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Abstract: The studied sensor consists of a microstrip interdigital capacitor covered by a gas sensing
layer made of titanium dioxide (TiO2). To explore the gas sensing properties of the developed sensor,
oxygen detection is considered as a case study. The sensor is electrically characterized using the
complex scattering parameters measured with a vector network analyzer (VNA). The experimental
investigation is performed over a frequency range of 1.5 GHz to 2.9 GHz by placing the sensor
inside a polytetrafluoroethylene (PTFE) test chamber with a binary gas mixture composed of oxygen
and nitrogen. The frequency-dependent response of the sensor is investigated in detail and further
modelled using an artificial neural network (ANN) approach. The proposed modelling procedure
allows mimicking the measured sensor performance over the whole range of oxygen concentration,
going from 0% to 100%, and predicting the behavior of the resonant frequencies that can be used as
sensing parameters.

Keywords: artificial neural networks; bioengineering; healthcare applications; interdigital capacitor;
oxygen sensing; scattering parameter measurements

1. Introduction

The recent development of the ambient-assisted living concept and the extraordinary progress of
bioengineering and healthcare applications have enforced the development of a wide range of sensors
aimed at sensing different environmental and biomedical parameters [1–5]. Sensing gas presence is
very important not only for ensuring a safe living environment without dangerous gases, but also
for being of help in the diagnosis of certain illnesses, such as diabetes, cancer, etc. [6–13], as well
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as in therapeutic applications [14,15]. In recent years, various sensors based on microwave devices
have been developed to be used for gas sensing purposes [16–38]. Compared to their conventional
counterparts based on resistive, capacitive, and amperometric effects [18], sensors based on microwave
transducers show better performance, i.e., they have lower power consumption, a shorter response
time, and a lower operating temperature [16,18–22]. A low-cost electronic interface can be developed
for such sensors with an accurate resonant frequency estimation [39–42]. Moreover, they can be
easily integrated into antennas, thereby being compatible with wireless technologies [25,26,43]. It is
worthy of note that, through integration with microfluidic channels, microwave sensors can also
allow dielectric characterization of biological liquids [44–48]. In recent years, many efforts have
been devoted to the development of the materials, design, and applications of miniature devices
for gas sensing [49,50]. Among the many applications, gas sensors used for oxygen detection are
particularly notable because of their use in monitoring pollution emissions from various sources
(e.g., motor vehicles and industrial combustions) [50,51].

A microwave transducer consists of a microwave device, acting as an electromagnetic wave
propagative structure, which is covered with a sensing layer, as illustrated in Figure 1. When exposed
to the target gas, the sensing layer material interacts with the gas molecules and, consequently,
the dielectric properties and the device electrical response are changed. Therefore, the changes
in the target gas concentration influence the changes in the electrical response of the sensor.
Often, the propagative structure is realized in the microstrip technology, such as microstrip patch
antennas [24–26], microwave resonators [20,27–32], and other microstrip structures [35,36]. Among the
various exploited structures, sensors based on the use of interdigital capacitors (IDCs) as propagative
structures have been proposed [30,37]. The gas sensor considered in this work is a two-port IDC
fabricated in microstrip technology and covered with a thick layer of titania (TiO2), as a sensitive layer.
TiO2 is widely known in scientific literature as a sensing material, such as the resistive gas sensors
developed by employing Pt-TiO2/MWCNTs (multi-walled carbon nanotubes) hybrid composites [52]
and TiO2 coated carbon nanotubes prepared by atomic layer deposition (ALD) [53]. Furthermore,
the sensing properties and photochromism of Ag-TiO2 nanoheterostructures were also evaluated [54].
The TiO2 metal oxide is suitable for the present purpose since the O2 molecules absorbed on its surface
can be easily desorbed, even at room temperature [33,54]. The developed prototype is used as a probe
for oxygen (O2) sensing. A possible application for this device is in oxygen therapy, where the O2

concentration is usually greater than 85%. The device could be also useful in spacecraft oxygen level
detection; in these cases, the O2 concentration is above 60% [55].
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Figure 1. Illustration of the working principle of a gas sensor based on using a microwave device as a
propagative structure and a sensing layer for gas detection. The two-port gas sensor is obtained by
deposition of the gas sensing layer on the propagative structure and then exposure to the target gas.
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The main aim of this paper is to develop and exploit a model able to mimic accurately the electrical
response in a frequency range spanning from 1.5 GHz to 2.9 GHz, and for different concentrations of O2,
ranging from 0% to 100% v/v at a room temperature. To develop the model, artificial neural networks
(ANNs) have been chosen as the modelling tool. Owing to their ability to learn the relationship between
an input–output set of data, ANNs have found a variety of applications in different research fields,
such as microwave device modelling [56–66] and gas sensing purposes [67–75]. As far as microwave
device modelling is concerned, the ANNs have often been applied to model the device’s electrical
characteristics versus different operating and ambient conditions, as well as versus device dimensions
making the model scalable. In the gas sensing applications, the ANNs are, typically, exploited for
gas concentration sensing, gas classification, and modelling of the gas sensor characteristics. In the
present case, an ANN model is developed to reproduce faithfully the device’s electrical characteristics.
The admittance (Y−) parameter representation is adopted, and particular attention is given to the
shift in the resonant frequencies of Y11, which can be used as sensing parameters for detecting the
concentration of the gas that the sensor is exposed to. To model the sensor behavior under different
gas concentrations, the ANNs are exploited. Namely, the developed model relates the Y11 real and
imaginary parts of the sensor with the frequency and O2 concentration by using a two-step hierarchical
prior-knowledge-input (PKI) neural approach. This study extends the previous findings reported
in [37,38], focusing on a thorough investigation of the neural modelling approach for mimicking the
shift in the resonant frequencies with the changes of the gas concentration variations, as well as their
sensitivity-based analysis. The learning and generalization capabilities of the neural-based approach
are exploited for modelling the resonant frequencies, in order to strengthen their possible usage as gas
concentration sensing markers.

The paper is organized as follows. The studied sensor, experimental set-up, and a brief analysis of
the measured electrical characteristics are given in Section 2. Section 3 contains a description of the
developed ANN-based model. The most illustrative results, followed by a corresponding discussion,
are presented in Section 4. Finally, Section 5 contains the main concluding remarks.

2. Studied Sensor and Experimental Set-up

As mentioned in the introductory section, a two-port IDC structure covered by a gas sensing layer
is employed as a microwave transducer for oxygen sensing (see Figure 2). The studied device is made
of six fingers with the following dimensions: a length (Lf) of 15 mm, a width (Wf) of 0.36 mm, and a
spacing (S) of 0.36 mm. Microstrip lines with the input impedance of 50 Ω are connected at the SMA
connectors at the input and output ports of the device. The structure is fabricated on a 1.6-mm FR4
substrate by using the LPKF Protomat S103 PCB milling machine. The dielectric constant (εr) and the
loss tangent (tanδ) of the substrate are 4.2 and 0.015, respectively. The board dimensions are relatively
small (i.e., 20 mm × 30 mm × 1.6 mm). A picture of the fabricated device is shown in Figure 3a. As a
sensitive layer, a thick layer of TiO2 is deposited by screen printing at the top of the fabricated IDC.
The employed TiO2 is composed of 56.5% anatase, 19.8% rutile, and 23.6% brookite [54]. To reduce the
humidity content, the device with the deposited sensing layer is placed inside an oven at 60 ◦C for two
hours. A picture of the device with the deposited sensing layer is reported in Figure 3b.Sensors 2020, 20, 7150 4 of 16 
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Figure 3. Photos of the sensor: (a) before and (b) after the gas sensing layer deposition.

An illustration of the experimental set-up is shown in Figure 4. It is a fully automated gas control
system consisting of certified gas bottles and mass flow controllers, in order to set the preferred gas
mixture inside the testing chamber and create a controlled atmosphere. Therefore, it is possible to
select the gas mixture, set the concentration value for each gas, and control/monitor the gas flow.
The sensor under test (SUT), which is being characterized, is placed inside a polytetrafluoroethylene
(PTFE) test chamber. The small chamber volume (5 cm3) allows for the setting or purging of the
gas content in a short time. The device is exposed to a binary gas mixture composed of oxygen
and nitrogen (N2). The O2 concentration is varied from 0% (pure N2 inside the chamber) to 100%
(no N2 inside the chamber). The gas flow, set to 100 cm3/min, is maintained constant for the whole
measurement session. The SUT is connected to the Agilent 8753ES vector network analyzer (VNA) that
is used to perform the frequency-dependent measurements. The measured data are transferred via the
USB/GPIB interface to a personal computer, where they are stored. The sensor electrical response is
determined by measuring the scattering (S−) parameters under different conditions of O2 concentration.
The S-parameters are complex and frequency-dependent quantities that allow for full characterization
of the electrical behaviorbehavior of linear devices. However, as discussed below, instead of the
S-parameters, it is more suitable to carry out the investigation using the impedance (Z−) or admittance
(Y−) parameters, which are equivalent representations that can be straightforwardly calculated from
the measured S-parameters by means of the well-known conversion formulas [76,77]. As an illustrative
example, we report here the conversion formulas from S- and Z- parameters to the Y-parameters:

[
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where Y0 is the characteristic admittance (normally 20 mS).
The analysis of the Z− and Y− parameters at all studied O2 concentrations showed that the

impedance parameters of the SUT quite closely satisfy the condition Z11 = Z22 = −Z12 = −Z21, and,
analogously, the admittance parameters are quite close to the condition Y11 = Y22 = Y12 = Y21.
As an illustrative example of the validity of these approximations, Figures 5–7 report the frequency
dependence of the Z− and Y− parameters at 70% of O2 concentration. Therefore, Y11 has been selected
for further investigation and modelling, since it is enough to study the behavior of only one parameter
versus the frequency and O2 concentrations. This made the analysis simpler and faster.
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By analyzing the admittance parameter Y11 for all considered concentrations of O2 (see Figure 8),
it was concluded that a substantial variation of the admittance parameter was observed in the frequency
range from 2.0 GHz to 2.5 GHz. Particular attention has then been devoted to this frequency range.
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Figure 8. Frequency dependence of the (a) real and (b) imaginary parts of Y11 at different
O2 concentrations.

3. ANN-Based Model

A modelling approach based on multilayer perceptron ANNs is proposed to model the behavior
of the admittance parameters versus the frequency and the O2 concentration, as shown in Figure 9 [38].
Since the admittance parameters closely satisfy the condition Y11 = Y22 = Y12 = Y21, it is enough to
develop a model only for the parameter Y11. For that purpose, an ANN having two outputs referring
to the real and imaginary parts of Y11 should be trained by using the values of the measured Y11.
The ANN has two input neurons corresponding to the O2 concentration and frequency (see ANN2 in
Figure 9). Moreover, the proposed ANN has, besides the two mentioned inputs, two additional inputs
referring to the real and imaginary parts of Y11 at a reference concentration. Namely, in order to ensure
the modelling accuracy, a so-called prior-knowledge-input neural modelling approach is adopted [56].
The PKI approach assumes that the ANN has additional inputs, which are correlated in a certain way to
the ANN outputs, with the aim of more easily achieving the desired accuracy with the available set of
data. As the prior-knowledge, Y11 at a chosen reference O2 concentration is exploited, since the shape
of the frequency-dependent behavior of Y11 is roughly similar for all concentrations. For determining
Y11 at the chosen reference frequency, an additional ANN is considered, namely ANN1 in Figure 9.
It has one input and two output neurons. Both ANNs can have one or two layers of hidden neurons.
The number of hidden neurons is determined during the ANN training process, as it is not possible
to determine it a priori. Namely, for each ANN, ANN structures with a different number of hidden
neurons are trained and then, after comparing their accuracy, the best one is chosen as the final model.
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Figure 9. Illustration of the proposed artificial neural network (ANN) model for reproducing the
frequency dependence of the measured Y11 of the studied sensor operating at different concentrations
of O2.

The procedure of the model development is as follows. As the first step, the ANN1 is trained using
the values of the measured Y11 at the chosen reference concentration and in the considered frequency
range. As the next step, the training dataset for ANN2 development is built. Namely, the measured
frequency-dependent behavior of the real and imaginary parts of Y11 for different O2 concentrations is
accompanied by the values of Y11 at the reference concentration calculated from ANN1 for the same
frequency. Once the ANN2 is trained, the two ANNs form the model that can be further used. It is
noteworthy that the ANNs can be described with the equivalent mathematical expressions, which can
be straightforwardly implemented in a circuit simulator or any math-based environment. In particular,
the proposed ANN model can be integrated with a simulator and used for accurate modelling of gas
sensors. Such a model might reduce both processing time and analytical complexity, resulting in a
simpler computation process.

In the present case, the values of Y11, calculated from the measured S-parameters, were available
at the following O2 concentrations: 0%, 5%, 10%, 15%, 20%, 40%, 70% and 100%. Upon analysis of
the behavior of Y11 at these concentrations, 70% was selected as the reference concentration of O2.
Therefore, ANN1 was trained with the data of Y11 referring to this concentration. The best ANN was
the one with two hidden layers having five hidden neurons each. This ANN accurately mimics the
real and imaginary parts of Y11, as can be seen in Figure 10.
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(symbols) measurements and (lines) ANN simulations.

Afterwards, ANN2 was trained. From the available measurements, the data referring to the
concentrations of 5% and 15% were left for the model verification, whereas the rest of the data was
used for training purposes. As mentioned above, each measurement sample was accompanied by
the corresponding values of Y11 that were calculated by using ANN1 for the same frequency, in order
to be used as the ANN2 PKI inputs. After the training of several ANNs with a different number of



Sensors 2020, 20, 7150 8 of 15

hidden neurons, the ANN which gave the best compromise between the learning (i.e., the accuracy of
predicting the training data) and the generalization (i.e., the accuracy of predicting the data not used for
the ANN training) was chosen as the final model. This ANN model had two hidden layers consisting
of 15 and 12 neurons, respectively. The ANNs were trained by applying the Levenberg–Marquardt
training algorithm [56], which belongs to the backpropagation type of training algorithms. To illustrate
the achieved learning and generalization accuracy, Figure 11 illustrates the real and imaginary parts of
Y11 at different O2 concentrations. It can be noted that the values obtained by the ANN model (lines)
closely match the measured values (symbols), not only for the training values of O2 concentration but
also for the test values not used for the ANN training. This signifies that the ANN assimilated the
training data and achieved a good generalization in predicting Y11 for the concentration values not
considered during the model development.
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Figure 11. Frequency dependence of the real and imaginary parts of Y11 at two different values of the
O2 concentration (symbols-measurements, lines-ANN simulations): (a) training concentration of 40%;
(b) test concentration of 15%.

To quantify further the modelling accuracy, the absolute variation of the real and imaginary parts
of Y11 simulated by the ANN model from the corresponding measured values is reported for all
considered concentrations in Figure 12. Moreover, in Figure 12, the error distribution histograms are
also reported. The histograms show how many of the considered total number of samples (i.e., the data
points corresponding to different combinations of the frequency and the O2 concentration) have the
value belonging to the range of each histogram bin. From these plots, one can see that the maximum
absolute difference, for both real and imaginary parts, is smaller than 0.15 S, but in majority of the
cases is even smaller than 0.05 S.
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4. Results and Discussion

The developed ANN model can be used to accurately predict the frequency-dependent behavior
of Y11 for any O2 concentration value in a range of 0% to 100%. To illustrate this, Figure 13 shows
the real and imaginary parts of Y11 at O2 concentrations with a step of 10%. The plots confirm that
changes in the O2 concentration are clearly transduced into variations of Y11. In particular, there is a
shift of the peaks and dips in the spectrum and there is also a change in their amplitude. At certain
frequencies, the imaginary part of Y11 becomes null and thus this parameter is purely real. At these
frequencies, the device resonates, and it is possible to relate the change in the resonant frequency to a
change in the O2 concentration. Namely, three resonance frequencies can be identified, let them be
named f 1 (around 2.21 GHz), f 2 (around 2.33 GHz), and f 3 (around 2.38 GHz).
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Figure 13. Frequency dependence of the (a) real and (b) imaginary parts of Y11 at different O2

concentrations, spanning from 0% to 100% with a step of 10%. These values are obtained by using the
proposed ANN model.

Based on the analysis of the imaginary part of Y11 at different O2 concentrations, the resonant
frequencies were read from the measurements and from the ANN model simulations, which were
performed with a step of 5%. The obtained results are reported in Figure 14. It can be seen that the
values obtained from the simulations agree very well with the values obtained from the measured Y11

for all considered concentrations. This demonstrates the accuracy of the developed ANN model and
its generalization capability, enabling prediction of the resonant frequencies even at O2 concentrations
different than the ones used during the experimental characterization.
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To investigate the suitability of the resonant frequencies as sensing parameters of the O2

concentrations, the sensitivity and the relative change versus the O2 concentrations are investigated.
Figure 15 illustrates the absolute-absolute sensitivity and absolute-relative sensitivity of the resonant
frequencies to changes in the O2 concentration by using 100% of O2 concentration as the reference
value. The absolute-absolute sensitivity is calculated as S = ( frx − fr100)/(%O2 − 100), whereas the
relative-absolute sensitivity is calculated as S = %O2 · ( frx − fr100)/(%O2 − 100). frx is the considered
resonant frequency at a certain %O2 and fr100 is the corresponding resonant frequency at 100% of O2

concentration. For the sake of completeness, the relative change of the resonant frequencies, expressed
as a percentage, is calculated as 100 · ( frx − fr100)/ fr100 and the achieved results are given in Figure 16.
It should be highlighted that f 1 exhibits positive values for both sensitivities, whereas f2 and f3 have
negative sensitivities. Figure 15a shows that the absolute-absolute sensitivity is roughly insensitive to
the concentration of O2 for all of the three resonant frequencies. On the other hand, Figure 15b shows
that the absolute values of the relative-absolute sensitivity increase linearly with the concentration of
O2 for all of the three resonant frequencies. Although the sensitivities of the three resonant frequencies
show similar behavior, the highest absolute values are achieved when using f 2 and f 3. (see Figure 15a,b).
Therefore, these two resonant frequencies allow achieving an enhanced sensitivity of the proposed
sensor for oxygen sensing. As the discrepancies between measured and simulated data are slightly
larger when using f 3, it can be concluded that f 2 is the resonant frequency to be chosen as the sensing
parameter in the present case.Sensors 2020, 20, 7150 11 of 16 
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5. Conclusions 

A gas sensor has been developed and experimentally characterized, focusing on oxygen sensing 

as a case study. An ANN modelling approach has been proposed and successfully validated, 

enabling a faithful reproduction of the measured sensor performance and prediction even at oxygen 

concentrations not considered during the characterization phase. The assessment of the sensor 

sensitivity to variations in the oxygen concentration has been accomplished by analyzing the resonant 

frequencies, which were modelled versus the oxygen concentration by using the developed ANN 

model. Finally, it should be underlined that the achieved experimental and modelling results can find 

many practical sensing applications in the healthcare and bioengineering fields. 

Author Contributions: Investigation, Z.M., G.G. and M.L.; Methodology, Z.M., G.G. and M.L., Supervision, G.C. 

(Giuseppe Campobello), G.C. (Giovanni Crupi) and N.D.; writing—original draft, Z.M.; Writing—review and 

editing, G.C. (Giuseppe Campobello), G.C. (Giovanni Crupi) and N.D. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was partly funded by the Ministry of Education, Science and technological Development 

of the Republic of Serbia. 

Figure 15. Comparison between measurements (symbols) and ANN simulations (lines) of the
(a) absolute-absolute sensitivity and (b) absolute-relative sensitivity of the resonant frequencies to
variations in the O2 concentration. The used reference value of the O2 concentration is 100%.

Sensors 2020, 20, 7150 11 of 16 

 

  
(a) (b) 

Figure 15. Comparison between measurements (symbols) and ANN simulations (lines) of the (a) 

absolute-absolute sensitivity and (b) absolute-relative sensitivity of the resonant frequencies to 

variations in the O2 concentration. The used reference value of the O2 concentration is 100%. 

 

Figure 16. Comparison between measurements (symbols) and ANN simulations (lines) of the relative 

changes of the resonant frequencies versus the O2 concentration. The used reference value of the O2 

concentration is 100%. 

5. Conclusions 

A gas sensor has been developed and experimentally characterized, focusing on oxygen sensing 

as a case study. An ANN modelling approach has been proposed and successfully validated, 

enabling a faithful reproduction of the measured sensor performance and prediction even at oxygen 

concentrations not considered during the characterization phase. The assessment of the sensor 

sensitivity to variations in the oxygen concentration has been accomplished by analyzing the resonant 

frequencies, which were modelled versus the oxygen concentration by using the developed ANN 

model. Finally, it should be underlined that the achieved experimental and modelling results can find 

many practical sensing applications in the healthcare and bioengineering fields. 

Author Contributions: Investigation, Z.M., G.G. and M.L.; Methodology, Z.M., G.G. and M.L., Supervision, G.C. 

(Giuseppe Campobello), G.C. (Giovanni Crupi) and N.D.; writing—original draft, Z.M.; Writing—review and 

editing, G.C. (Giuseppe Campobello), G.C. (Giovanni Crupi) and N.D. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was partly funded by the Ministry of Education, Science and technological Development 

of the Republic of Serbia. 

Figure 16. Comparison between measurements (symbols) and ANN simulations (lines) of the relative
changes of the resonant frequencies versus the O2 concentration. The used reference value of the O2

concentration is 100%.



Sensors 2020, 20, 7150 11 of 15

5. Conclusions

A gas sensor has been developed and experimentally characterized, focusing on oxygen sensing as
a case study. An ANN modelling approach has been proposed and successfully validated, enabling a
faithful reproduction of the measured sensor performance and prediction even at oxygen concentrations
not considered during the characterization phase. The assessment of the sensor sensitivity to variations
in the oxygen concentration has been accomplished by analyzing the resonant frequencies, which were
modelled versus the oxygen concentration by using the developed ANN model. Finally, it should
be underlined that the achieved experimental and modelling results can find many practical sensing
applications in the healthcare and bioengineering fields.
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