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Abstract: Human Activity Recognition (HAR) using embedded sensors in smartphones and
smartwatch has gained popularity in extensive applications in health care monitoring of
elderly people, security purpose, robotics, monitoring employees in the industry, and others.
However, human behavior analysis using the accelerometer and gyroscope data are typically
grounded on supervised classification techniques, where models are showing sub-optimal
performance for qualitative and quantitative features. Considering this factor, this paper proposes
an efficient and reduce dimension feature extraction model for human activity recognition. In this
feature extraction technique, the Enveloped Power Spectrum (EPS) is used for extracting impulse
components of the signal using frequency domain analysis which is more robust and noise insensitive.
The Linear Discriminant Analysis (LDA) is used as dimensionality reduction procedure to extract the
minimum number of discriminant features from envelop spectrum for human activity recognition
(HAR). The extracted features are used for human activity recognition using Multi-class Support
Vector Machine (MCSVM). The proposed model was evaluated by using two benchmark datasets,
i.e., the UCI-HAR and DU-MD datasets. This model is compared with other state-of-the-art methods
and the model is outperformed.

Keywords: human activity recognition (HAR); feature extraction; feature reduction; enveloped power
spectrum (EPS); linear discriminant analysis (LDA); multi-class support vector machine (MCSVM)

1. Introduction

Human activity recognition has (HAR) become a fascinating research area for researchers
in the field of ubiquitous computing, and human-computer interaction because of its important
contribution to monitoring daily human life activities [1-3]. It plays a crucial role in a wide range
of real-life applications such as healthcare, elder care, smart home, fitness tracking, sports tracking,
robotics, social security, industry, and so on [4-10]. Previously, contextual information played a big role
in activity recognition [11]. This contextual information can be captured by placing sensors including
cameras in the environment for activity recognition [12,13]. However, the experiment was conducted
on a closed and controlled environment rather than a real daily life activity. Another popular approach
is the use of body-worn sensors. This has the advantage that it can be used in both uncontrolled
indoor and outdoor environments. Sensors are placed in different places of a body such as chest,
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wrist and ankle [14,15] to collect posture information. This method is less user friendly due to the
fact that these sensors might cause inconvenience to the users. Moreover, data collection cannot
be done surreptitiously in this approach. However, the aforesaid difficulties might be resolved
in HAR applications by using smartphone sensors. Sensor embedded smartphones have become
a cardinal part of our day to day lives over the last decade. Generally, these gadgets are embedded
with versatile sensors such as accelerometers, gyroscopes, GPS, and magnetometers. The data is
collected from the embedded sensors while the user performs any kind of daily activity including
sitting, standing, walking etc. as long as users carry their phones with them. Thus, smartphone sensors
can accumulate date without any additional hardware [16]. Accordingly, this approach for human
activity recognition is appropriate for analyzing user’s daily activities continuously. Among all other
inertial sensors, gyroscope and accelerometer are of our interest as human activities can be recorded
via these sensors which are embedded in smartphones [17]. Activity recognition processed by the
following consecutive steps including segmentation of data, feature extraction, selection of feature
and classifier training [16]. Out of all the phases mentioned above, extraction of feature is the prime
step because of its impact on the accuracy of classifiers [18]. Extraction of feature from sensory data
has always been a challenging task due to the facts such as variable orientation of smartphones,
placement and subject, unification of simple activities leading to a complex activity, the characteristics
of smartphone sensor signals for the same activity will be different, which will degrade the recognition
accuracy to a great extent [2,6]. One approach is to use hand-crafted features such as spectral
entropy, energy of different frequency bands, auto-regressive and FFT coefficients which are used
in much researche [19-21]. Despite of good performance in practice, domain-specific knowledge
and generalization are required [22]. Thus, to surmount these shortcomings, deep learning-based
models have been used in HAR systems to make the feature extraction process automatic [1,23-25].
Moreover, deep learning model does not totally require manual feature engineering as it is designed
to train in an end-to-end fashion. In addition to high accuracy and good generalization, one main
advantage of this approach is that after a deep learning model is created, it is trained in an end-to-end
fashion which completely removes the need for manual feature engineering [18,26,27]. However, the
computational cost required for this approach is infeasible for sensor-based phones with inadequate
memory, processing and battery power [4]. Also, deep learning based techniques need a large number
of annotated samples. In future, MobileNets-like systems will make this feasible which is an efficient
deep learning models for mobile devices [28].

This paper has the target of a low-cost solution model that does not require domain specific
knowledge and is able to extract quality features automatically. The EPS and LDA are used for feature
extraction based on dimensionality reduction of signal spectrum. Finally, multiclass SVM is used
with a view to classify the HAR. Later, the research is arranged in a following manner: Section 2
reviews the related literature; Section 3 represents the proposed scheme of activity recognition in detail;
in Section 4, different experiments are performed to evaluate the performance of the proposed method;
Section 5 concludes the proposed model.

2. Literature Review

Extract discriminative feature from raw signal is the key for HAR. For these reasons,
useful features were extracted using Coordinate Transformation and Principal Component Analysis
(CT-PCA) [6]. Centroid signature and histogram of gradient-based two Fourier descriptors are used
in the raw signals to extract features [5]. Lastly, SVM and KNN are used as classifiers. The overall
process had four sections. First, input signals as raw data, second, extraction of supplementary
signal, third, extraction of feature, fourth, information fusion and last, classification. The average
accuracy of feature level fusion SVM was 97.12% and K-NN was 91.75% and score level fusion
SVM was 96.44% and K-NN was 84.02%. In different classification models using vision, particularly
in image processing, the researchers proved that the variation of support vector machines has a
greater capability to recognize the activities of video surveillance objects [29]. The researchers



Sensors 2020, 20, 6990 30f17

smartly used a mechanism that reconstructed the 2-D data so that it could able to interpret the
inner meanings of movable objects. Though this research showed a good outcome of different
physical activities but the major drawback was that it would not provide a workable solution in
a real-life need. To tenacity the issue, in [30], the researchers used a group-based context-aware
approach. Saha et al. implemented a statistical model and extracted a few statistical features from
the raw signals [31]. SVM, KNN, and EoC are used for classification purpose in this proposed
approach. The researchers implemented a hybrid feature extraction and selection method using
Sequential Floating Forward Search (SFFS) where features are extracted from sensor signal using
statistical formula to overcome the phenomenon of ‘curse of dimensionality” [32]. They only rely upon
some fixed statistical features whereas there exist many statistical features which they were totally
overlooked. In one study [33], a dimensionality reduction-based scheme with feature extraction has
been implemented using PCA but it lacks to produce the desired baseline. In 2015, Xizhe Yin et al.
designed and tested four machine learning-based techniques namely J48, Support Vector Machine,
Naive Bayes, and Multilayer Perceptron. The purpose was to detect five activities where data was
composed from 3-axial accelerometer, 3-axial linear accelerometer, gyroscope in different orientation.
The whole process had 4 subsections. First, placement of smartphone the in human body, second,
data accumulation, third, feature extraction from raw data and then classification. Decision tree
based J48 algorithm generated output with an average accuracy of 96.8%. In addition, the accuracy
of all other algorithms was over 99%. At the conclusion the experiment showed that J48 is more
user friendly in terms of simplistic IF-THEN rubrics but the rest of the classifiers could produce
contented outcomes [34]. The implemented model of Li Fang et al. used feature extraction as
a preprocessing technique and Support Vector Machine (SVM), K-Nearest Neighbor and Logistic
Regression as classifiers. The experiment got a usual accuracy 88.9% (SVM), 95.3% (KNN) and 83.9%
(Logistic Regression). The study also engrossed on up and down from buses. For both actions,
the study achieved an accuracy 89.5% for SVM, 96.8% for KNN, 89.7% for LR for up into bus, for down
from bus 84.2% for SVM, 94.2% for KNN, 81.9% for LR [35]. Though, procedural machine-learning
applications produce good performance but they depend on domain-based information.

To solve this problem, activity recognition is shifting towards the deep learning-based
techniques [27,36]. A Convolutional Neural Network (CNN) can automatically extract feature which
is proposed in [26]. This study thus uses deep learning-based shallow CNN methodology which is
an unsupervised approach and extracts local and statistical features. This is capable of extracting
universal characteristics of sensor data [22]. In another study [36], a 3-layer LSTM model achieves
an accuracy of 97.4% which is based on layer wise LSTM and CNN models. In one study [37],
a low-cost Logistic Model Tree (LMT) is proposed for identify the time segment data. In one
study [38], a data driven approach has been proposed. In one study [39], Probabilistic Neural Network
and Fuzzy Cluster algorithm is proposed for the incremental learning ability but it reduces the
required accuracy. In one study [40], a special kind of deep neural network has been proposed
which is a combination of convolutional layers and short-term memory (LSTM). With a few model
parameters it can automatically extract features. In one study [41], backward locking phenomenon
is reduced and it is found that layer wise CNN with local loss exhibits good outcomes. It uses few
numbers of parameters. However, if it uses higher parameters then it might exhibit some discrepancy.
Ran Zhu et al. implemented a model that uses three different data sources i.e., data gathered from
accelerometer, gyroscope and magnetometer. There were a total of 100 subjects who generated the
sensor data. The machine learning-based approach was implemented on preprocessed data particularly
Convolutional Neural Network (CNN). It is found that this study gained a rationally satisfactory
result of 95.62% accuracy. Also, 96.29% accuracy was gained by the same research by using novel
ensembles of CNN [42]. In one study [24], the Stack AutoEncoder (SAE) and heuristic optimization
algorithm-based artificial bee colony (ABC) were proposed. In one study [43], series data are converted
into images using computer vision methodology and employed a deep learning approach. To overcome
the imbalance distribution of labeled data in semi-supervised learning the researchers proposed a
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semi-supervised deep Recurrent-Convolutional-Attention model [25]. In addition, in a study by [44],
it was interestingly found that an unsupervised learning technique is not capable to handle such
situation. Mohammed et al. collected the activity data from human wearable sensors. Sensors were
equipped with accelerometer and gyroscope to produce three axial raw data. Then they preprocessed
the data with Kernel Principal Component Analysis and Linear Discriminant Analysis to intensification
the model robustness so that the existing features are good enough for accurate classification. At the
end, preprocessed data was trained with a Deep Belief Network (DBN). Also, they associated the
outcomes with other recognition models such as conventional SVM and ANN and claimed to reach an
accuracy of 95.85% [45].

In a current scenario, insignificant research on the transferring of deep learning model has been
carried on in this area. Strength and flexibility of activity recognition models can be more smartly
understood by transfer learning approaches with the help of previous tasks. Evocative knowledge
transmission depends on the relationship on a source and a target domain which can successfully
accomplished by transfer learning [46]. In one study [47] on deep transfer learning between subjects
and a target of unlabeled data, the researchers used deep transfer learning. Thus, a CNN model is
deployed for calculating the distance between inner and inter class. However, from the experiment,
it shows that knowledge transfer is hampered by large inner-class distance and small inter-class
distance which is ultimately solved by a combination of the MMD method with central loss as this
technique is able to lessening the inner-class detachment and rise method recital.

Deep learning methodology not only produces a balanced generalization but also totally eliminate
the need for manual feature engineering with a high accuracy. However, deep learning-based
techniques demand a high computational cost and a large number of annotated samples.
Considering every issues in mind, this study implements a low-cost automatic optimal feature
extraction method for HAR.

3. Methodology

Accelerometer and gyroscope data are the main source of signal for identification of human
activity. The overall process is depicted with the help of block diagram which is shown in Figure 1.
The total process is divided into three subsections: (1) Data Gather (2) Good Feature Extraction and
(3) Classification.
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Figure 1. Working flow-diagram of the proposed model.

3.1. Proposed Feature Extraction and Reduction

Embedded noise is a natural phenomenon in any signal. Thus, to get rid of unwanted
data from signal, many feature extraction techniques are available for correct classification.
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This research is emphasized on enveloped power spectrum (EPS). EPS extracts impulse from raw
data. After completion this process, vocabulary extraction and dimensionality reduction are the next
tasks. These tasks are performed with Linear Discriminant Analysis (LDA) from the impulse i.e.,
signal spectrums. Figure 2 shows the working procedure of the feature extraction process.

EPSis performed on the activity LDA is performed as dimensionality reduction

raw signal for extracting procedure to extract the minimum number of Optimal.feature v_ector after
|_,| impulse components of the | | discriminant features from envelop spectrum . performlln'g LDA which u?edfor

signal using frequency domain which capable of mapping coefficients based on the training and testing to

analysis which is more robust maximization of functional built through provided recognize the activities

and noise insensitive signal impulses associated with the actual classes.

Figure 2. Working procedure of the feature extraction process.
3.1.1. Enveloped Power Spectrum (EPS)

EPS can be classified as an imperative use of Digital Signal Processing (DSP). For frequency
domain analysis it is more robust and noise insensitive. EPS estimates the intermittent and
irregular signals. EPS can check the irregularities in the periodograms of the time series signal [48];
particularly signals that are generated from different machines. Sensors (for example: accelerometer
and gyroscope) are a good example for such signals. This powerful EPS technique is measured from
sensor signals with the help of Fast Fourier Transform (FFT). In here, periodogram function assesses
the power spectrum and can be defined over the N-point sequence y[n].

In(w) = oY (@) )
where
N-1 ,
Y(w) = Y ylnle T @
n=0

Y (w) is the discrete-time Fourier change of y[n].

N-1
R(n) = % Z y[n + k|ij[k] for In|<=N-1 3)
k=0
or,
R(n)=0 elsewhere 4)

From experience, general tendency is that the converse change in periodogram exhibits by the
sample auto relationship function R(n). Figure 3 shown the power spectrum of each activity signal.
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Figure 3. Enveloped power spectrum of sample signals of five activities.
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3.1.2. Linear Discriminant Analysis (LDA)

Additionally, maximum separation of class is required for better classification. LDA explores the
directions for maximum separation. Among the many LDAs, Fisher’s Linear Discriminant Analysis
provides rational separation between various classes of data that leads to precise data classification [49].
LDA’s class covariance matrix can be defined by,

k
Sw = Z Sk ®)
k=1
where
Sk =Y (xn — my) (xn — my)" (6)
necy
and
m ! X (7)
k= 37
Ny necy "

Here, in class Cy, Ny is the count of total patterns. In addition X, is the DWT coefficient of nth
pattern where k is the full class numbers. The covariance matrix between the class is characterized as,

k
Sp =Y Ni(my —m)(my —m)T ®)
k=1
where
1 N 1 &
= — =—Y'N 9

is the global mean of the data. The total covariance matrix is defined as,
St =Sp+Sw (10)
To end, projection matrix is calculated by,
W = argymax {(WSWWT)*(WSBWT)} (11)
The LDA coefficients were obtained from the projection matrix as,
y= Wwlx (12)

Here, x vector is the DWT coefficient (the low and high frequency components, of the input signal
at various levels) and y vector is the LDA coefficients.

3.2. Classification

At the final stage of our proposed model, a non-linear MCSVM has been implemented to classify
the individual activity. In general, SVM is a very good supervised machine algorithm that for both
classification and regression. It is widely used as a binary classifier to analyze and recognize the
patterns [2].

The main idea of SVM is to use a hyper-plane for binary classification. However, in many cases,
dataset is nonlinear and therefore cannot be classified with a single hyper-plane. In these cases, a kernel
function might be a perfect choice. It has the ability to classify nonlinear data. There are few versions
of nonlinear kernel function such as: polynomial functions, Gaussian radial basis function and the
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hyperbolic tangent. In this experiment, widely used Gaussian radial basis kernel function has been
implemented. This function can be defined as

2
||xvﬂ/va|‘ > (13)

k(xva, xvp) = exp < 2,2

The function k progressions separated binary inputs xv,, xv, as parameters. The feature vectors
or input parameters are calculated with another autonomous variable to speculate the width of active
basis function kernel, also designated as .

There are few SVM implementations such as follows: one-against-all (OAA), one-against-one
(OAO), and one-acyclic-graph (OAG). In this experiment, least complicated multi-class nonlinear
classification method (OAA) has been used. The OAA-MCSVM has N SVMs and can work in parallel,
as shown in Figure 4. Every SVM distinguishes one class from other classes and lastly a choice can be
made by choosing the SVM which comprises the major output value.

Feature Vector

r========== | | T~ -=-======- mTTTT T T T T T TN 1
v v v v v v
SVM-1 SVM-2 SVM-3 |  eeeeecnn SVM-8 SVM-9 SVM-10
| | | | | |
v v v v v v
Highest output of favorite to win
|
;
A Z
rF=========" | ) B | 1
v v v v v v
Standing Walking Slipping | «eceeenn Laying Sitting Jogging

Figure 4. Architecture of OAA SVM classifier for activity recognition.

4. Experiment

4.1. Data Description

The UCI-HAR dataset [17] and DU-MD dataset [14] are used to evaluate the performance of
the proposed model by conducting extensive experiments. Both datasets are publicly available for
research purposes.

4.1.1. UCI-HAR Dataset

In this dataset, the researchers observed five daily activities of thirty volunteers. The age range
of the subjects varies from nineteen to forty-eight (19—48). A waist-mounted smartphone generated
the desired data of five popular human activities. These were: walking, laying, sitting, standing and
climbing stairs (both upstairs and downstairs). For data generation, smartphone used two sensors:
accelerometer and gyroscope. Accelerometer calculated the triaxial linear acceleration and gyroscope
calculated the triaxial angular velocity with a constant rate of 50 Hz. The activities were marked
manually with the help of recorded video. The full dataset was splitted into two subsets: 70% data were
selected for generating training data and rest of the data were chosen for testing. Also, sensor signals
were pre-processed and low-pass filters were used for sampling in fixed-width sliding windows of
2.56 s with a 50% overlap where window width is 128. Table 1 shows the class-wise data distribution
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of the UCI-HAR dataset. Figures 5 and 6 show the triaxial accelerometer and triaxial gyroscope data
respectively of a sample activity signal of UCI-HAR dataset.

Table 1. Class wise data description of UCI-HAR dataset.

Activity Number of Signal  Each Signal Dimension
Laying 1944 768
Sitting 1777 768
Standing 1906 768
Walking 1722 768
ClimbingStairs 2950 768
Ace-X
] T T T T T p———
AANA =
1~ A —————— —_— s Climbing Stairs
s Standing
— ) a | king
0 A ———— | | | | | I
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Figure 5. Triaxial accelerometer data of UCI-HAR dataset.
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Figure 6. Triaxial Gyroscope data of UCI-HAR dataset.
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4.1.2. DU-MD Dataset

This is also a public dataset. In this dataset, the researchers observed several activities. There were
seven basics (Walking, Sitting, Sleeping, Jogging, Staircase Up, Staircase Down, Standing) and three
falls (Falling Unconsciousness, Falling Heart Attack, Falling Slipping) activities of thirty-four (34)
persons. Each activity has by ten signals for each person with 101 samples. Figure 7 shows the triaxial
accelerometer data of DU-MD dataset.

Ace-X
s—==Walking

(- T | T
20 ‘ ! ‘ : Sitting
iy — ———— PP e Sleeping
Jogging
220 - = Staircase Up
Staircase Down
40 | | | I | | | 1 |

T
! s==Standing
0 100 200 300 400 500 600 700 800 900 100 Unconsciousness

Heart Attack
Acc-Y e S lip ping
40 T T T

e

20 I | I I I
1] 100 200 300 400 500 600 700 800 900 1000

Accelerometer Readings
=
T

Acc-Z
20 T T

e Sl

100 200 300 400 500 600 700 800 900 1000
Time(s)

Figure 7. Triaxial accelerometer data of DU-MD dataset.

4.2. Experimental Setup and Performance Measurement Criteria

Every experiment is implemented on a laptop computer Intel(R) Core(TM) i5-6200U 2.30 GHz
and 8 GB RAM with operating system windows (x64) version 10, and using MATLAB programming
language tool. To evaluate the performance of the proposed model, four evaluation metrics are used
and these four evaluation metrics are computed as follows:

T, + T,

Accuracy = T, T E, + F, Ty (14)
Precision(P) = -2 (15)
recision =
T, +Fp
T,

Recall(R) = —F 16
(R) =+ (16)

2 x (P xR)
Fl SCOT’E — 1)—’_71{ (17)

A signal belonging to one class may be misclassified as belonging to another, creating a false
positive recognition (Fy) of that class, while a signal belonging to another class may be misclassified
as belonging to that class, creating a false negative (F,) recognition of that class. When the class of
a considered signal is accurately predicted, the recognition is defined as a true positive (T;) for the
considered class and as a true negative (T}) for all other classes.

4.3. Feature Extraction and Reduction Analysis

At first, signal impulses are extracted from each activity raw signal using the enveloped power
spectrum (EPS). The Enveloped Power Spectrum (EPS) is used for extracting impulse components of
the signal using frequency domain analysis which is more robust and noise insensitive. After applying
the EPS, 153 and 385 signal spectrums are obtained from 303 and 768 samples of a signal for the
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DU-MD and UCI-HAR datasets respectively. Figure 8 shows the signal impulses of human activities.
The Linear Discriminant Analysis (LDA) is used as dimensionality reduction procedure to extract
the minimum number of discriminant features from envelop spectrum. LDA capable of mapping
coefficients based on maximization of functional built through provided signal impulses associated
with the actual classes. After performing LDA, the feature vectors have become 49 and 123 for each
activity signal. In the first order dimension LDA provides discriminant features and are class-wise
separable but in the higher order dimension LDA features are not that much discriminative. Figure 9
shows the class-wise features in six subsections for visual representation. Figure 9a,b shows the LDA
implanted first three features of each class of the UCI-HAR and DU-MD datasets. It is clearly visible
that the first three features of each class are fully separable on a three-dimensional cartesian coordinate
system plane. The second three features of each class have a minor over-fitting but still separable for
the both datasets which are shown in Figure 9¢,d respectively. On the other hand, Figure 9e-h state that
these features of for the both datasets are over-fitted between classes and thus those are not separable.

Envelope power spectrum of UCI-HAR Dataset

—+#— Standing
—5—Sitting 0.014 @ —+—Standing
0.03 Laying N —s—Siiting
: Walking N A Laying
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@
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Envelope power spectrum of DU-MD Dataset
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Figure 8. Signal impulse of human activities.
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4.4. Result Analysis

In this experiment, EPS and LDA based feature extraction and reduction model are performed on
the raw activity signals for getting the discriminant features. This model uses the two well-known
publicly available datasets namely DU-MD and UCI-HAR datasets. These two datasets are branched
into two subsets for the training and the testing. For the training purpose, 50% data is used and rest of
the data is used for testing. After feature extraction and dimensionality reduction, feature vectors are
trained using a conventional and very well-known supervised classifier, specifically, Support Vector
Machine (SVM). Though SVM is binary in nature still this classifier can also be used as multiclass
classifier efficiently. After completing the training, the performance of the implemented model
evaluated by the test data. Classifier is trained and tested for considering different number of
features for the both datasets which is shown in Table 2. This experiment illustrates the classification
performance increases by using the more features but there exists an optimal number of features where
maximum performance is gained. After that, it exhibits an inverse relation between the increasing
number of features and classification performance. Table 2 shows the performance of the classifier using
different number of features. It is found that the best performance of this experiment is obtained from
top five features for the both datasets. The classifier shows 98.67% accuracy and 98.71% F1 score on the
UCI-HAR dataset. Similarly, 100% accuracy and 100% F1 score are obtained from the same model on
the DU-MD dataset. Figures 10 and 11 show the confusion matrix to visualize the performance of the
implemented model in a contingency table on the both datasets respectively. Next, we have applied
3-fold cross-validation on the both datasets to check the robustness of the proposed model. First 2-fold
used for training and rest of the fold used for testing purpose. From this experiment, its found that
the performance of the proposed model has increased due to the number of training set has increased
which is shown in Table 3. Figure 12 shows the class-wise accuracy comparison of the proposed model
with other state-of-the-art models on the DU-MD dataset. The class-wise accuracy comparison of
the proposed model with other state-of-the-art models on the UCI-HAR dataset is shown in Table 4.
The performance comparison of the implemented model with the other state-of-the-art methods are
shown in Tables 5 and 6 as well. From Tables 5 and 6, it is clear that the implemented model gives
superior performance than the other state-of-the-art methods in terms of accuracy and cost.

Human Activity Classification Using SVM

ClimbingStairs 14 0.9%
Laying 0.5%
Sitting 3.1%
7
= i .
@] Standing 3.7%
L¥]
&
Walking 1.7%
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Figure 10. Confusion matrix of the proposed model on UCI-HAR dataset for the five best features.
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Human Activity Classification Using SVM
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Figure 11. Confusion matrix of the proposed model on DU-MD dataset for the five best features.

Accuracy Comparison

100% 00% 00% 100%100% 100% 100% 100% 0 100%
100% 0%y 9598 9594 P 00% a5 96% 92%
> 80% - 72%
S 60%
3 400
3 40%
< 20%
0%
;\\\\‘0 R &\\\‘0
& & o
\O ‘L‘b-

Activity

@ Statistical Features [31] = Proposed

Figure 12. Class-wise accuracy comparison of the proposed model with other state-of-the-art models
on the DU-MD dataset.

Table 2. Feature based performance (%) of the proposed model on both datasets.

No. of Features UCI-HAR Dataset DU-MD Dataset
Accuracy Precision Recall F1Score Accuracy Precision Recall F1 Score

5 98.67 98.67 98.75 98.71 100 100 100 100

10 93.33 93.33 93.89 93.61 99.33 99.33 99.37 99.35
15 89.33 89.33 90.41 89.87 98.00 98.00 98.33 98.17
20 85.33 85.33 91.54 88.33 94.00 94.00 95.00 94.50
25 84.00 84.00 84.91 84.45 94.00 94.00 95.00 94.50
30 82.67 82.67 83.73 83.19 91.33 91.33 93.51 9241
35 78.67 78.67 84.07 81.28 89.33 89.33 92.08 90.69
40 77.33 77.33 87.65 82.17 82.00 82.00 87.28 84.56

All 42.67 42.67 45.17 43.88 33.33 33.33 41.40 36.93
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Table 3. Feature based performance (%) of the proposed model performing 3-fold Cross-Validation on
both datasets.

UCI-HAR Dataset DU-MD Dataset

.of F .. .
No. of Features Accuracy Precision Recall F1Score Accuracy Precision Recall F1 Score

5 99.73 99.69 99.77 99.73 100 100 100 100
10 95.00 95.67 95.00 95.33 100 100 100 100
15 91.00 91.18 91.00 91.09 100 100 100 100
20 87.33 87.63 87.33 87.48 98.00 98.33 98.00 98.17
25 86.00 87.14 86.00 86.57 96.00 97.14 96.00 96.57
30 83.73 83.77 83.69 83.73 93.00 95.38 94.00 94.69
35 80.00 80.39 81.00 80.83 90.00 92.47 90.00 91.22
40 79.00 79.14 79.00 79.07 82.00 88.13 82.00 84.95
All 46.33 47.29 48.00 47.83 36.00 36.25 36.00 36.12

Table 4. Class-wise accuracy (%) comparison of the proposed model with other state-of-the-art models
on the UCI-HAR dataset.

Activity Feature Level Fusion+SVM [5] CNN [22] Hybrid Feature Selection [32] Proposed Model
Laying 100 99.40 99.26 100
Sitting 98.90 90.04 97.76 100

Standing 98.14 98.20 97.18 100

Walking 99.88 99.40 98.99 93.33

ClimbingStairs 99.96 98.81 97.24 100

Table 5. Performance comparison of the proposed model with other state-of-the-art methods on the

DU-MD dataset.
Authors Methods No. of Features  Accuracy (%)
DWT+SF+SVM 90.50
Saha etal. [31] DWT+SF+EoC 3 93.00
Proposed Model EPS+LDA+MCSVM 5 100

Table 6. Performance comparison of the proposed model with other sate-of-the-art models on the
UCI-HAR dataset.

Author Methods Accuracy (%) Each Sample Classification Time

Chen et al. [25] Recurrent Convolutional Attention 81.32 21.538 ms ~ 57.253 ms

Ignatov et al. [22] CNN 97.63 33.286 ms ~ 35.714 ms
CNN+Baseline (global loss) 96.20
CNN-+pred (local loss) 95.42

Teng et al. [41] CNN+I:; im (local loss) 9.16 24.462 ms ~ 26.055 ms
CNN-+predsim (local loss) 96.98
2D CNN 85.20

Tufek et al. [36] ”;f;}lszgg/[M o 331.27 ms ~ 338.03 ms
3 layer LSTM 97.40
Score-level fusion+KNN 84.02

Jain et al. [5] Feature-level fusion+KNN 91.75 _

o Score-level fusion+SVM 96.44
Feature-level fusion+SVM 97.12

Xia et al. [40] LSTM-CNN 95.78 340.62 ms ~ 349.80 ms

Proposed Model EPS+LDA+MCSVM 98.67 0.0500 ms ~ 0.1235 ms
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5. Conclusions

This paper presents an effective human activity recognition system. In this model, the EPS- and
LDA-based feature extraction and reduction model have been introduce for smartphone sensor data.
To increase the classification performance, quality feature extraction is a prime target from raw sensing
data because of unwanted noise. The main advantage of the proposed EPS- and LDA-based feature
extraction and reduction model can reduce the noise and extract the quality features from accelerometer
data and gyroscope data. To judge the performance of the proposed system, a supervised classification
model is incorporated in this study. To validate the system, the UCI-HAR and the DU-MD datasets are
used. The experimental results show superior performance compared with other feature extraction
methods, and with deep learning-based state-of-the-art methods in terms of performance and cost.
The conclusions made with this research help to encourage future work and introduce a new project
on the activity recognition systems using wearable sensors. In the future, new adaptations will be
introduced on the proposed feature extraction and reduction model such as preprocessing, applying
filters, and advance feature selection methods that can be evaluated. Besides, we will try to apply
unsupervised techniques to make the HAR systems more robust.
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