
sensors

Review

A Critical Review of Nonlinear Damping Identification
in Structural Dynamics: Methods, Applications,
and Challenges

Tareq Al-hababi 1 , Maosen Cao 2,3,*, Bassiouny Saleh 4 , Nizar Faisal Alkayem 5

and Hao Xu 6

1 Department of Engineering Mechanics, Hohai University, Nanjing 210098, China; tareq.alhababi@hhu.edu.cn
2 Jiangxi Provincial Key Laboratory of Environmental Geotechnical Engineering and Disaster Control,

Jiangxi University of Science and Technology, Ganzhou 341000, China
3 Nantong Ocean and Coastal Engineering Research Institute, Hohai University, Nantong 226000, China
4 College of Mechanics and Materials, Hohai University, Nanjing 211100, China; bassiouny.saleh@alexu.edu.eg
5 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;

nizar.alkayem@yahoo.in
6 State Key Laboratory of Structural Analysis for Industrial Equipment, Faculty of Vehicle Engineering and

Mechanics, School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China;
xuhao@dlut.edu.cn

* Correspondence: cmszhy@hhu.edu.cn

Received: 12 November 2020; Accepted: 12 December 2020; Published: 19 December 2020 ����������
�������

Abstract: In recent decades, nonlinear damping identification (NDI) in structural dynamics has
attracted wide research interests and intensive studies. Different NDI strategies, from conventional to
more advanced, have been developed for a variety of structural types. With apparent advantages over
classical linear methods, these strategies are able to quantify the nonlinear damping characteristics,
providing powerful tools for the analysis and design of complex engineering structures. Since the
current trend in many applications tends to more advanced and sophisticated applications, it is of great
necessity to work on developing these methods to keep pace with this progress. Moreover, NDI can
provide an effective and promising tool for structural damage detection purposes, where the changes
in the dynamic features of structures can be correlated with damage levels. This review paper
provides an overview of NDI methods by explaining the fundamental challenges and potentials of
these methods based on the available literature. Furthermore, this research offers a comprehensive
survey of different applications and future research trends of NDI. For potential development and
application work for nonlinear damping methods, the anticipated results and recommendations of
the current paper can assist researchers and developers worldwide to find out the gaps and unsolved
issues in the field of NDI.

Keywords: nonlinear damping identification; nonlinear damping applications; finite element
modelling; structural damage detection; dynamic features

1. Introduction

In recent decades, a huge number of engineering structures such as various civil structures
(e.g., bridges, dams, buildings, etc.), rotating machines, aircraft, etc., have been designed and widely
used in real life-services [1]. Such structures, with either simple or complex geometric or material
properties, are subjected to different levels of vibrations from numerous sources, including earthquakes,
wind loads, vehicle motions, imbalance of rotating machines, etc. [2]. Excessive levels of vibrations
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largely affect the performance, health condition, and serviceability of structures and even lead to
structural instability and failures [3].

In general, structural damping is a preferable dynamic characteristic able to reduce the degree of
system vibrations to an acceptable level [4]. Damping and its variation occur due to the continuous
dissipation of energy [5], both internally and externally, linked with factors such as material degradation,
geometrical changes, boundary conditions, etc. [6]. With complex mechanisms, structural damping is
commonly classified into three types. First, the fluid damping, which originates from hydrodynamic or
aerodynamic forces surrounding the structures [7]. Second, the material damping, which appears due
to complex atomic-molecular interactions inside materials [8]. Third, the structural damping, resulting
from Coulomb friction between parts within a structural system [9]. For damping characterization,
several simplified models have been suggested; for instance, viscous damping, hysteretic damping,
and Coulomb frictional damping models [10]. In real applications, equivalent viscous damping is
commonly used to model the overall behavior of damped systems [11].

Most structural systems show a certain extent of nonlinearity associated with different
sources [12,13]. However, neglecting the nonlinearity is acceptable in many cases for the sake
of simplification of analysis [14,15]. In other cases, nonlinear behavior plays a dominant role.
Nonlinearity neglection should be prevented in such cases, as it may lead to erroneous predictions of
system behaviors [16]. Among the causes of system nonlinearity, nonlinear damping [17,18] is often
regarded as the most influential; this complexity of which makes it challenging to perform system
identification [19]. Moreover, to better accommodate the development of advanced material with strong
nonlinear behavior, research on the impact of nonlinear damping is of increasing importance [20–22].

Some damping identification approaches, theoretical and experimental, have been developed [23].
Experimental techniques for damping estimation show advantages in accuracy and reliability.
Damping identification approaches provide straightforward explanations for damping properties as
compared with theoretical approaches [24]. The enhancement technique of engineering structures is
carried out by measuring inputs and outputs during the experiment of real structures. This enhancement
technique is made to avoid unwanted behavior of the system subject to damping effects [25].

Several hypotheses can be used for linear and nonlinear damping of low-damping
systems [26–28]. High-damping systems usually involve structural damage [29]; however, nonlinear effects
on vibrating systems cannot be neglected because of their significant impact on dynamic
behaviors [30,31]. Linear damping approaches can provide precise structural numerical predictions [32,33].
Nevertheless, in numerous modern applications, the effectiveness of these methods cannot be guaranteed,
especially when the structures are complex, e.g., composed of composite materials or operating in a hostile
environment [34,35]. Therefore, linear methods should be limited to identifying damping in specific
simple structures that operate under normal conditions [36]. These drawbacks have, in the last decade,
contributed to the rapid development of nonlinear damping methods [37,38].

Damping identification is a challenging task [39] performed by developing a variety of
analytical [40–42] and experimental methods of linear and nonlinear systems [43–45]. Moreover, NDI is
a practical aspect being conducted to prevent structural failure and tragic events caused by structural
damages [46,47]. In addition to enhancing the safety and maintenance of key structures, it also
contributes to the control of systems and predicting structural systems responses under nonlinear
damping properly [48,49].

NDI for dynamic systems can be classified into seven categories: Linearization methods,
time-domain methods, frequency-domain methods, time-frequency methods, modal methods,
black-box modeling, and model updating methods [1]. Classification can also be made from other
perspectives, for example, parametric and non-parametric [50,51]. An example of linearization methods
is the equivalent linearization approximation (ELA), which is a common method used in applications
such as a spring-suspended sectional model system. ELA is utilized for bridges and aeroelastic systems
and dampers and shock absorbers used in control systems [52].
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The time-domain methods are well-known methods such as the log decrement method used in
lightly damped systems and aeroelastic systems [53,54]. In addition, the Hilbert transform (HT) is
used to analyze vibration systems [55], heat exchangers, and damage detection of reinforced concrete
(RC) structures and composite materials [56,57]. The frequency-domain methods are known by
their mathematical simplicity and ability to provide insightful interpretation [58]. For example,
harmonic balance nonlinearity identification (HBNID) was employed in systems such as civil
engineering, actuators, bioengineering devices, sensors, and robotics [59]. Furthermore, the frequency
response functions (FRFs) have been widely utilized to study nonlinear damping in adhesive
joints [60,61].

Time-frequency methods, e.g., those based on continuous wavelet transform (CWT), are powerful
tools used in applications such as vibration absorbers that are broadly used in naval architecture,
rotor-bearing systems, and constructions [62]. In addition, HT was employed in applications such as
unbalance of rotating machines, ship movement control, and damage detection of RC beams based on
free vibration measurements for nonlinear damping determination [63]. Modal methods are considered
particularly useful in the field of structural dynamics and damage identification. The resonant decay
method (RDM) was applied to investigate the nonlinear damping in civil, aircraft, and various types of
dampers [23]. The wavelet transform (WT) was used in instantaneous damping coefficient identification
for damage detection in concrete, automotive, aerospace, and simple built-up structures comprising
two bolted beams [64]. Black-box modeling (BBM) is an accurate and efficient method in describing the
dynamic behaviors of structures. For example, a fuzzy wavelet neural network (FWNN) was used for
nonlinear identification in systems such as vehicle magnetorheological (MR) fluid dampers, aeroelastic
systems, modern industries, control systems, and military and defense equipment [65].

Model updating methods include, for instance, the identification of structural damping using the
FRF-based model updating method and damping identification for accurate prediction of the measured
FRFs using finite element updated models of the mechanical system [66,67]. Recently, several studies
were conducted on dynamic systems. These studies showed the high feasibility of the NDI methods
compared to the linear methods because they give more reliable results despite their difficulty [1].
The nonlinear research focuses primarily on the development of efficient and functional methods
for reacting to nonlinear structural damping as a fundamental scientific and technological problem.
A survey of available research in the engineering community has provided many studies of nonlinear
damping, as shown in Figure 1. It is expected that interest from researchers in this field will continue.

Figure 1. The number of publications for nonlinear damping studies (According to the Scopus engine
system in the duration from January 1999 to November 2020).
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To summarize, NDI methods are essential and emerging methods leverage on their importance in
structural dynamics in general. Such methods are able to provide crucial aspects and useful tools to
track structural changes and dynamic alterations. Moreover, this can deliver potential future research
in the field of structural dynamics as well as damage identification.

This review paper discusses the progress of NDI methods based on available literature in terms of
surveying possible methods and applications. Section 2 offers a critical review of the recent nonlinear
damping methods based on previous studies to identify the role and placement of NDI methods.
Nonlinear damping methods are also discussed using their theoretical principles and schematic
diagram. The second section is followed by an overview of possible applications of nonlinear damping
methods in many different fields. At the end of this work, a summary and concluding remarks
are presented.

2. Nonlinear Damping Identification Methods

The early study on the identification of nonlinearity of structural models can be traced back to
1970s [1]. The objective of this section is to survey the NDI methods that evolved over the last few
years as a result of the development of novel industrial materials and structures [68]. Various nonlinear
factors have led to different systems’ behaviors, which means that each system has unique behavior
and therefore requires a different approach [69]. Relevant studies were first focused on single-degree of
freedom (SDOF) systems [70]. Then, with the advancement of computational techniques, studies were
extended to more complex, multi-degree of freedom (MDOF) systems [71–73]. Specific structural types
under investigation include bridges, tall buildings, aircraft, etc. [74]. Apart from previous review
articles that are mainly about nonlinear system identification [1,2,23], the focus of this study resides
on the development of various NDI methods. The methods can be classified into seven categories,
as shown in Figure 2.

Figure 2. Nonlinear damping identification methods.

2.1. Linearization Methods

The linearization method is a process whose objective is to approximate a nonlinear system
that is described by a nonlinear differential equation with a linear one for ease of processing.
Equivalent linearization (EL) is a widely used approximation method for dynamic system analysis [75].
Krylov and Bogoliuboff introduced the first linearization process of deterministic systems. The stochastic
systems approach was then extended by Caughey. Then, some expanded versions of the equivalent



Sensors 2020, 20, 7303 5 of 41

linearization method have been established. The Equivalent Linearization method is considered the
most accessible tool extensively used for analyzing nonlinear stochastic problems, but its accuracy
depends on the averaging process [76]. Other classical methods include the Fokker-Planck equation,
moment closure, stochastic averaging, perturbation, etc. However, they are limited to relatively
straightforward and specific nonlinear systems, and some of them are computationally expensive,
mainly when applied in MDOF systems [77].

Wang and Low [78] proposed a reliable EL method to predict the response of nonlinear systems
with viscous damping subject to impact. Moreover, the influences of nonlinearity and viscous damping
on the safety of packaged products were discussed. Additionally, coefficients such as the damping ratio
in the cushion system were investigated. According to their analysis, both the nonlinear properties
and viscous damping afforded are proven to be positive factors able to minimize the rigid impact to
some extent. Bajrić and Høgsberg [79] presented an approach for output-only system identification.
This method is effective for analyzing the random responses with SDOF oscillators under hysteretic
damping. The Bouc-Wen model was used to take advantage of the restoring force to derive the model
of an equivalent linear relaxation. The identification was carried out in the state space, where the
derived linear relaxation damping model replaced the hysteretic system model. The equivalent linear
model proposed that the response motion is harmonic with a slow variation of phase and amplitude,
and thus the method was restricted to tackle narrow band response. To study a spring-suspended
sectional model system of bridges, Gao et al. [80] developed an EL approach to improving the precision
of measuring self-excited force in the sectional model test. The effect of added damping and stiffness on
the free decay response at zero wind speed state was explored. Based on their findings, the nonlinear
characteristics associated with the influence of the added damping influences are much more significant
than that associated with the influence of the added stiffness. In another work, Gao and Zhu [81]
proposed an approach where the spring-suspended sectional models (SSSM) were used to evaluate the
equivalent amplitude-dependent damping ratio and frequency. The equations of the ELA are derived
by applying a multiple-scale method to represent the mechanical nonlinearities in the first-order
approximate sense. The proposed ELA and nonlinear system identification methods are then found to
be accurate enough to model the mechanical nonlinearities of the proposed system. Figure 3 shows
a comparison of identified equivalent amplitude-dependent damping and natural frequency of the
SSSM under bending and torsional modes. The nonlinear behavior of damping ratios originates
from complicated energy-dissipative mechanisms, such as material damping, Coulomb friction,
viscous damping, and nonlinear damping caused by additional SSSM system dampers. In an ELA,
weak nonlinear response of a SDOF system is considered as a perturbation on the responses of
undamped oscillators, so a nonlinear motion equation that governs the free decay response of the
system is presented as follows:

..
q + ε f

( .
q, q

)
+ω2

0q = 0 (1)

where q is the displacement;
.
q is the velocity;

..
q is the acceleration of the sectional model; ω0 is the

circular frequency; ε f
( .
q, q

)
is the generalized nonlinear force; and ε is a small factor showing that the

previous term is a small quantity; ω2
0q is the linear restoring force. Equation (1) can be solved based on

the Krylov–Bogoliubov averaging approach. An ELA method was then applied to model the physical
nonlinearity of a weak nonlinear system by using a damping coefficient D(A) and a restoring force
coefficient S(A),

..
q + D(a)

.
q + K(a)q = 0

(
ε2

)
(2)

and by inserting the equivalent viscous damping ratio and frequency, Equation (2) can be represented as:

..
q + 2ωeξe(a)

.
q +ω2

e (a)q = 0
(
ε2

)
(3)

where ξe(a) is the equivalent amplitude-dependent damping ratio; ωe(a) is the equivalent
circular frequency.
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Figure 3. Comparison of identified equivalent amplitude-dependent damping and natural frequency
of the spring-suspended sectional models. (a) Bending mode; (b) torsional mode [81].

Both nonlinear damping and frequency depend on amplitude and are accurate in modeling the
physical nonlinearity of a weakly nonlinear spring-suspension system.

Recently, Chen and Tse [82] proposed an enhanced method to determine the physical nonlinearity
of weakly nonlinear spring suspension systems. The method was effectively implemented in hybrid
aeroelastic pressure balance (HAPB) systems. In the HAPB system, the frequency and damping
associated with a linear model are constant and cause major differences in predictions of response due
to ignorance of the system’s slowly changing characteristics. The solution of a proposed system is
obtained by deriving the averaging method of Krylov–Bogoliubov and the ELA method, as shown in
Figure 4.

Figure 4. A diagram for nonlinearity identification of weakly nonlinear systems [82].
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2.2. Time-Domain Methods

In time-domain methods, analyzed data are in the form of time-series during the identification
process [83]. The benefit is the simplicity in data analysis without much cost of time and effort since
the time history of data can always be acquired directly [84].

Typical work is introduced by Jacobson et al. [85], where they evaluated the damping identification
methods using time-domain simulation based on an aeroelastic system for the applications of
flutter constraints to gradient-based optimization. Several time-domain methods were applied with
CFD-based methodology. The matrix pencil method was demonstrated to be the most effective approach
in estimating damping over a set of input signals. In another study of heat exchanger tube arrays, Eret
and Meskell [86] investigated the validity of two identification methods applied in a SDOF fluid elastic
system by using experimental data. The free vibration analysis (FREEVIB) method was used to identify
nonlinearity and was then compared with the nonlinear decrement method. According to the results,
the nonlinear decrement method produced more accurate results. Nevertheless, its deficiency was that
the functional form of the system needs to be predetermined. Meskell [87] presented a technique for
simultaneously evaluating different types of nonlinear damping and viscous damping. This technique
relies on successive peak decrements in the transient system. The study was restricted to SDOF systems.
This technique was optimized based on the consideration that the system was weakly nonlinear,
lightly damped subject to linear, and cube damping. The accuracy of this method was demonstrated
using simulated responses. It was concluded that the method was promising for a lightly damped
system using experimental data, particularly in fluid elastic systems. Frizzarin et al. [88] developed
an approach for damage detection in a concrete structure. The approach relies on the analysis of
nonlinear damping extracted from structural vibration responses. The feasibility of the approach
was demonstrated using a large-scale concrete bridge model suffering from seismic damage caused
during shaking table tests. Nonlinear damping was successfully identified by random decrement
signature approach based on its ambient vibration responses. The results showed that the magnitude
of nonlinear damping increased along with an increasing degree of seismic damage. Strong correlation
between increasing nonlinear damping and degrading structural stiffness was also found.

A method of nonlinear damping analysis using ambient vibration data was developed for
baseline-free damage detection in RC structures. Viscous and friction damping models were combined
to obtain the envelope of free vibration response of the structure, as shown in Equation (4):

a(t) = x0

[(
1 +

γ

ζ

)
e−ζωt

−
γ

ζ

]
(4)

where x0 is the initial amplitude; ω is the natural frequency; ζ and γ are the damping ratios for viscous
and friction damping, respectively.

Another time-domain method was proposed by Wu et al. [89] to enable simultaneous identification of
nonlinear damping and Coulomb friction in mechanical systems. A moving rectangular window method
was introduced based on nonlinear damping properties. Different models of nonlinear damping in a SDOF
system were studied, with a constant amount of Coulomb friction. The simulation results showed that the
proposed identification technique was efficient and applicable. Furthermore, the identification precision of
nonlinear damping was higher than that of the force of Coulomb friction. Figure 5 presents the nonlinear
relationship between the damping ratios and amplitudes in terms of exponential and quadratic
functions, respectively. The accuracy of determining the quadratic damping is the highest compared to
that of determining other types of nonlinear viscous damping. In the quantification of unwanted effects
on the overall measured damping of steel alloys, Vanwalleghem et al. [90] identified external damping
sources in damped material by applying transient time-domain methods and introducing an effective
damping test setup configuration. The results showed that the value of damping was dependent
on both the specimen size and level of excitation. In addition, damping will increase with enlarged
response amplitudes regardless of the sample sizes, as illustrated in Figure 6. Moreover, the damping
capacity differed from one steel alloy to another. Therefore, one type cannot be generalized to others.
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In another related work, Baştürk et al. [91] studied the nonlinear dynamic response of hybrid laminated
composite plates under the influence of blast load with damping involved. The effects of factors such
as damping ratio, aspect ratio, and various values of peak pressures were studied. The thermal effect
of the blast wave was avoided throughout the analysis. The results showed that the amplitude of the
damping ratio played a significant role in the deflection of the plate and the frequencies. The vibration
amplitude decreased in a short time due to the damping effect. Recently, Feldman and Braun [92]
presented promising experimental methods for the identification of nonlinear damping and stiffness in
a vibration system. The methods were based on measuring inputs and outputs in the time-domain and
the implementation of the Hilbert transform of the measured signals under free and forced vibration
states. Based on their findings, the approach of nonlinear characteristics representation was accurate
and efficient.

Figure 5. Curves of damping ratio versus amplitude. (a) Exponent relationship; (b) quadratic
relationship [89].

Figure 6. Damping ratio as a function of (a) specimen response amplitude (first mode shape);
(b) specimen response amplitude (second mode shape) for three specimen sizes [90].

2.3. Frequency-Domain Methods

The frequency domain-method is featured by handling data in the form of spectra or FRFs
throughout the identification process [93]. Some frequency-domain methods have been reviewed
in technical literature in the past years [94,95]. These methods show advantages such as ease of
computation and the ability to give some explanations of nonlinear systems [96]. Unlike time-series
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signals, the data processed in the frequency domain could take various forms, such as Fourier spectra,
power spectra, or any other form [97,98]. Since data analysis in the frequency domain only focuses on
a specific frequency range, the computational burden can be reduced, and a large number of nonlinear
parameters can be calculated precisely and effectively [23].

Sun et al. [99] presented a modified method for damping identification for a nonlinear stiffness
structure based on the well-known half-power bandwidth method. The formula was verified by using
numerical simulation. The procedure has been validated by applying a hard coating specimen with
soft nonlinearity, and the damping parameters of the structure were acquired under various exciting
levels. Thothadri et al. [100] extended a nonlinear system identification method named harmonic
balance nonlinearity identification (HBNID) to the MDOF fluid-structure systems. Two theoretical
models were examined using this extended method. The results showed that HBNID worked well
in determining unknown parameters if the model structure was identified. In another related study,
Balasubramanian et al. [101] conducted experimental and numerical investigations to determine
the increase in damping with the amplitude of the vibration of a rubber plate using three different
dissipation models. The nonlinear responses were measured utilizing a laser Doppler vibrometer.
According to the results, the increase of damping was around 60% when the vibration amplitude is
1.6 times the plate thickness. The dissipation determined from various models was examined as it
confirms the predominant nonlinear nature of damping as a function of the amplitude of vibration,
as shown in Figure 7. To reduce the vibration in vehicles for the comfort of occupants, Ho et al. [102]
investigated, experimentally and numerically, the vibration isolation using the nonlinear damping
performed by a MR damper. The frequency-domain technique was adopted, as the efficiency of the
isolation system could be assessed over a wide range of frequencies. Experimental and numerical
results showed that a good effect of vibration isolation around resonance regions and high frequencies
was achieved, and hence significantly improved conventional dampers’ performance.

Figure 7. Changes of damping ratio with respect to the amplitude of vibration (a) using model 1,
(b) using model 2 [101].

The equation of motion representing the nonlinear viscous damping of a SDOF vibration isolation
system can be expressed as:

M
..
y(t) + Ky(t) + Fc = −M

..
u(t) (5)

where y(t) = x(t) − u(t) ; M is the mass; K is the spring stiffness; Fc is the nonlinear damping force
given by

Fc = sign
[ .
y(t)

]
Cn

∣∣∣ .
y(t)

∣∣∣n (6)

where Cn is the constant of the nonlinear damping; 0 < n ≤ 1, is the damping exponent; u(t) is a
sinusoidal input displacement specified by u(t) = A sin(2π f t) with frequency f and amplitude A.
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Pazand and Nobari [103] investigated the effects of damage on the effective damping of viscoelastic
adhesives using the inverse-eigen sensitivity identification method for adhesive behavior in the linear
and nonlinear regions. Results showed that the adhesive damping decreased when frequency
decreased. Additionally, debonding damage had an adverse influence on adhesive damping, and the
reduction (softening) became more important as the rate of damage increased. Figure 8 shows that the
effective adhesive damping decreases with increasing frequency in both linear and nonlinear regions.
In addition, the reduction pattern is different for various modes such as bending and shearing modes.
Cherif et al. [104] presented a damping loss factor assessment approach for two-dimensional structures
based on the measurement of the displacement field by using a laser vibrometer. This approach was
then compared with the other three approaches: i.e., half-power bandwidth method, decay rate method,
and steady-state power input method. From the results, the proposed inverse wave approach was
accurate and reliable for the evaluation of the wavenumber and damping loss factor. Figure 9 shows
that at mid frequencies, the three methods agree well, but at low frequencies about (100–300) Hz,
the power input method shows some discrepancy compared to other methods. The explanation is that
these frequencies have a low number of modes. At high frequencies, the damping loss factor evaluated
by both the decay rate and the inverse wave methods was in good agreement. Roncen et al. [105]
experimentally and numerically analyzed the nonlinear rubber isolator, which was subjected to two
random excitations, i.e., the harmonic and broadband excitations. The relation between the stiffness and
the damping versus the amplitude of the relative displacement of the rubber isolator was investigated.
Nonlinear vibration prediction of the beam exposed to random excitation was conducted by adopting
the harmonic balance method and shooting method. According to the comparison between the
experimental and numerical investigations, it was observed that there were functional correlations
between harmonic and broadband random excitations. This demonstrates the validity and efficacy of
the rubber isolator modeling as well as the proposed nonlinear methodology. Recently, Colin et al. [106]
investigated many nonlinear quadratic damping features of cantilever beams under harmonic base
excitations. The frequency-domain identification techniques were used to identify the linear and
nonlinear modal damping coefficients.

2.4. Time-Frequency Methods

Recently, applications of time-frequency domain methods have become more frequent and
widespread than time-domain and frequency-domain methods [107]. These methods detect damping
through common temporal and frequency characteristics of the responses of the vibrating structures
resulting from the analysis using time-frequency methods [108,109]. Several methods have recently
been presented to perform time-frequency analysis [110–112]. One of the most robust approaches
is the continuous wavelet transform, which has been progressively utilized for NDI in different
applications. A common property of nonlinear vibrations is that, according to the form of nonlinearity,
both instantaneous natural frequency and damping coefficient may become time functions [113].

In the field of ships and floating bodies, Kim and Park [114] predicted the nonlinear damping
and restoring coefficient of a floating production system via the Hilbert transform of free decay signal
obtained by a free-roll decay experiment. A comparison was made between the present method and
the traditional logarithmic decrement method in the performance of damping coefficient identification.
The damping and restoring moment’s nonlinear coefficients were successfully obtained. Figure 10
shows some fluctuations at a small roll angle; however, damping can only be approximated using a
quadratic model within a roll angle range of around 6 rad; beyond this range, the damping coefficient
decreases. This is owing to the vortex memory effect nearby the bilge keel. The presented technique
shows greater accuracy than the logarithmic decrement, especially when the nonlinear terms are
combined in the restoring term.
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Figure 8. Identified effective damping coefficients for linear and nonlinear areas, for the intact and
damaged bonds (a,b) with bending modes, (c,d) with shear modes [103].

Figure 9. Effect of frequency on experimental damping loss factor of (a) a thin composite panel, (b) a
thick composite panel [104].
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Figure 10. The floating production storage and offloading identified dynamic parameters with respect
to the roll angle. (a) Damping coefficient; (b) restoring moment [114].

Franchetti and Modena [115] developed a damage detection technique for precast Prestressed
reinforced concrete (PRC) structural members based on free vibration experiments and NDI. Three precast
specimens of the PRC beam were tested. The dynamic responses were analyzed by using various methods,
including the multi-input multi-output (MIMO) curve fitting and the HT method. The actual energy
dissipation mechanism of the PRC beams was represented by a proposed nonlinear quadratic damping
factor associated with actual damage levels. The results revealed that the quadratic damping factor
could be used efficiently to detect damage due to its high sensitivity. However, the effectiveness of
this approach might be constrained by the difficulty of obtaining a free structural vibration response.
The pure viscous damping and polynomial damping are combined in the proposed model, as displayed
in Figure 11. The most popular form of the force of polynomial damping is quadratic:

Fd = −d·
.
x·
∣∣∣ .
x
∣∣∣ (7)

where d is a constant, and the value of the absolute velocity is added to ensure that the force is at all
times velocity opposed.

Figure 11. The combined damping model [115].

The equation of motion of the combined viscous and quadratic system can then be represented
as follows:

m
..
x + c

.
x + d

.
x
∣∣∣ .
x
∣∣∣+ kx = 0 (8)

where m is the mass, c is the viscous damping coefficient, and k is the stiffness,

a(t) =
(a0c1) · e−c1 ·t

c1 + a0c2 (1− e−c1 ·t)
(9)
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where a is the amplitude of oscillation, a0 is the initial amplitude, c1 and c2 are constants, and t is the
time. The exact solution of pure viscous damping (c2 = 0 ) is formulated as follows:

a(t) = a0· e−c1 ·t = a0· e−ξωt (10)

Tang et al. [116] experimentally investigated the assessment of the nonlinear vibration absorber
parameters from free vibration tests. HT was utilized to estimate both instantaneous amplitude and
damped natural frequency. Then the stiffness and damping were determined for a nonlinear vibration
absorber. By comparing the present method and Restoring Force Surface (RFS) method, it was shown
that there was a difference of only about 13%. Chandra and Sekhar [117] presented a nonlinear damping
estimation approach in a rotor-bearing system using the CWT based method. Two different nonlinear
damping models were examined. The free vibration signal envelope was obtained by employing
the wavelet-based approach. The validity and applicability of the proposed method were reported
using the acquired signals from the experimental results. Joseph and Minh-Nghi [118] used wavelet
transform in the identification and quantification of damping in a nonlinear oscillator based on free
decay response. Two methods based on wavelet transform have been used; firstly, the cross-section
of the wavelet transform, secondly, the ridge and skeleton of the wavelet transform. The proposed
method herein was used to study a nonlinear SDOF oscillator exclusively. Numerical results showed
that the method is accurate in the estimation of natural frequency and damping coefficient, even with
noisy data.

Curadelli et al. [119] introduced a new scheme for structural damage detection using the instantaneous
damping coefficient identification via wavelet transform. Based on their findings, the damping of various
structures is significantly affected by the existence of damage. Evidence for damage effects on the dynamic
characteristics of the RC frame has been provided. Therefore, the structural damping parameters can
be used as damage indicators due to their high sensitivity to damage existence. It has also been shown
that the wavelet transform can be used to determine the damping through a structural response to
free vibration.

In another related work, Heller et al. [120] experimentally analyzed the influence of mechanical
joints and their functional parameters on the dynamic behavior of built-up structures. The equivalent
modal parameters based on the application of wavelet transformation used to the free-decay response
were adopted to describe the expected nonlinear dynamic behavior. Experimental results demonstrated
that the frictional joints are the major sources of energy dissipation during the relative motion of
substructures in the built-up structure. Furthermore, the negative damping capacity can be significantly
increased by widening the interface area.

Recently, Dziedziech et al. [121] examined the dynamics of a tuned liquid column damper (TLCD),
where the time-varying characteristics of nonlinear damping and other properties were identified.
CWT was used for mode separation, and then the recognition of the instantaneous damping ratio
of the first mode of vibration was conducted. The findings showed that the damping ratio was
nonlinear, time-varying, and based on the level of vibration. The introduced model can be employed
to represent the dissipative behavior of the first mode of vibration of the tuned liquid column damper.
The time-varying damping was successfully recognized utilizing the combined envelope analysis,
curve fitting, and logarithmic decrement, as shown in Figure 12.
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Figure 12. The first mode identification results of vibration of the analyzed tuned liquid column
damper (TLCD): (a) Natural frequency, (b) vibration response, (c) damping ratio [121].

2.5. Modal Methods

Modal characteristics are considered highly important in the process of designing linear
engineering structures [122]. Typical structural modal parameters are natural frequencies, mode shapes,
and damping [123]. It is a beneficial tool used in the study of the dynamic behavior of various structures
around their resonance state. This linear approach is considered to be mature and widely used [124].
On the contrary, methods for identifying nonlinear modal are in one of the promising directions of
recent research in the field of structural dynamics [125,126]. Some related approaches have been
introduced in the surveys in 2006 and 2016 [1,23]. Noteworthy progress has been made over the past
two decades, so nonlinear modal identification is a very active field of study [23].

In order to improve engineering designs, reliability, and performance of structures,
Mezghani et al. [127] investigated the dynamic characteristics of an isolator consisting of stiffness
and damping elements. The investigations were performed under various excitations to promote
the minimization of the vibration transmissions using modal methods. The proposed nonlinear
identification method allows designers to predict nonlinear dynamic behavior via experimental data.
Results revealed that the present technique is valid and applicable in determining the nonlinear
parameters of a metal mesh isolator. The nonlinear damping may also be suppressed as the base
excitation amplitude increases. Naylor et al. [128] introduced the resonant decay method to estimate
the MDOF nonproportional damped systems. Though there were some imperfections, the method
performed well and produced an acceptable modal damping matrix. The results indicate that there
were small errors in the estimation process. Londoño et al. [129] introduced a method to extract
the backbone curves of the lightly damped nonlinear systems utilizing a modified resonance decay
method. The experimental and numerical results show that the proposed procedure can offer an
accurate estimation of damping ratios. Moreover, results indicate that the small damping ratio lower
than 5% does not influence the estimated instantaneous frequency of the nonlinear system, as shown
in Figure 13.

By analyzing the envelope of decaying response, the dissipation properties of the system can be
evaluated. For a classic, well-known SDOF system with a common equation

..
x + 2ξωn

.
x +ω2

nx = 0 (11)

where
..
x is the acceleration;

.
x is the velocity, x is the displacement, ξ is the damping ratio, ωn is the

natural frequency.
In terms of system parameters and initial conditions, the envelope of the free vibration response

can be represented as
A(t) = A0e−ξωnt (12)
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It should be noted that the operation of damping is accounted for by the exponential term.
This expression can be generalized to enable the change of instantaneous frequency and damping,
which would occur in a nonlinear system by modifying Equation (12) to be

A(t) = A0e−ξ(t)ω0(t)t (13)

The effective damping then could be determined by

ξ
(
to
i

)
=

1

ω0
(
to
i

)
to
i

(
(ln(A0) − ln

(
A
(
to
i

)))
(14)

where ω0
(
to
i

)
= 2π f

(
to
i

)
denotes the instantaneous angular frequency. Therefore, the effective damping

ratio ξ can be assessed from the envelope tangent slope of the decaying response represented in a
semi-logarithmic scale with respect to time.

Figure 13. The estimated skeleton curves from the experiment: (a) Frequency (Hz); (b) damping ratio
(%) [129].

Krack et al. [130] developed a novel reduced order model (ROM) method for numerical calculation
of nonlinear modes of mechanical systems. The study included some types of nonlinearity, such as
dissipative and strong and non-smooth nonlinearities. The nonlinear modal characteristics were
utilized to evaluate the forced and self-excited vibration. The obtained results were in very good
agreement with results obtained by conventional approaches. In another related work, Krack [131]
proposed an identification method of the nonlinear modes of nonconservative systems. Two methods
for nonlinear modal analysis were presented: The harmonic balance method and the shooting method.
The results show that the proposed method provides accurate predictions for a broad range of working
conditions. However, it is limited to the isolated nonlinear modes and low modal damping ratios as it
is also restricted to periodic motions. Peter et al. [132] numerically and experimentally proposed a
new technique for the nonlinear modal analysis of non-smooth mechanical systems. The numerical
technique was found based on two combined methods. They are the harmonic balance method and
the shooting method generating a time-frequency representation. In comparison, the experimental
technique relies on a nonlinear phase resonance method. It was found that the numerical results
were in good agreement with results obtained by experiments. Scheel et al. [133] developed a new
technique based on an experimental procedure for nonlinear modal testing for modern turbine blades.
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The technique allows the experimental extraction of modal damping ratios in addition to both natural
frequencies and deflection shapes as a function of the vibration level. It is simple and more time-effective
as its validity and accuracy have been proved through comparison to other methods. It also has
high resistance against measurement noise and does not require much prior knowledge of the tested
systems or special equipment. In another related work, Scheel et al. [134] designed a new test rig
named rubbing beam resonator for experimental nonlinear modal analysis. The proposed method
performs the analysis based on the concept of the extended periodic motion in order to obtain the
modal characteristics. The results show that the modal damping ratio increases by about 15%, while the
frequency decreases by 36% for the first mode of vibration. Recently, Karaağaçlı and Özgüven [135]
proposed a nonlinear experimental modal analysis procedure called response-controlled stepped-sine
testing (RCT) to extract the nonlinear modal parameters. Many nonlinearities at different places were
investigated numerically and experimentally. The numerical and experimental results showed that the
proposed identification procedure was efficient and applicable to many applications.

2.6. Black-Box Modeling

Nonlinear black-box is a typical model used to characterize nonlinear dynamic behaviors of
systems only based on data. Nonlinear black-box modeling is a mapping from past observed data to a
regressor space pursued by a nonlinear function expansion type, mapping to the space of the outputs
of the system [136]. Nonlinear mapping can be performed by several methods, e.g., wavelet networks,
artificial neural networks, and neuro-fuzzy models [137].

Witters and Swevers [138] discussed the black box identification of an electro-hydraulic semi-active
damper for a vehicle suspension. For the representation of the complex nonlinear damper dynamics,
a neural network-based output error structure has been chosen. It has been shown that a model
described using single optimal testing can adequately describe the nonlinear dynamic behavior of
the damper throughout its entire working period. Truong and Ahn [139] introduced a nonlinear
black-box model and an inverse black-box model to study the magneto-rheological fluid damper.
A fuzzy mapping system is used for the identification of the damper properties. A neural network
method was used to improve the accuracy of the model by decreasing the modeling error function.
A series of investigations were performed to verify the effectiveness of the models on two systems
using the same damper. Khalid et al. [140] investigated a small-scale MR damper model with the
valve mode mechanism using a dynamic recurrent neural network modeling method to generate its
hysteretic nonlinear response. The modified model of Bouc-Wen was used to generate the training
data to construct the numerical model. The results show that the proposed model is effectively
capable of accurately predicting the MR damper response over a wide range of operating conditions.
Recently, Dou et al. [141] investigated a nonlinear identification method based on a fuzzy wavelet
neural network for a nonlinear aeroelastic system. Nonlinear damping was considered in the aeroelastic
system identification, and a new FWNN structure was introduced. Numerical simulation shows that
the fuzzy wavelet neural network attained a high level of accuracy and effectiveness.

2.7. Model Updating Methods

Finite element (FE) model updating is an operation intended to calibrate the FE model of a
structure for matching the experimental and numerical results [142,143]. This process aimed to obtain
an accurate model that is able to reproduce the measured data [144–146]. Despite the rapid development
of computer-aided methods, numerical models still need to be compared with empirical data to update
them in order to improve their accuracy and reliability [147].

Arora et al. [148] proposed a new scheme for damped FE model updating to improve the FRF
compatibility based on the implementation of the damping identification method. Two steps are carried
out, the first is the updating of mass and stiffness matrices using the response function method, and the
second is the identification of the damping matrix following the first step. The results show that the
updated model is able to predict the measured FRFs.
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First, the eigenvalue problem related to a viscously damped system written as[
M λ2

i + Cλi + K
]
Φi = 0 (15)

where M, C, and K are the mass, damping, and stiffness matrices, respectively; λi and Φ are the complex
eigenvectors.

Furthermore, the damping matrix can be assessed using the following relation

C = −M
(
ΦΛ2ΦT + ΦΛ2ΦT

)
M (16)

where Λ is the diagonal matrix of complex eigenvalues, and the overall bar refers to complex
conjugations. The complex eigenvectors are standardized as

ΦT
i

(
Mλ2

i −K
)
Φi = λi (17)

The updated mass and stiffness obtained in the preceding part are exploited to normalize
complex eigenvectors.

Recently, Arora [149] introduced a new technique for the identification of structural damping.
It is a direct and explicit identification method. The updated matrices of mass and stiffness were used
for the identification of the structural damping matrix. Some instances were provided, illustrating
the performance of the proposed technique. According to the results, the current technique was
accurately proficient in predicting the experimental FRFs of the system with all damping levels. Table 1
summarizes the NDI methods in several application areas, with some strengths and weaknesses of
these methods based on previous studies. It also provides a useful means for researchers to compare
the different studies and facilitate understanding of the NDI methods.
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Table 1. Literature survey of nonlinear damping identification methods.

Linearization Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Linearization method

Predict the response to
packaged components

from nonlinear
systems

MDOF The transient response
is not included.

A powerful tool
Able to analyze complex

shapes

Packaged
Components Viscous damping [78]

Output-only system
identification

technique

Hysteretic damping
estimation SDOF

Needs assumptions.
limited to a narrow

band response.

Suitable for the random
response MR Dampers. Hysteretic damping [79]

Classical equivalent
linearization method

Calculation of the
self-excited force in

bridge tests.
- - Accurate Bridge; SSSM. Viscous damping [80]

Equivalent
Linearization

Approximation

A study of the
mechanical

nonlinearity of an
SSSM system

SDOF -

Reliable and precise
Predict the

long-duration free decay
response of the SSSM

system

Bridge; SSSM.

Viscous damping,
quadratic damping,

and Coulomb friction
damping

[81]

Equivalent
Linearization

Approximation

Determination of the
nonlinearity of the

HAPB system
SDOF -

Reliable and accurate
Predict the

long-duration free decay
responses

A
Spring-Suspension

System.
Viscous damping [82]

Time-Domain Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Matrix pencil
methods, Envelope

functions via the
Hilbert transform, Log

decrementand
Half-power
bandwidth

Flutter identification
in the flight envelope

and create design
improvements to

alleviate unwanted
aeroelastic behavior

- Sensitive to some
initial parameters

Robust to noise and
capability for handling

multi-component
signals across a

short-time simulation

Aeroelastic
Systems Aeroelastic damping [85]
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Table 1. Cont.

Time-Domain Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

FREEVIB method and
Nonlinear decrement

method

Investigate the
validity of the two

identification methods
to a SDOF fluid elastic

system using
experimental data.

SDOF

Requires prior
knowledge of the
system functional

form when using the
nonlinear decrement

method.

Superior predictions
Low errors

Combined methods
provide a powerful tool

No prior knowledge
required for FREEVIB

method

Heat
Exchanger

Tube Arrays

Nonlinear cubic
damping

Structural damping
Structural viscous

damping

[86]

A decrement method

Linear and nonlinear
damping parameters

are defined in the fluid
elastic framework.

SDOF Limited to SDOF
systems

Required one response
measurement

A Slightingly
Damped
System

Linear and cubic
damping [87]

Random decrement
signature approach

Damage detection of
RC bridge using a

nonlinear damping
ratio damage index.

SDOF -
Damage detection

without any reference to
the intact baseline.

Bridge; RC
Structure - [88]

A moving rectangle
window method

Simultaneous
identification of

Coulomb friction and
the nonlinear

damping.

SDOF -
Accurate and applicable

Extendable to MDOF
systems

Mechanical
Systems

Viscous damping and
the Coulomb friction

damping
[89]

Transient time-domain
methods

Quantification of some
unwanted effects on

the overall value of the
measured damping.

MDOF - Minimize the effects of
external damping losses Steel alloys Air damping [90]

Galerkin Method and
Finite Difference

Method

Investigation of the
nonlinear dynamic

response of a
laminated composite

plate under blast loads
with damping

influences.

MDOF

Higher modes are not
included in their

contribution to the
dynamic response

Can be used to study
many properties

A hybrid
laminated
composite

plate

Viscous damping [91]
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Table 1. Cont.

Time-Domain Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Hilbert transform

Nonlinearity
determination in

stiffness and damping
properties of vibration

systems.

SDOF
The need for very

precise data without
noise

-Effective and simple to
analyze

Proper for linear and
nonlinear systems
Does not require

knowledge of system
signals or parameters
Reduces testing time

without reducing data
accuracy

A vibration
system - [92]

Frequency-Domain Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Modified half-power
bandwidth method

Study the damping
identification of

nonlinear stiffness of a
titanium alloy

SDOF -
Broad and higher

resolution than the
half-bandwidth method.

Titanium Alloy Equivalent viscous
damping [99]

HBNID methodology
Extension of the

HBNID to include the
MDOF systems

MDOF
SDOF

Poor estimate when
the model structure is

unknown.

Provides very good and
accurate results with a

known model structure.

Fluid-elastic
systems - [100]

Frequency domain
method

Nonlinear damping
identification of a

silicon rubber plate
SDOF -

Does not require
adjustment of the

dissipation parameters
A rubber plate Three different

damping models [101]

Frequency domain
approach

Study the application
of the ideal nonlinear

damping
characteristics for an
engineering system

SDOF -
Provides insight into

vibration isolation and
system stability.

Vehicle
suspension
system; MR

dampers

- [102]

Experimental FRFs

Investigation of the
effects of damages on
the effective damping

of the viscoelastic
adhesive joint

- - Study linear and
nonlinear areas

The adhesive
joint of

automobile
and aircraft

- [103]
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Table 1. Cont.

Frequency-Domain Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Inverse Wave Method

Estimation of the
damping loss factor of

a complex structure
using a scanning laser

vibrometer in two
dimensions

MDOF -

Simple for structural
characterization

Accurate and reliable for
wavenumber and

damping loss factor
estimation.

Two-dimensional
orthotropic
structures

- [104]

Harmonic Balance
Method

Study the softening
influence for high

displacement
amplitudes of a

nonlinear rubber
isolator

SDOF - Simple, valid and global
method

A rubber
isolator in
Aerospace,
sensors and

bio-engineering

- [105]

Frequency domain
methods

Study nonlinear
quadratic damping

features of a cantilever
beam under harmonic

base excitation

SDOF -

Using dimensionless
quadratic damping

coefficient for generality
and comparability to

other structures

Cantilever
beams

Nonlinear quadratic
damping [106]

Time-Frequency Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Hilbert transform and
compared with

traditional logarithmic
decrement technique

Investigate a nonlinear
roll damping and

restoring moment of a
floating production

system

SDOF

Including nonlinear
terms reduces

logarithmic decrement
precision.

The nonlinear
damping coefficient is

not precisely
quadratic.

Both Hilbert transform
and logarithmic

decrement are accurate

Ship and
offshore Quadratic damping [114]

MIMO curve fitting
and Hilbert transform

technique

Investigation of the
RC beam damage
detection method

using free vibration
measurements and
nonlinear damping

identification

MDOF
SDOF

The scope of
application is limited

due to the difficulty in
obtaining free

vibration responses

Easy and suitable for
manufacturing quality

control of RPC members
and extendable to detect

damages in concrete
structures

Damage
detection of
RC beams

A nonlinear quadratic
damping [115]
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Table 1. Cont.

Time-Frequency Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Hilbert transform and
compared with the

RFS method

Study the
identification of the
nonlinear vibration

absorber parameters
of rotating machines

SDOF -
Gives error only about

13% compared with the
RFS method

Rotating
machines

Cubic stiffness and
viscous damping [116]

Continuous wavelet
transforms

Study NDI method
using CWT for the

rotor-bearing system
MDOF -

Does not require an
analytical solution of the

signal

Unbalance of a
rotor-bearing

system

Quadratic and cubic
polynomial type

nonlinearities
[117]

Wavelet transform;
cross-section

procedure and ridge
and skeleton of the

WT

Estimation of
instantaneous

frequency, damping,
and system envelopes

using wavelet
transform for a broad
range of engineering

applications

SDOF

Limited because it
cannot give accurate

results with high
levels of noise

Cross-section
procedures give

satisfactory results at
low levels of noise.

Ridge procedure yields
accurate results at high

levels of noise.

Many
engineering
applications

A special class of
nonlinear damping

models characterized
by low damping

[118]

Wavelet transform

Investigate a
structural damage

detection scheme for
RC using an

instantaneous
damping coefficient

identification
applying a WT

MDOF -

Easily used in
instantaneous
identification

procedures of frequency
and damping from the

response of the free
vibration

Damage
detection of RC - [119]

Wavelet transform

Estimation of the effect
of mechanical joints on
the dynamic behavior
of two bolted beams

MDOF - -
A simple

structure of
two beams

Equivalent damping
coefficient [120]

Continuous Wavelet
Transform

Study the dynamics of
a TLCD focusing on
the frequency and

nonlinear
identification and air

pressure
characterization

- -

The quadratic damping
model can accurately

describe the dissipative
behavior

Naval
architecture;

Vibration
absorber

A quadratic damping
model [121]
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Table 1. Cont.

Modal Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Modal methods
Transmissibility
measured data

Numerical
simulations

Study the dynamic
properties of a metal
mesh isolator under
various excitation

levels to enhance the
transmitted vibrations

reduction

SDOF

Include some errors in
the estimation of
damping and the
effect of the jump

phenomenon

Accurate

Anti-vibration
isolators; many

engineering
applications

Quadratic damping
and cubic stiffness [127]

Resonant Decay
Method (RDM)

Identification of the
modal matrix element

of nonproportional
damped systems of a

plate with discrete
dampers

MDOF -

This method yields
acceptable and accurate

modal damping
matrices

Plate with
discrete
dampers

Viscous damping [128]

Modified RDM

Extraction of the
backbone curves of
the lightly damped
nonlinear systems

using a modified RDM

SDOF
MDOF

Low accuracy when
identifying the

amount of damping

Strong ability to achieve
an accurate evaluation

of damping ratio
skeletons and backbone

curves.

Civil aircraft Three different models [129]

Nonlinear modal
analysis technique; a

ROM method

The nonlinear modal
characteristics were
utilized to evaluate

the forced and
self-excited vibration.

2-DOF
MDOF

Only nonlinearities of
steady-state problems

Very good agreement
with results obtained by

conventional
approaches.

Mechanical
systems; a

clamped beam
and a turbine
bladed disk

Viscous damping,
hysteretic damping,
and modal damping

[130]

Nonlinear modal
analysis; Harmonic
Balance method and

Shooting method

Estimation of the
nonlinear modal

parameter of
nonconservative

nonlinear systems

SDOF
MDOF

Limited to the isolated
nonlinear modes and
low modal damping

ratios
Restricted to periodic

motions

Provides accurate
predictions for a broad

range of working
conditions

Nonconservative
systems;

Viscous damping and
Friction damping [131]

Nonlinear modal
analysis; Harmonic
Balance method and

Shooting method and
a nonlinear phase
resonance method

Identification of
nonlinear modal

parameters of
non-smooth

mechanical systems

MDOF

Complex structures
with strong

nonlinearity are not
included.

The numerical method
can be applied without
requiring any effort to
define the nonlinear

system.

Mechanical
system:

Timoshenko
beam

A nonlinear modal
damping [132]
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Table 1. Cont.

Modal Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Nonlinear modal
analysis

Study the extension of
nonlinear modal

testing by a
considerably better
accurate damping
quantification of

Jointed structures such
as modern turbine

blades

MDOF -

Requires only one signal
response for each

vibration level and does
not require special

equipment.
It is efficient,

time-saving, and robust
against noises.

Accurate and applicable
to realistic applications.

Jointed
structures;

modern
turbine blades

Modal damping ratio [133]

Experimental modal
analysis

Estimation of
nonlinear modal

characteristics of a
cantilever beam with

strong damping
nonlinearity

SDOF - Accurate at different
excitation levels

Jointed
structures Friction damping [134]

Nonlinear
experimental modal

analysis

Identification of
nonlinear modal

parameters of strongly
nonlinear systems

MDOF Restricted to systems
have separated modes

Accurate even with very
strong nonlinear effects

Jointed
structures;

Nonlinear hysteretic
modal damping [135]

Black-Box Modeling

Method Function DOF Limitations Advantages Applications Damping Type Ref.

BBM;
A neural

network-based output
error model

Study the black-box
estimation of

electro-hydraulic
semi-active dampers

for vehicles

- -
An accurate model

Suitable for a full car
simulation

An
electro-hydraulic

semi-active
damper;
vehicle

suspension

- [138]

BBM and IBBM based
on a fuzzy-neural

technique

Study the
magneto-rheological
fluid dampers using
the force-sensor less
control technique for

vibration control

- - A direct method for
damper characterization

Control
systems; optics,

defense,
aerospace,

automotive

- [139]
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Table 1. Cont.

Black-Box Modeling

Method Function DOF Limitations Advantages Applications Damping Type Ref.

BBM neural networks

Investigation of the
efficacy of the method
of the neural network

for describing the
dynamic behavior of
an MR damper used

in control systems

- -

Able to predict the
responses over a
broader range of

operating conditions
Avoids large sets of data

produced throughout
the collection process

Civil
structures,

automotive,
aviation,
Control

- [140]

Using fuzzy wavelet
neural network

(FWNN)

Investigation of a
nonlinear

identification method
based on a fuzzy
wavelet neural
network for the

two-dimensional wing
section

Pitch DOF -

Able to model
uncertainty and

subsequent parts.
High accurate method

in numerical
investigations.

Two-dimensional
wing section Viscous damping [141]

Model Updating Methods

Method Function DOF Limitations Advantages Applications Damping Type Ref.

Finite element model
updating procedure

Damping
identification to

accurately predict the
measured FRFs using
finite element updated

models of the
structural systems

MDOF -

An accurate method for
predicting the complex

FRFs.
It can be applied to
actual applications

Mechanical
engineering

Non-proportional
viscous damping

model
[148]

FRF-based model
updating technique

Identification of the
structural damping

utilizing the
FRF-based model

updating technique

MDOF -

Direct and explicit
method

Provides accurate
predictions of FRFs
collected from the

experiment with all
damping levels

Can determine the
structural damping of

the system with closely
spaced modes

Mechanical
engineering Structural damping [149]
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3. Trending Applications

In recent years, many engineering applications have used nonlinear damping to study the
nonlinearity phenomenon. This phenomenon has been exploited in the development of various areas
of life, such as automotive, bridges, buildings, aerodynamics, marine, defense, and bio-engineering,
as shown in Figure 14. This progress would not have been possible without the development of
technologies that helped to build and test these applications in terms of safety and reliability [150].
Many improvements have been made to applications such as the use of composites materials and alloys
that have good properties that combine safety and performance [151]. Most engineering applications
are subjected to unwanted vibrations that should be controlled. Exposure to time-variant loads, such as
vehicles, wind, earthquakes, and sea waves, in addition to an imbalance in rotating machines, lead to
damage and failure of applications.

Figure 14. Nonlinear damping applications.

As mentioned earlier, there is continuous development in various practical life applications. One of the
most important facts that many new materials and applications exhibit nonlinear behavior. Such structures
require nonlinear study. This study can accurately predict the behavior of dynamic systems.

Nonlinear damping is one of the most critical and complex aspects of nonlinearity. Researchers are
spending more efforts to develop many solutions, theories, mathematical models, and conduct
experiments. These efforts were made to accurately predict the dynamic behavior, control the level of
vibrations, and avoid problems resulting from excessive vibrations.

3.1. Automotive Applications

Several real-world applications of nonlinear dynamic behavior have been reported in the literature.
Automotive dampers are one example of complex systems in which their responses are unstable.
For example, vehicles are facing changing conditions, which can be specifically expressed on the basis
of the frequency. Moreover, automotive dampers are robustly reliant on temperature due to viscosity
effects, and hence the variation of the damper response. In automotives, brake squeal, which results
from the friction difference between the pads and the rotor, is annoying and considered as an example
of an unwanted effect of nonlinearity. The rapid development in the design of automotive technology
led to more stability in the performance, comfort, and safety of passengers [152].

Worden et al. [153] considered three nonlinear system identification methods of the suspension
system of automotive dampers. The methods are the restoring force surfaces, the nonlinear identification
by the feedback of outputs approach, and the nonlinear optimization using a neural network analogy.
This study was performed to provide complete insights into the behavior of the systems. In related work,
Metered et al. [154] applied an experimental identification procedure based on the black-box modeling,
the feed-forward, and recurrent neural networks. The study was carried out to investigate the dynamic
behavior of Magnetorheological fluid dampers and the use of the identified parameters in the control
of such damper. In another related work, Truong and Ahn [139] presented a nonlinear black-box model
and an inverse black-box model to identify the MR fluid damper and applied them to form a new
force-sensorless control approach for any damping system. Figure 15 shows a typical MR fluid damper,
the hardware structure, and the working principle, which is widely used in many applications such
as automotive, aviation, and control. In another research, Salton et al. [155] developed a nonlinear
discrete-time control approach for the fast-tracking of quadrotor-like automobiles. A disturbance
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observer was performed to assist the system in terms of rejecting disturbances and minimizing the
effects of unmodeled dynamics. The nonlinear damping was presented to the system using a composite
nonlinear feedback control law. Recently, Bonisoli et al. [156] experimentally investigated the influences
of the shock absorber of a vehicle chassis on the identification of modal properties and damping
matrices via the Layer Method.

Figure 15. The magnetorheological (MR) fluid damper: (a) Hardware structure, (b) working principle [139].

3.2. Rotors Applications

It is well known that nonlinearity effects are significant to the stability of rotor dynamics.
Foundations and supporting structures have substantial effects on the performance of the rotating
machine [157]. Accordingly, an equivalent system of a rotor foundation must be determined to
reproduce the vibration behavior of the overall system to represent the actual behavior. Squeeze film
dampers are often used in current turbomachinery, particularly aero-engine, to control the vibration
magnitude of the rotor. Some necessary information, such as fluid forces, are required to predict the
characteristics of such dampers [158].

The high-speed turbomachines used in power generation should be power-saving, economical,
and have high performance. Using gas-lubricated bearings may contribute to many advantages like
lower power loss, reduced vibration, and higher operating speed. This can be achieved by selecting a
suitable damping system [159,160].

The study of rotating structures comprises many different challenges, unlike stationary structures.
Nonlinear impacts are apparent once the amplitude levels of vibration are high. The main difficulties
associated with defining a linear system of rotor-bearing systems have been discussed in many previous
studies, unlike nonlinear systems that still need a broader study.

Several techniques are available in the literature to determine the effects of nonlinear damping.
In recent decades, various theoretical and laboratory experiments to evaluate the effects of nonlinear
damping and the behavior of rotor-bearing structures have been carried out. Tasker and Chopra [161]
determined the equivalent linear viscous damping properties for a nonlinear damping system from
sampled, noise, multi-mode transient response data. The study was carried out through updated
versions of the moving-block analysis and sparse time-domain technique. Numerical simulation was
used for typical rotor environment representation. They studied two kinds of nonlinear damping,
the Coulomb damping and quadratic damping. In a study of turbomachinery, especially aero-engines,
Zhang and Roberts [162] developed a novel frequency-domain approach to estimate unknown
parameters in nonlinear dynamic systems. The study was conducted through the direct application of
the window functions for different terms in the motion equations. The results of simulation tests were
carried out on a nonlinear model of the squeeze-film damper showed that the introduced method could
provide satisfactory estimations for different unknown parameters. Figure 16 shows an experimental
setup for nonlinear damping identification in rotors. In another study, Smith and Wereley [163]
analyzed three methods for damping identification for linear and nonlinear helicopter rotor systems
from transient experiment data. The methods are the analyses based on a periodic Fourier series
decomposition, the FFT-based moving block analyses, and the HT-based method. They evaluated
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the influences of data block length, error at the assumed frequency, and noise on the precision
of the particularized damping parameters. In another study [164], they evaluated three nonlinear
damping identification methods for magnetorheological (MR) dampers of helicopter rotor systems
using extracted transient data with known levels of Coulomb and quadratic damping. In related
work, Yan et al. [165] performed a computational study to investigate the influence of nonlinear
damping suspension on the non-periodic motions of a flexible rotor in journal bearings. The effect of
nonlinear damping was dependent on the speed of the rotor. The numerical method of a fourth-order
Runge-Kutta (R-K) was used in the solution of the dimensionless equations of motions. The proposed
method can be used for vibration isolation between the bearing and environment. Figure 17 shows
a nonlinear damping suspension in a flexible rotor in journal bearings. Yu et al. [166] introduced a
detection method for the identification of the equivalent system of structures with non-proportional
hysteretic damping assumptions. The vibration measurement of the structure subjected to harmonic
excitation was employed. Yamada et al. [167] numerically and experimentally studied the effect of
surface texture on journal bearings’ dynamic properties. The study aimed to investigate the damping
and stiffness coefficients of the oil film of the bearings in the rotating system. Recently, Delgado and
Ertas [168] introduced the compliantly damped hybrid gas bearings (CHGB) to study the dynamic
characteristics performance of a damped gas-lubricated bearing system of turbomachinery applications.
The results show that stiffness increases with increasing excitation frequency and rotor speed, whereas
damping decreases.

Figure 16. Experimental setup for nonlinear damping identification in rotors [117].

Figure 17. Nonlinear damping suspension in a flexible rotor in journal bearings [165].
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3.3. Bridges Applications

Bridges are exposed to many external excitations. Some of these excitations are earthquakes, winds,
vehicle loads, chemical, and environmental conditions. These excitations lead to the deterioration of
the bridges’ conditions, and consequently, catastrophic collapses due to unrecognized damage during
periodic visual inspections [169]. The visual inspection is not enough for damage recognition; therefore,
it is necessary to use modern technologies. One of these techniques is the use of damping as a damage
indicator due to its high sensitivity to the presence of structural damage. By comparing both intact
and damaged cases, we can recognize damages in bridges, where there is a relationship between the
damping magnitude and damage levels [170].

During the last decades, several types of research have been carried out to understand the
relationship between nonlinear damping and the level of damage to bridges. Frizzarin et al. [88]
developed a time-domain damage detection technique for a concrete structure. It utilized nonlinear
damping as a damage indicator for RC structural parts. The approach had successfully identified
nonlinear bridge damping with seismic damage due to the acoustic vibration reaction through the
application of a random decrement signature technique. The nonlinear damping-based approach
successfully identified different levels of seismic damage on the bridge model.

In another investigation, Zarafshan et al. [171] determined damping in an operational highway
bridge by applying two methods, specifically, the decay of motion direct measurement and the natural
excitation method. The research described was intended to demonstrate the efficacy of simplified
approaches for the determination of the damping properties of typical highway bridges. In a related
study of damage detection of bridges, Dammika et al. [172] proposed an energy-based damping
identification method for a steel truss bridge. They analytically and experimentally estimated the
damping parameters of the bridge, and therefore the modal damping ratios were analytically estimated.

Recently, Dammika et al. [173] introduced an analytical method based-energy for the evaluation
of the modal damping ratios for the bridges and followed by an experimental test on a steel arch
bridge. The proposed method has proved its ability for the determination of the damping sources in
steel bridges and the contributions to every modal damping ratio and complements the experimental
structural health monitoring of bridges. Figure 18 shows a bridge under the influence of moving
different vehicles where there is a problem of interaction between the moving vehicles and the structure
of the bridge. This movement induces unwanted vibrations that affect the bridge structure over
the long-term.

Figure 18. Two views of a steel arch bridge [173].

3.4. Buildings Applications

It is well-known that the dynamic characteristics of many structures, such as high-rise buildings,
vary depending on the amplitude of the vibration [174]. Determining damping in structural systems
is a very complicated problem due to damping related to many physical phenomena [175,176].
Damping plays an essential role in making tall buildings more flexible and withstanding external
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influences such as earthquakes and strong winds [177]. Figure 19 shows a tuned liquid column damper
(TLCD) used in the damping test of buildings. Such a damper can be used for improving the dynamic of
a substructure where it can absorb the energy transferred from the vibrating structure [178]. This type
of dampers can be used widely in civil engineering structures and constructions to reduce the effects
of earthquakes and wind loadings. Many problems are encountered due to extensive oscillations
of tall buildings, such as the discomfort of the building occupants and may lead to severe damage
to structures and possibly collapse [179]. Structural nonlinearities occur due to certain causes such
as structural damage and joint loosening that disallow the linear analysis of structural dynamics,
which means the necessity of inserting the concept of nonlinearity [180].

Figure 19. Tuned liquid column damper (TLCD) used in the test of buildings [121].

During the last decades, numerous studies have been made to determine the relationship between
nonlinear damping and the level of damage to buildings’ structures. Ling and Haldar [181] proposed a
new time-domain identification technique for the evaluation of nondestructive damage of structures.
It correctly recognized the stiffness of the structure for both viscous linear and nonlinear damping cases.
Furthermore, the proposed method was capable of identifying structures, even with noise-contaminated
response data. Noteworthy is a study by Kareem and Gurley [182] that used the random decrement
method to estimate the damping in structures focusing on the treatment of uncertainty in its prediction
and evaluation. They examined some types of damping sources to structures and the uncertainty
treatment in the estimation of damping for real-world applications. In another related work, Huang and
Gu [183] proposed an envelope random decrement technique (RDT) for the estimation of nonlinear
damping of tall buildings. Three numerical simulations were performed to compare and analyze
the performance of the proposed technique in evaluating the amplitude dependence of damping
ratio with both conventional RDT and RDT peak. The superiority of the proposed method was
proved over the other two methods in assessing the amplitude-based nonlinear damping ratio, as it
was also applied to a practical application. In another related study, Béliveau [184] developed a
damping identification method in structural dynamics based on modal information within a Bayesian
framework. For the calculation of the natural frequencies and damping constants, the modified scheme
of Newton-Raphson was used. The actual data of the nine-story steel structure were utilized in the
application of the approach.

Recently, Mimura and Mita [185] proposed an automatic evaluation method for obtaining
frequencies and damping ratios under the assumption that the information on mass distribution and
pattern shapes was available. They tested 40-story steel structural models built with RC. The proposed
method was applied to 29-story high-rise steel buildings damaged by an earthquake.
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3.5. Marine Applications

Marine ships are one of the most important devices of transportation in the current days [186].
There are many marine applications, such as passenger and cargo ships, barges, and warships [187].
These ships are subject to continuous periodic motion as a result of wave flow [188,189]. The motion
affects the comfort of passengers and crews, structural safety, and ship controlling and directing [190,191].
The main reason for such behavior is owing to the very high nonlinear characteristics of the sophisticated
damping mechanism of the ship, such as the effect of fluid viscosity. Consequently, during the ship
design process, nonlinearity must be taken into account. An accurate ship movement forecast allows
designers to achieve the requisite dynamic stability.

There has been considerable effort to study this phenomenon; however, understanding nonlinear
damping is extremely difficult due to the strong nonlinearity. Golding et al. [192] presented an
estimation method for the online identification of nonlinear viscous damping forces for a surface
vessel. The approach is based on parameter estimation in conjunction with qualitative data around
longitudinally distributed drag parameters extracted from measured data. The proposed method
was applied to realistic conditions and provided accurate estimations of the viscous nonlinear drag
forces. In other related work, Jang et al. [193] studied the identification of nonlinear roll damping
moments of ships containing the same structures. A regularization approach was used to suppress
instability. The issue of determining damping was mathematically included in the first type of
the integrated Volterra equation between the roll responses and unknown nonlinear roll damping.
Figure 20 shows a model of a testing vessel. Jang et al. [194] performed a free-roll experiment for
a particular ship to determine the functional form of the nonlinear roll damping. The first kind
of the integrated equation of a Volterra-type was mathematically created to identify the nonlinear
damping function. The solution instability was suppressed using Tikhonov’s regularization method.
Jang [195] identified the nonlinear damping and restoring properties of nonlinear vibration systems
in a nonparametric form in which the nonlinear damping is described as a function of velocity only.
He introduced the concept of the zero-crossings, which was employed to present a technique for a
nonlinear simultaneous identification. In a related study, Han and Kinoshita [196] studied a novel
nonparametric and output-only identification method of nonlinear damping. They formulated a
stochastic inverse problem for nonlinear damping based on the concept of the stochastic state space.
Numerical and experimental investigations were conducted to establish the validity and effectiveness
of the proposed method. Recently, Sathyaseelan et al. [197] presented an identification method for
nonlinear damping coefficients to a ship roll motion model using the Legendre wavelet spectral method.
They made a comparison between the findings obtained using the Legendre wavelet spectral method
and the fourth-order R-K algorithm. The proposed approach could be applied to multiple degrees of
freedom problems.

Figure 20. Model of a testing vessel [194].

4. Summary and Recommended Research Directions

Nonlinear damping methods are more accurate and provide a better understanding of the
dynamic behavior of real structures and are increasingly used compared to linear methods. In general,
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nonlinear damping methods are rapidly evolving and increasingly technologically, due to their superior
features, with a wide range of uses across all the engineering, vehicles, rotating machines, bridges,
buildings, and ships. This critical review discusses the common nonlinear damping methods such as
linearization methods, time-domain methods, frequency-domain methods, time-frequency methods,
modal methods, black-box modeling, and model updating methods with fundamental difficulties
and strengths as well as applications of these methods. This review paper also provides a credible
platform for academicians and researchers in this area to understand the basic principles and nuances
of these methods. Although there has been much improvement in the development of these methods in
recent years to determine nonlinear damping, other aspects still have to be studied to understand this
phenomenon. The recommended research directions are summarized to move forward on this topic.

(1) The issue of NDI should be considered in the early design stages as this has an impact on
improving the safety and efficiency of engineering structures.

(2) Damping has a higher sensitivity and reliability than natural frequencies and mode shapes to
structural damage detection and can be used as a useful indicator for determining damage,
which should be further clarified.

(3) Concerning the damping ratio, the instantaneous damping coefficient is a particular property of
nonlinear damping, and it is suitable to give an appropriate image that helps in assessing the
structural damage caused due to the nonlinearity. Therefore, more attention must be paid to such
methods in order to identify the coefficient of the instantaneous damping.

(4) One of the main reasons why using nonlinear damping is more challenging to employ in the process
of determining structural damage is the uncertainty in damping evaluation. Therefore, robust and
reliable techniques should be developed that can give accurate and reliable results.

(5) Wavelet-based time-frequency techniques for nonlinear damping identification have shown
the feature of robustness to noise and usefulness in identifying nonlinear damping. A crucial
step towards advancing such techniques lies in overcoming the outstanding matter of choosing
optimal wavelets for the analysis.

(6) Damping in composite materials is complicated, as it includes various energy dissipation
mechanisms. Besides, composite materials are anisotropic and non-uniform shapes; it needs
further study.

(7) In some cases, it is convenient using more than one method to describe the nonlinear damping
behavior of structural dynamics accurately. One approach may not give a complete explanation
because of many influencing factors on systems. So, it is recommended to use two or more
methods as complementary.

(8) The damping nonlinearity identification process is very complicated due to the presence of a mixture
of different damping mechanisms at the same time. Therefore, in many cases, the theoretical study
for the NDI in structures should be followed by experimental work to validate the results.
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Abbreviations

The following abbreviations are used in this paper:

BBM Black-box modeling
CFD Computational fluid dynamics
CHGB Compliantly damped hybrid gas bearings
CWT Continuous wavelet transform
EL Equivalent linearization
ELA Equivalent linearization approximation
FE Finite element
FREEVIB Free vibration analysis
FRFs Frequency response functions
FWNN Fuzzy wavelet neural network
HAPB Hybrid aeroelastic pressure balance
HBNID Harmonic balance nonlinearity identification
HT Hilbert transforms
MDOF Multi-degree of freedom
MIMO Multi-input multi-output
MR Magnetorheological
NDI Nonlinear damping identification
PRC Prestressed reinforced concrete
RC Reinforced concrete
RCT Response-controlled stepped-sine testing
RDM Resonant decay method
RDT Random decrement technique
RFS Restoring force surface
R-K Runge-Kutta
ROM Reduced-order model
SDOF Single-degree of freedom
SSSM Spring-suspended sectional models
TLCD Tuned liquid column damper
WT Wavelet transform
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