset was used to evaluate the performances of the trained CNNs. A total of 250 unique
pose performances were captured for the test dataset where 50 frames of each pose class were included.
Just as for the training dataset, the test dataset was captured from the five TIS viewing angles so that
each CNN could be evaluated using only the data captured by its corresponding TIS. This test dataset
was manually annotated to provide the ground truth to be used to produce the final results that are
later presented in this paper.

3.5. Experimental Design

In our experiments, we investigated the use of CNNs to recognise poses performed in a smart
kitchen. The assumption was made that the poses were conducted in the centre of the environment so
that the pose classification capabilities of the CNNs could be evaluated with minimal occlusions of
the pose performances. With a separate CNN trained for each TIS, a total of five trained CNNs were
used for the experiment. Introducing five viewing angles into a pose recognition solution increased its
robustness. If, e.g., a TIS’s view of the person was occluded or the TIS malfunctioned, the other TISs
were in place to fulfil the classification.

As each CNN was trained only with data captured by its respective TIS, it was important to ensure
that the pose instances were clearly depicted in each thermal frame. For instances of Arm Forward
and Arm Side, it was possible that if the pose was performed with the arm extended towards the TIS,
the pose may have looked more similar to the Arms Down class. The example frames in Table 1 show
evidence of this. Upon capturing the training data, each frame was, therefore, manually checked to
ensure that the pose was clearly depicted, however, if the pose was not, the image was replaced with
one in which the pose class was clearly depicted. This was only conducted for the training dataset to
improve the training of each CNN and no replacement frames were used for the test dataset. Using the
trained CNNs in conjunction with one another, it was investigated how accurately the test data could
be classified with regards to recall, specificity, precision and F1-score. An examination was conducted
to find a permutation of the TISs that would be more in favour of cost, scalability and practicality,
while still maintaining a high recognition rate.

For the experiments with the test dataset, the five frames that were captured during an instance of
a pose performance were used to produce a prediction for the class of pose. Each TIS frame was input
into its respective CNN and each CNN produced its own pose prediction. To produce the prediction
output, the softmax layer converted a vector of real values, received from the previous layer, into a
vector of values where each value represented one of the pose classes. The values summed to 1 so that
they could be interpreted as probabilities. As each pose class was accompanied by a probability value,
the class with the highest probability was selected as the CNN’s own pose prediction output. As each
of the CNNs outputted a prediction for a single pose instance, a method for selecting one of the five
predictions was required. A Majority Vote scheme was applied, where the class, which was predicted
most among the five CNNs, was selected as the prediction for the pose instance.

Due to practical limitations, installation of the sensor configuration used in this experiment may
not be possible in all environments. With respect to the ceiling TIS, the material or layout above
the ceiling may not be fit for installing the TIS If an environment had a lower ceiling height than
the environment in which the CNN’s were trained, the ceiling TIS’s FOV may not be sufficient for
providing complete coverage of the environment. Detection of the inhabitant and their actions would,
consequently, be limited. It would also be possible for the ceiling height to be higher than that of the
training environment. If the ceiling was over 5 m, detection of the inhabitant’s heat signature would
become more difficult for the ceiling TIS. Oversensorising the environment would also not be in the
best interest of cost and postinstallation maintenance, especially if similar accuracies could be obtained
with less TISs.

It is important to highlight that it is possible for an environment to be large enough that the corner
TISs and CNNs could be subject to the same distance-based issues as the ceiling TIS. Unlike the ceiling
TIS, however, the laterally positioned TISs are not limited to a fixed distance from the inhabitant and
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so the exact positioning of the TISs can be altered, dependent on the environment in which they are
deployed. The task of installing and positioning lateral TISs was more practical than with a ceiling TIS
and so the dependency on the ceiling TIS for pose recognition was omitted in further tests.

The pose classification capabilities of permutations of the corner TISs’ CNNs were tested,
while excluding the ceiling TIS’s CNN from providing predictions due to the stated practical limitations.
The ceiling TIS’s individual results were used as the benchmark as these results were the highest
from any of the individual TIS performances. The majority voting, Most Confident CNN and Soft Voting
prediction selection methods were implemented for the experiments and the results attained by each
method were compared. The Most Confident CNN scheme was implemented by analysing the prediction
probabilities generated by each of the five CNNs. As previously detailed, to provide a pose prediction,
each CNN generated a probability distribution for the five pose classes, upon which the class with the
highest corresponding probability value was selected as the CNN’s prediction. For the Most Confident
CNN prediction selection approach, the CNN whose pose prediction was accompanied by the highest
probability value was chosen as the most confident CNN and so its prediction was selected as the final
prediction output for the pose instance.

The third method implemented was the Soft Voting approach. Given that each classifier represented
a different viewing angle of the sensed environment and the inhabitant, weight values were assigned
to each CNN as one may have been more capable of classifying the poses than the others. After each
TIS image was input into the appropriate CNN, each CNN outputted a probability distribution where
each probability corresponded with one of the five possible pose classes. The weight value assigned to
a CNN was multiplied by each of the five pose probability values from the probability distribution,
resulting in five weighted probabilities where each one corresponded with one of the five pose classes.
After the weighted probabilities were calculated for each CNN probability distribution, the weighted
probability values for each pose class were summed. For example, a weighted probability value was
calculated for the Arms Down class by each CNN. Each of the Arms Down weighted probability values
were summed, resulting in a single weighted sum value for the Arms Down class. A weighted sum
value was calculated for each pose class and the class with the highest weighted sum was selected as
the final prediction for the pose performance. The Soft Voting calculation for finding the weighted sum
is shown in Equation (1) [31]:

ŷ = argmax
i

m∑
j=1

w jpi j, (1)

where m is the number of CNNs, w j is the weight applied to the probability distribution that was
generated by the j th CNN, pi j is the probability that class i is the correct class prediction according to
CNN j and ŷ is the class representing the largest weighted sum.

To determine the weight values for the classifiers, a naïve brute-force approach was employed [32].
In this approach, the range of values that could be used for the weights was determined by the number
of CNNs involved. For example, if the CNNs for the four corner TISs were being used, then the values
used for each CNN’s weight could only range from one to four. As each of the four CNNs had a possible
four values to use as their weight, there was a total of 24 permutations of weight values that could be
utilised. Each permutation of values for the weights were tested to find weights that yielded the most
accurate pose predictions. This naïve approach to assigning weights was preferable over the use of the
training results as upon capturing the training dataset and prior to training the CNNs, pose instances
were replaced if they did not clearly depict their class. The validation data to produce the training
results for each CNN, therefore, consisted only of favourable samples of each pose. The training results
were not representative of how the CNNs would perform with the synchronised pose performances
from the test dataset and so the weights could not be determined from the training results.
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4. Results

In this section, the results obtained from implementing the deep learning architecture with five
TIS viewing angles are presented. The individual results of each viewing angle and their respective
CNNs are also detailed. A comparison is conducted, using the ceiling CNN as the benchmark, to find
the most effective permutation of corner TISs. The approach to determining final pose predictions that
subsequently provide the most accurate pose predictions is also investigated.

4.1. Training Results

For the training phase, each pose was captured with five TISs positioned at five different
viewing angles where 500 frames for each pose class were recorded. A total of 2500 frames were,
therefore, acquired for each class. If only one CNN was used to recognise poses, it would have
been vital to ensure that the five TISs capturing a unique pose performance were doing so in a
synchronised manner. This would have given an almost three-dimensional view of the performance.
Nevertheless, it was decided to make use of a CNN for each TIS and train the networks with only
frames captured from their respective TISs. It was not necessary, therefore, to enforce any manner of
synchronisation to the training dataset, only that each frame was uniquely captured. The frames that
did not clearly depict the pose that was being performed, such as instances of Arm Forward and Arm
Side that looked more similar to Arms Down, were removed from the training dataset and appropriately
replaced. This ensured that the features extracted from the frames were representative of the correct
class and avoided confliction for the CNN during training.

As previously detailed, 10-fold cross-validation was utilised during the training of the CNNs
where each CNN was trained individually. The results in Table 2 present the accuracies achieved by
each CNN with their corresponding TIS’s perspectives of the pose performances within the training
dataset. It is important to note, however, that very high training accuracies are achieved as each CNN is
provided only with pose performances captured from their corresponding TISs, where the pose classes
are clearly depicted within the frames. This is unlike a realistic scenario where a pose performance
may be occluded and subsequently misclassified as there is no control over the orientation in which the
inhabitant stands, therefore, multiple TIS viewing angles would be needed to produce an accurate pose
prediction. The training results are not, therefore, truly representative of the recognition capabilities of
the CNNs with unseen test data but, instead, an indication of successful training.

Table 2. The average accuracy over 10 folds for each Convolutional Neural Network (CNN) along with
the average for all five CNNs together where C = corner CNN.

Classifier Maximum Accuracy Achieved over 10 Folds (%)

Ceiling 99.80
C1 99.92
C2 99.92
C3 99.92
C4 99.96

All Views 99.90

4.2. Experimental Results

The testing data was a separate dataset from the training dataset and was used to evaluate the
performances of the trained CNNs. The data was recorded in such a manner to guarantee an equal
number of frames for each class. There were 50 unique pose instances for each class captured from the
5 viewing angles for the testing data set. This provided 250 frames for each class. The testing data
was captured on a different day and at a different time from the training data to allow for natural
limitations on the dataset, such as the ambient temperature within the room. For the testing data,
it was ensured that the thermal frames captured by the five TISs for a pose instance were synchronised,
as they would be processed together towards generating a final prediction.
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4.2.1. Five TISs Test

To generate a prediction for each pose instance, the frames captured by each of the five TISs were
input into their respective CNNs. Each of the five CNNs, therefore, produced a pose prediction for the
pose instance, resulting in an interpretation, from five unique perspectives, of the pose being performed.
This was done with the aim of increasing the likelihood of accurately recognising the poses. Only one
of the five CNN outputs, however, could be selected as the final prediction and so a majority vote was
held and of the five predictions, the class that was predicted the most was used as the final prediction
for the pose instance. This prediction was then compared to the ground truth to determine its accuracy.
The same was carried out for each of the remaining pose instances. Multiple final prediction selection
methods were later compared, however, for the five TISs test, only the performance from the Majority
Vote approach has been presented as it generated the highest accuracies by a significant margin.

Once all predictions were made and compared with the ground truth, scores for recall,
precision, specificity and F1-score were calculated and can be viewed in Tables 3–6, respectively.
The result tables are structured in such a way as to show how well each TIS viewing angle performed,
on their own, with each individual class and with all classes together. The results from when all TIS
views were used together are presented in their own column.

Recall (Table 3) measures the probability that a prediction is a pose when the person is, in fact,
performing that pose. This is the true positive rate. From the recall results, the ceiling TIS achieves the
highest individual scores whenever all poses were included, however, C2 performed better than the
ceiling CNN for Sitting. There is a potential advantage for some classifiers to view Sitting from an
adjacent perspective as the ceiling CNN could classify the pose incorrectly as Bend. The performance
by C2 did not, however, surpass the other TISs in every other pose as C1 recognised Arms Down the
best and C3 recognised Arm Side the best. The highest scorer among the corner TISs for Arm Forward
was C4, however, this TIS and CNN combination also resulted in the lowest recall score for Arms Down
which was significantly lower than the other results. This demonstrates the need for multiple TISs
as where one may fail to produce an accurate prediction, another may correctly recognise the pose
instance, therefore, providing a level of robustness to the approach.

Table 3. Recall results from the five TISs test where C = corner.

Class Ceiling C1 C2 C3 C4 All Views

Arm Forward 0.8400 0.4800 0.5000 0.4800 0.5200 1.0000
Arm Side 0.9800 0.6000 0.3600 0.6200 0.3200 0.9800

Arms Down 0.9800 0.9000 0.7000 0.6200 0.2800 0.9800
Bend 0.9800 0.9800 1.0000 1.0000 1.0000 1.0000

Sitting 0.9600 0.5600 0.9800 0.7200 0.7800 1.0000
All Poses 0.9480 0.7040 0.7080 0.6880 0.5800 0.9920

Table 4. Precision results from the five TISSs test where C = corner.

Class Ceiling C1 C2 C3 C4 All Views

Arm Forward 1.0000 0.9231 0.6944 1.0000 0.4262 1.0000
Arm Side 0.8750 1.0000 0.6923 0.4306 0.5333 1.0000

Arms Down 0.9250 0.5056 0.5469 0.6200 0.8750 0.9800
Bend 0.9800 0.6533 0.7463 0.7813 0.6849 1.0000

Sitting 0.9800 0.9333 0.8596 0.9000 0.5571 0.9804
All Poses 0.9518 0.8031 0.7079 0.7464 0.6153 0.9921
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Table 5. Specificity results from the five TISs test where C = corner.

Class Ceiling C1 C2 C3 C4 All Views

Arm Forward 1.0000 0.9870 0.9325 1.0000 0.7727 1.0000
Arm Side 0.9641 1.0000 0.9521 0.7747 0.9021 1.0000

Arms Down 0.9792 0.7486 0.8304 0.8813 0.9850 0.9950
Bend 0.9947 0.8301 0.8819 0.8971 0.8051 1.0000

Sitting 0.9947 0.9867 0.9412 0.9714 0.7737 0.9950
All Poses 0.9865 0.9105 0.9076 0.9049 0.8477 0.9980

Table 6. The F1-score results from the five TISs test where C = corner.

Class Ceiling C1 C2 C3 C4 All Views

Arm Forward 0.9130 0.6316 0.5814 0.6486 0.4685 1.0000
Arm Side 0.9245 0.7500 0.4737 0.5082 0.4000 0.9899

Arms Down 0.9515 0.6475 0.6140 0.6200 0.4242 0.9800
Bend 0.9800 0.7840 0.8547 0.8772 0.8130 1.0000

Sitting 0.9697 0.7000 0.9159 0.8000 0.6500 0.9901
All Poses 0.9478 0.7026 0.6879 0.6908 0.5511 0.9920

Precision (Table 4) is similar to the recall in that it measures the probability that the person is
performing a pose whenever the classifier is predicting the same pose. This is important as there may
be cases where, e.g., the recall for a pose is 1.000, however, several other frames were also predicted
as the same pose irrespective of belonging to a different class. The precision score indicates how
many times a pose class was predicted when the pose was actually being performed. The results
again show the ceiling CNN to have given the best results for when all poses were judged together.
C1 outperformed Ceiling on Arm Side and this, along with the recall results, reveal that while the ceiling
CNN accurately predicted Arm Side whenever the inhabitant was performing the pose, there were
several cases where other poses were incorrectly classified as Arm Side. This alludes to the fact that
none of the classifiers were faultless when operating individually, as is shown by the 0.1250 increase to
1.000 for Arm Side when all TISs were then used together.

The lowest precision score for all poses was made by C4, where the CNN attained precision results
for the Sitting class that were significantly lower than the other CNNs. These low scores were caused by
the misclassifications of Arms Down as Sitting by the C4 CNN where only 28% of Arms Down instances
were correctly classified. The C4 CNN also frequently misclassified Arms Down as Arm Forward,
subsequently contributing to the low precision score for Arm Forward, however, misclassifications
of Arm Side as Arm Forward were the primary cause of this. From the perspective of C4, the classes
are alike, resulting in both classes being mistaken for the other. This also repeatedly occurred for
C2 and C3, further signifying how difficult it is to provide accurate predictions for all classes with a
single corner TIS. As there is no guarantee as to which TIS will experience classification difficulties,
this furthers the necessity for multiple TISs.

Specificity (Table 5) measures the probability that a classifier will not predict a pose whenever the
pose is not being performed. This is the true negative rate. For each class, the specificity considers the
number of times the class was rightfully not predicted, and the correct class was instead predicted.
The lowest specificity achieved when all poses were judged together was by C4. The poor classification
of Arms Down continued to negatively impact the recognition scores of the C4 CNN as instances of
Arms Down were often misclassified as Arm Forward and Sitting, causing the poses to be predicted
whenever they were not actually being performed. This subsequently caused the low specificity
results. The C4 CNN did, however, perform similarly to the other CNNs with respect to its predictive
capabilities for four of the classes, therefore, indicating that while a model can underperform with
respect to some of the classes, maintaining its inclusion for providing prediction outputs can still prove
to be complementary for predicting other classes.
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The F1-score (Table 6) is a function of the recall and the precision and expresses the balance between
the two measurements. These test results show how differently each TIS, on its own, can perform.
These large differences could have been caused by varying temperatures throughout the room that
were a product of sunlight and appliances. Such cases created more areas of high temperature within
the image, resulting in more image noise. This may have caused some images to be misclassified as
this issue would have been possible in both the training and testing data. The results demonstrate how
certain TISs perform well on classes where others do not and vice versa, therefore, the need for various
viewing angles of the environment is exemplified further. This is the case for C1 and C2 as C1 achieves
a much higher F1-score than C2 in the Arm Side class, whereas for Sitting, C2 obtains a higher F1-score
than C1. Due to this complementary nature, it is, therefore, desirable to use all five TISs. The confusion
matrix generated from the test can be found in Table 7.

Table 7. Confusion matrix generated from testing all five TISs together.

True Class
Predicted Class

Arm Forward Arm Side Arms Down Bend Sitting

Arm Forward 50 – – – –
Arm Side – 49 1 – –

Arms Down – – 49 – 1
Bend – – – 50 –

Sitting – – – – 50

The values in the cells represent the number of frames (out of 250) that were predicted to be the
class, which is in the header of the respective column. The cells that are positioned diagonally through
the matrix where the predicted class label and true class label match, therefore, indicate the number of
correctly predicted frames for the respective class. The other cells provide insight for frames that were
incorrectly predicted with regards to what the incorrect prediction and the actual class label were.

4.2.2. Thermopile Infrared Sensor Permutation Tests

While the results achieved by the deep learning approach are promising, the argument could
be made that deploying many TISs may not be the most practical solution and so a reduction in the
sensor count was investigated. From the results, it was clear that the ceiling TIS was, by a large margin,
the best performing TIS with regards to single individual performances. The results it achieved were
very close to the results from the five TISs test. It is, however, important to address the possible
limitations of relying on the predictive capabilities of the ceiling TIS.

The ceiling height within the environment used to capture the training data is not representative
of all possible ceiling heights, and clearly the height of different environments’ ceilings will vary.
Issues could arise from ceilings higher than 10 m as a person’s heat signature would start to become
difficult for the TIS to detect. Ceilings too low could create difficulties for the TIS to capture,
within a single frame, the whole pose performed by an inhabitant, causing the poses to appear vastly
different from the poses the CNNs were trained with. This would lead to an undesirable scenario
where an undertrained CNN would be playing an important role in classification tasks. It was,
therefore, decided to exclude the ceiling TIS and corresponding CNN from holding a responsibility to
generate predictions and instead, aimed to only use the corner TISs.

While the width and length of a room may differ just as the height of a ceiling may differ, the use
of laterally positioned TISs instead of ceiling-based TISs would make the deployment of numerous
TISs more practical and any necessary reorientation more possible. This is due to the existing practical
challenges with the installation of ceiling TISs. Such challenges may not be able to be overcome in
some environments, therefore, limiting both the number of TISs that could be integrated within the
environment as well as the number of positions on the ceiling capable of housing a TIS. Numerous TISs
would ultimately benefit the prediction capabilities as frames of a pose could be captured from multiple



Sensors 2020, 20, 6932 18 of 26

unique perspectives and subsequently, the frames could be analysed in conjunction with one another
to better predict the class. Due to the underperforming individual performances of the corner TISs,
various permutations of the TISs were investigated to find the best performing and most cost-effective
permutation. The ceiling view’s individual results were used as the benchmark for these tests as it
provided the highest individual results and was the only TIS omitted from the remaining experiments.

Four Thermopile Infrared Sensors Test

The predictions made by the CNNs corresponding with the four corner TISs were passed through
Majority Vote, Most Confident CNN and Soft Voting prediction selection approaches; Table 8 presents
the results.

Table 8. Pose recognition results achieved using the four corner TISs with three methods of
prediction selection.

Selection Method Recall Precision Specificity F1-Score

Majority Vote 0.8560 0.8699 0.9595 0.8524
Most Confident CNN 0.8480 0.8658 0.9590 0.8492

Soft Voting 0.9280 0.9354 0.9813 0.9266

The results show that both the Majority Vote and Most Confident CNN approaches performed
similarly, while the Soft Voting approach achieved the highest scores with an F1-score of 0.9266.
The naïve method of finding the combination of weight values that yielded the highest scores allowed
for the approach to be tested more effectively than the two lower scoring methods. The confusion
matrix produced from this approach is presented in Table 9.

Table 9. Confusion matrix generated from implementing the Soft Voting approach to prediction selection
for four corner TISs.

True Class
Predicted Class

Arm Forward Arm Side Arms Down Bend Sitting

Arm Forward 48 – 2 – –
Arm Side 4 37 9 – -

Arms Down – – 47 – 3
Bend – – – 50 –

Sitting – – – – 50

Three Thermopile Infrared Sensors Test

Investigating the use of only three corner TISs was the next test carried out. This involved not
only finding the best approach to prediction selection but also the best permutation of three corner TISs.
Each possible permutation of three TISs was tested and it was found that a different permutation scored
highest for each prediction selection approach. The highest scoring results for each approach along
with the respective permutations are presented in Table 10. Only the highest scoring permutations
from each approach are included as the comparison is conducted to determine the best prediction
selection technique for three corner TIS permutations.

Table 10. Pose recognition results achieved using permutations of three corner TISs with three methods
of prediction selection.

Selection Method TIS Permutation Recall Precision Specificity F1-Score

Majority Vote C1, C2, C3 0.8520 0.8626 0.9593 0.8484
Most Confident CNN C1, C2, C4 0.8480 0.8686 0.9588 0.8488

Soft Voting C1, C2, C3 0.9160 0.9308 0.9786 0.9149
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The Soft Voting approach again generated the highest recognition rate of the poses. It is also
promising that there is just a difference of 0.0117 between the F1-score achieved by the four corner
TISs and the F1-score achieved by the three corner TISs. This was identified to be a result of the
low individual performance of C4 and how it did not contribute many correct predictions that
were not already made by C1, C2 and C3. Its omission for the utilisation of the three corner TISs,
therefore, did not cause a significant decrease in correct predictions. This approach, however, did not
achieve as promising results for the recognition of Arm Side as it did for the other poses, as can be seen
in the confusion matrix in Table 11. The Arm Side F1-scores attained through the use of the Majority Vote
and Most Confident CNN approaches were 0.4600 and 0.7200, respectively. The Soft Voting approach,
however, attained an F1-score of 0.8095 for Arm Side, therefore, demonstrating its better performance
even for its lowest scoring class.

Table 11. Confusion matrix generated from implementing the Soft Voting approach to prediction
selection for three corner TISs.

True Class
Predicted Class

Arm Forward Arm Side Arms Down Bend Sitting

Arm Forward 49 – 1 – –
Arm Side – 34 16 – –

Arms Down – – 46 1 3
Bend – – – 50 –

Sitting – - – – 50

Two Thermopile Infrared Sensors Test

Finally, two corner TISs were used to try to achieve results close to the F1-score benchmark of
0.9478. Again, the prediction selection approach and corner TIS permutation that performed best were
investigated. As there were only two predictions available to select a final prediction from, the Majority
Vote approach was not tested. It was found that for both approaches, the same TIS permutation of C1
and C2 was the best; Table 12 presents the scores this permutation achieved.

Table 12. Pose recognition results achieved using permutations of two corner TISs with three methods
of prediction selection.

Selection Method TIS Permutation Recall Precision Specificity F1-Score

Most Confident CNN C1, C2 0.8400 0.8910 0.9578 0.8430
Soft Voting C1, C2 0.8440 0.8953 0.9590 0.8468

The similarity between the recognition rates achieved by both approaches is evident and,
therefore, requires a deeper analysis to determine the best prediction selection scheme. The confusion
matrices generated from each approach can be found in Tables 13 and 14. The shortcomings from
both approaches were the same with low recognition rates of Arm Forward and Arm Side. With its
marginal improvement over the recall and F1-score of the Most Confident CNN approach, the Soft Voting
approach was selected as the best approach for the two corner TIS test.

As is the case, the highest scoring permutation was expected to have consisted of two adjacent
TISs rather than TISs positioned directly opposite one another. This was due to adjacent TISs
complementing one another in providing a more realistic coverage of the monitored space and the
poses being performed within it. Using two opposite TISs negated the potential benefits of using
multiple TISs as, e.g., whenever Arm Forward was performed, if the person was facing one of the TISs,
neither TIS would have been able to view the outstretched arm. The same applied to the Arm Side class.
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Table 13. Confusion matrix generated from implementing the Most Confident CNN approach to
prediction selection for two corner TISs.

True Class
Predicted Class

Arm Forward Arm Side Arms Down Bend Sitting

Arm Forward 32 – 18 – –
Arm Side 1 34 15 – –

Arms Down – – 48 2 –
Bend – – – 50 –

Sitting – – – 4 46

Table 14. Confusion matrix generated from implementing the Soft Voting approach to prediction
selection for two corner TISs.

True Class
Predicted Class

Arm Forward Arm Side Arms Down Bend Sitting

Arm Forward 32 – 18 – –
Arm Side 1 34 15 – –

Arms Down – – 49 1 –
Bend – – – 50 –

Sitting – – – 4 46

Permutation Comparison

The highest F1–scores achieved by the four, three and two TIS permutations were 0.9266, 0.9149 and
0.8468, respectively. While the four corner TIS method produced the score closest to the benchmark,
the three corner TIS method produced a similarly high score with one less TIS. The comparisons
between the TIS permutations and the benchmark are presented in Table 15. The use of a ceiling TIS is
not necessarily a priority due to the three alternatives proving to be more than suitable. Having three
alternative options, with each differing in their number of TISs, is highly desirable when aiming to use
thermal imagery for recognition-based tasks.

Table 15. The comparison of achieved recognition scores between the best scoring approaches for each
TIS permutation and the benchmark.

TIS Positions and Quantities TIS Permutation Recall Precision Specificity F1-Score

Ceiling (Benchmark) Ceiling 0.9480 0.9518 0.9865 0.9478
One Corner TIS C1 0.7040 0.8031 0.9105 0.7026
Two Corner TISs C1, C2 0.8440 0.8953 0.9590 0.8468

Three Corner TISs C1, C2, C3 0.9160 0.9308 0.9786 0.9149
Four Corner TISs C1, C2, C3, C4 0.9280 0.9354 0.9813 0.9266

The trade-off between the number of TISs, the achieved F1-score and the TIS cost is visualised in
the chart in Figure 6. A very high efficiency can be achieved using only four and three corner TISs as
an almost identical F1-score to the benchmark was achieved, falling short only by 0.0212 and 0.0329,
respectively. If a task required a more simplistic deployment with only two TISs, the F1-score would be
sacrificed by 0.1010, however, the practical and financial benefits of only deploying and purchasing two
TISs could, in the appropriate context, outweigh the loss in accuracy. The best individual performance
from using only one corner TIS is achieved using C1 and its corresponding CNN. The use of a
single corner TIS requires the same cost as the ceiling TIS while avoiding the practical limitations
involved with installation. This is, therefore, the least expensive and most practical implementation.
Nevertheless, the F1-score is 0.2452 lower than the benchmark and 0.1442 lower than the two TIS
permutation. Due to the significantly lower recognition rate, an increase in cost can be justified to
obtain results considerably closer to the benchmark.
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Figure 6. Trade-off between the number of TISs and CNNs, performance and cost of the TISs.

Permutation Results with a Random Forest Model

The random forest machine learning algorithm used in our previous work was incorporated for
the same tests conducted with the CNNs in this study. In our previous work, we tested several machine
learning algorithms, however, the random forest was the highest scoring, therefore, its classification
capabilities of the dataset presented in this study were chosen to compare with the CNN. While the
datasets used in this study differ from our previous work, the approach to training and testing
the random forests with TIS data remained the same. Nevertheless, the random forest required
training for pose recognition and, like the CNNs, a random forest model corresponded with each TIS.
Manual selection and extraction of features for each pose performance was necessary and for further
details on our training and testing approach with the random forest, please refer to [25].

The same tests involving the same datasets were conducted where the only difference was the use
of random forest models instead of CNNs. The results achieved with the best scoring permutations of
random forest models and respective TISs are presented in Table 16.

Table 16. The comparison of attained recognition scores between the best scoring approaches for each
TIS permutation and the benchmark when using the random forest model.

TIS Positions and Quantities TIS Permutation Recall Precision Specificity F1-Score

Ceiling (Benchmark) Ceiling 0.9760 0.9763 0.9939 0.9760
One Corner TIS C3 0.7560 0.7980 0.9282 0.7483
Two Corner TISs C1, C2 0.8480 0.8888 0.9594 0.8379

Three Corner TISs C1, C2, C3 0.8600 0.8868 0.9619 0.8523
Four Corner TISs C1, C2, C3, C4 0.8240 0.8824 0.9539 0.7980

Permutations of four, three and two TISs with corresponding random forest models achieved F1-
scores of 0.7980, 0.8523 and 0.8379, respectively. None of the random forest models, however, achieved a
score higher than the benchmark with the closest score being achieved by the three TIS permutation,
attaining an F1-score that was 0.1237 less than the ceiling benchmark. The CNNs performed better
in this respect as two permutations of CNNs achieved F1-scores over 0.9000 where the highest was
only 0.0212 less than the benchmark. The benchmark achieved with the ceiling random forest model
was higher than with the ceiling CNN, however, as already established, a ceiling-based TIS was not as
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practical as laterally based TISs and so this improvement was negligible. For permutations of three
and four TISs, the CNNs improved upon the random forests by a considerable margin. The 2 corner
TIS permutation was the only permutation in which similar scores were achieved with both machine
learning methods, however, the recognition of the individual classes indicated that the CNN produced
a better performance. The results presented in Table 17 compare the individual pose class F1-scores
achieved by both the machine learning models with the two corner TIS test. While the random
forests achieved a significantly higher F1-score for Arms Down, the CNNs achieved a more significant
improvement for the F1-score of Arm Side.

Table 17. Comparison between the F1-scores attained by the random forest and CNN models during
the two corner TIS test.

Class Random Forest CNN

Arm Forward 0.7460 0.7711
Arm Side 0.5915 0.8095

Arms Down 0.9320 0.7425
Bend 0.9600 0.9524

Sitting 0.9600 0.9583
All Poses 0.8379 0.8468

A trade-off between the number of TISs, pose recognition performance and TIS cost is visualised
in Figure 7 to investigate whether a more cost-effective and practical solution justifies the significant
performance loss experienced with the random forest models. Unlike with the use of CNNs, a steady
increase in the permutation cost did not produce a similarly steady increase in pose recognition
performance with the random forest models. Whenever the cost was at its highest with four corner
TISs, the performance of the random forest models resulted in one of the lowest F1-scores, second only
to the F1-score attained by a single corner TIS. While the three corner TIS permutation performed
better than both the four and two corner TIS permutations, it only improved upon the F1-score of the
two corner TIS permutation by 0.0144 while costing £151.78 more. The F1-score attained with three
random forests was also 0.0626 less than what was achieved with three CNNs. The two corner TIS
permutation, however, performed considerably better than the single corner TIS, therefore, justifying its
cost. The two corner TIS permutation was, therefore, the most cost-effective permutation of corner
TISs when corresponding random forest models were implemented.
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5. Discussion

The aim of this study was to investigate how effectively unobtrusive thermal imagery could be
used to train a deep learning network to recognise poses in previously unseen data, while preserving
the privacy of the inhabitant. The deep learning network was inspired by AlexNet where several
modifications were made to benefit the low-resolution imagery captured by the TISs and improve
the classification results. The Long Short-Term Memory (LSTM) architecture was considered for this
work, however, as the problem involved the classification of single poses, the advantage of capturing
temporal dependencies between different input images that the LSTM would provide was less relevant.
A TIS was installed in the ceiling and each of the room’s four corners. The five TISs were used to
capture an equal number of frames for each of the five pose classes. Each TIS’s captured data was
used to train a CNN, resulting in five CNNs trained to recognise poses from the viewing angle of
their respective TIS. Upon finishing the training phase, unseen thermal data were used to test the
CNNs. Much like in the training dataset, the test dataset was made up of five viewing angles for each
pose performance. The TIS frame from each viewing angle was, therefore, input into its respective
CNN. The output from this process was five pose predictions which were narrowed down to one
final prediction using a Majority Vote scheme. This use of five TISs returned a high F1-score of 0.9920,
demonstrating the successful implementation of the deep learning network for pose recognition.

The use of five TISs allowed for multiple perspectives of each pose performance and added
robustness to the approach. The lateral perspectives provided by the corner TISs aided the ceiling
TIS whenever it struggled to either detect the person or differentiate between poses with similar
appearances. For example, from the perspective of the ceiling TIS, bending and sitting looked very
similar and so the lateral perspectives helped differentiate between the classes. The ceiling TIS provided
an important contribution with its strong capability to recognise whenever the person was extending
an arm outwards and whether this was sideward or forward.

Beyond the successful pose classification that was achieved with five TISs, the most practical and
cost-effective permutation of TISs was determined. The ceiling TIS did not fit the model of practicality
due to the difficulty involved in deploying the TIS in an unobtrusive manner, e.g., ensuring no cables
were visible. The F1-score from the ceiling TIS’s individual performance was the highest among all
five TISs and so it was used as the benchmark with which to compare the performances of corner TIS
permutations. There can be concern for environments varying in width and length, potentially causing
the same distance-related issues suffered by the ceiling TIS for ceilings of varying height. For the
laterally positioned TISs, however, the sensors are not limited to a fixed distance from the inhabitant.
If necessary, it would be possible to position the TISs closer to where it is expected that the inhabitant
will be most active.

From using four, three and two corner TISs, the CNNs achieved F1-scores of 0.9266, 0.9149 and
0.8468, respectively. These are promising results as the permutations of four and three corner TISs reached
F1-scores that were very similar to that of the benchmark, suggesting that both accuracy and practicality
can be achieved. A financial drawback, however, is that more than one corner TIS was required to achieve
these scores. While the two-TIS permutation’s recognition rate was not as close to the benchmark, it uses
only one additional TIS and so is a more cost-effective sensor deployment. The 0.0681 decrease from
the three-TIS permutation and 0.1010 decrease from the benchmark could be considered as a justifiable
sacrifice to ensure a more practical and financially sound approach. Selecting between the permutations
will, however, ultimately depend on the context and resources at hand.

The experiments were conducted a second time where the CNN architecture was replaced with a
random forest machine learning algorithm used in our previous work. The results were compared
with the CNN results, and it was found that the best F1-score for a single corner TIS was achieved with
a random forest model. The score was, however, still too low to justify the use of only one corner-based
TIS, irrespective of the low cost. The CNNs significantly outperformed the random forests with three
and four corner TIS permutations, however, a similar result was achieved with the permutation of two
corner TISs. With respect to the individual pose class scores, however, the F1-scores attained by CNNs



Sensors 2020, 20, 6932 24 of 26

were more favourable. As a more promising balance between performance, practicality and cost can
be achieved with the use of CNNs and several permutations of corner TISs, our previous classification
approach has been successfully improved upon.

In each experiment, TISs were used as the only means for monitoring the environment and
capturing pose performances. The sole use of TISs allowed for the preservation of privacy in
our approach. While multiple thermal images were recorded of the inhabitant during each pose
performance, the low-resolution and greyscale nature of the images prevented any discernible
characteristics of the inhabitant from being visible. As an improvement upon other privacy-preserving
approaches, image processing techniques are not required to hide an inhabitant’s face and there is
no manner of accessing identifiable features of the inhabitant should the system be hacked. There is,
however, a significant loss in environmental detail through the utilisation of low-resolution images.
Nevertheless, only changes in the shape of the inhabitant’s heat signature is required for our approach
and this is sufficiently accomplished with the use of the TISs. Privacy has, therefore, been successfully
preserved with our approach to collecting data within a smart environment for pose recognition.

6. Conclusions

High classification scores have been produced while preserving privacy with the various
approaches proposed in this work, however, limitations are present with respect to the data capture
process and the sizes of both the training and test datasets. The thermal data captured for the
experiments sufficiently accounts for pose classes that are commonly performed throughout the
completion of ADLs, as well as the variable appearances of each pose that are dependent on where the
inhabitant is facing relative to the TISs. The sizes of the datasets are, however, limited as the training
data consist of only 500 instances of each class, while the test dataset consists only of 250 total pose
performances. A concern is that a larger dataset may expose further limitations in the work through
negatively impacting the recognition results. In further work, we will aim to increase the size of
the datasets by capturing more data or by employing data augmentation. The datasets will also be
expanded with respect to the number of environments in which poses are performed. Evaluating the
proposed approach with the inclusion of other environments will facilitate the testing of additional
poses and activities, as well as different positions of the laterally based TISs relative to the inhabitant.

The process of capturing the pose instances for the training and test datasets was limited due
to the assumption that the inhabitant would only stand in the centre of the room to perform the
selected poses while rotating in varying directions. This assumption was made so that the TISs
would have an unobstructed view of the pose performances. The poses could have instead been
performed under realistic conditions such as interacting with the environment during the completion of
ADLs. Nevertheless, the aim for this work was to improve upon our previous classification approach,
while also establishing an understanding of the capabilities for predicting poses, using multiple viewing
angles in conjunction with the proposed CNN architecture. Further work is required to determine
the predictive capabilities of CNNs when movement of the inhabitant, subtle pose performances,
and occlusions of the inhabitant are each considered. In future work, pose instances for both training
and testing will, therefore, involve interactions between the inhabitant and the environment, such as
Arm Forward at the microwave or Bend at the fridge.

The results achieved with the thermal imagery can be improved still with the integration of
image segmentation techniques. In future work, active contour-based segmentation techniques will be
investigated for application to the TIS data to allow for simpler detection of the inhabitant. In future
work, we will also investigate the inclusion of abnormal behaviour within the dataset to test whether
such behaviour could be differentiated from poses and activities. Successful implementation of
abnormal behaviour detection will help indicate whether TISs are suitable devices for deployment
within care homes as such behaviour can aid in the diagnosis of age-related diseases.

As deep learning has been successfully implemented with the TISs to recognise poses, this will
be expanded to establish a deep learning-based methodology for recognising ADLs. As shown by



Sensors 2020, 20, 6932 25 of 26

our previous work, the ability to recognise poses has proven to be extremely useful for inferring
subactivities such as using the fridge and sitting at the kitchen table. It is intended to implement
an HMM to work in conjunction with the CNNs detailed in this research to classify sequences of
subactivities as ADLs. Both a deep learning and a more conventional machine learning approach will
be implemented for performance comparisons. This work will continue to use TISs as the only sensory
data sources so that privacy can continue to be preserved.
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