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Abstract: The question of how to estimate the state of an unmanned aerial vehicle (UAV) in real time in
multi-environments remains a challenge. Although the global navigation satellite system (GNSS) has
been widely applied, drones cannot perform position estimation when a GNSS signal is not available
or the GNSS is disturbed. In this paper, the problem of state estimation in multi-environments is
solved by employing an Extended Kalman Filter (EKF) algorithm to fuse the data from multiple
heterogeneous sensors (MHS), including an inertial measurement unit (IMU), a magnetometer,
a barometer, a GNSS receiver, an optical flow sensor (OFS), Light Detection and Ranging (LiDAR),
and an RGB-D camera. Finally, the robustness and effectiveness of the multi-sensor data fusion
system based on the EKF algorithm are verified by field flights in unstructured, indoor, outdoor,
and indoor and outdoor transition scenarios.
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1. Introduction

Multi-sensor data fusion (MSDF) is widely used in unmanned aerial vehicles (UAVs) due to the
requirement of environmental adaptability, and it is at the core of sensing, estimation and perception
in UAVs. An MSDF system can improve the ability of a UAV to adapt to a changeable and complex
environment. In addition, MSDF technology is applied in fields such as autonomous driving, intelligent
transportation, and medical diagnosis. Data for MSDF come from homogeneous or heterogeneous
sensors. Generally, sensors are classified into two categories: interoceptive and exteroceptive [1].
Typical interoceptive sensors include gyroscopes, accelerometers, and wheel encoders. Exteroceptive
sensors include visual sensors (e.g., RGB-D cameras, optical flow (OF) sensors, monocular cameras,
stereo cameras, and fisheye cameras), Light Detection and Ranging (LiDAR), millimeter wave radar,
and global navigation satellite system (GNSS) receivers (e.g., BeiDou Navigation Satellite System
(BDS), Global Positioning System (GPS), and GLONASS). Inertial sensors, such as gyroscopes and
accelerometers, have the advantages of concealment, autonomy, signal immunity, and information
continuity, but are prone to accumulated errors. To date, simultaneous localization and mapping
(SLAM) technology, including LiDAR SLAM and visual SLAM (vSLAM), has predominantly been
used to solve the problem of autonomous navigation in a complex and unknown environment.
LiDAR SLAM has the advantages of high precision and the ability to measure at long distances;
its shortcomings include a high cost, its being greatly affected by rain and fog, and its providing
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less information on characteristics. The advantages of vSLAM are a low cost and an abundance of
feature points; the disadvantages of vSLAM are its short-distance measurements, high computational
requirements, and its susceptibility to environmental impacts. The navigation technology of the
GNSS is relatively mature and often used in outdoor navigation. A single sensor cannot be used to
solve the problem of state estimation in all environments because of the different disadvantages of
interoceptive and exteroceptive sensors. In most cases, MSDF technology can effectively be used to
solve the above problems. This technology can provide reasonable and good quality data [2]. By fusing
the data from multiple sensors, we can not only expand the space of application of UAVs, but also
improve the accuracy and reliability of state estimation for UAVs. In recent years, there have been
several studies on state estimation based on multi-sensor fusion schemes [3–7] that can be applied
to UAV or Unmanned Ground Vehicle (UGV) navigation. Some state estimation methods are only
suitable for indoor environments, some are suitable for outdoor environments, and some are suitable
for indoor and outdoor environments but are also used to estimate the position of UGVs. Other
state estimation methods are suitable for three-dimensional (3D) UAV state estimation in indoor and
outdoor environments. However, the fusion architecture is a centralized architecture and, since all
operations are performed on one computer, once the equipment fails, the state estimation will fail.
Therefore, the goal of this paper is to design a robust 3D pose estimation method, using multiple
sensors, that can be applied to autonomous UAV navigation in multi-environments (indoor, outdoor
and indoor-to-outdoor transition scenarios).

In this paper, we focus on estimating the 3D state of a UAV in all environments, where a ‘state’ refers
to the 3D position, the 3D attitude, and the 3D speed. The system employs an inertial measurement
unit (IMU), the GNSS, an optical flow sensor (OFS), a depth camera, 3D LiDAR, and a barometer.
The key innovations and contributions of this paper are:

(1) The 3D state is estimated by fusing data from multiple sensors (homogeneous or heterogeneous)
in real-time, and can be applied to UAV navigation in multi-environments (indoor, outdoor,
and outdoor GNSS-denied environments);

(2) In the fusion architecture, hybrid mode is chosen. First, the primary local nodes fuse some of the
data from the sensors to obtain state information. Primary local node 1 is based on the data of
IMU, magnetometer, GNSS, OFS and primary local node 2 is based on 3D LiDAR SLAM and
vSLAM. Then, the secondary fusion node uses the Extended Kalman Filter (EKF) fusion algorithm
to estimate the final state. Figure 1 shows the hybrid fusion architecture. In addition, we use a
Controller Area Network (CAN) bus [8] interface to output UAV status information. CAN buses
have priority and arbitration functions. Multiple modules are linked to the CAN bus through a
CAN controller, which facilitates the increase or decrease in modules.
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Figure 1. Hybrid fusion mode. The system consists of primary local nodes and a secondary fusion node.

Next, we present related work. In Section 3, we describe the composition of the system.
The EKF-based MSDF algorithm is presented in Section 4. We implement all of the ideas in our
experimental platform and present the simulation and field experimental results in Section 5.
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2. Related Work

It is well known that navigation, guidance, and control are relevant to robots [9]. Although control
and guidance are very important, it is often necessary to first perceive the state of the robot.

Relevant work can be discussed in terms of sensor combination modes, application environments,
and data fusion algorithms. Very few studies use a single sensor for 3D state estimation. Most of these
studies employ the MSDF method in different scenarios, from which we can see that there are different
limitations to the practical application of state estimation. The navigation technology of the GNSS/INS
(Inertial Navigation System) is relatively mature and often used in outdoor navigation or situations
where there are GNSS outages for a short time [10,11]. However, it is not suitable for indoor navigation
or GNSS-denied environments. SLAM technology is currently the main way to perform navigation
in unknown indoor environments [12]. Some of the recent literature has introduced state estimation
using SLAM based on LiDAR/IMU [13–16], Camera/IMU [17–19], and LiDAR/Camera/IMU [20,21] for
autonomous UAV navigation in indoor or GNSS-denied environments. In addition, the fusion of OFS
and IMU is an important way to perform UAV state estimation in indoor environments [22]. However,
a combination of these sensors can only be used in indoor environments. One of these combinations is
famous and realizes real-time closed-loop detection based on Graph SLAM [23]; however, this method
can only be applied to two-dimensional (2D) environments.

In [3], the authors proposed a 3D state estimation algorithm for UAVs in unknown and GPS-denied
environments. The algorithm uses an EKF to fuse the data from an IMU, a camera, and 2D LiDAR to
achieve accurate positioning; however, this method cannot be applied to outdoor environments. In [4],
an MSDF algorithm based on an Unscented Kalman Filter (UKF) is described, that integrates an IMU,
LiDAR, stereo cameras, a GPS receiver, and other sensors. This approach can be applied to autonomous
Rotor UAV flight in indoor and outdoor scenarios; however, the solution uses a centralized fusion
method that is not convenient for system expansion. A good idea is to realize navigation in different
environments by using the characteristics of different sensors [7]; however, this approach can only
be used in UGVs. An MSDF algorithm based on a factor graph is proposed in [24], that can only be
used in UAVs for autonomous outdoor flight. In [25], the authors achieved orientation and position
estimation by complementary filter and Linear KF, however, this approach, which used GPS and a
barometer, can only estimate the position outdoors. In [26], the authors present methods to fuse data
from different sensors with a focus on attitude estimation algorithms, which solves the problems of
autonomous control, state estimation, path planning, and remote operation, however, this method
can only be used indoors. In [27], the authors proposed a multi-sensor-based autonomous outdoor
navigation for UAV, a vision-based navigation system which provided pose observations in an EKF
algorithm; this method can estimate the pose of the aircraft in real time. However, this system can only
be used outdoors, and the maximum error of position is ± 5 m, while the maximum error of attitude
is ± 3◦. Various MSDF algorithms are described in [28], where the authors point out that the EKF
and UKF methods can only deal with nonlinearity in a limited range. Nevertheless, as the selection
of an appropriate algorithm depends on the application and the existing technology, in this paper,
we focus on the use of an EKF algorithm to fuse the data from multiple sensors to solve the problem of
navigation in multi-environments, which included an indoor scene, an outdoor scene, and indoor to
outdoor transitions.

3. System Composition

The implementation of a fusion algorithm depends on a flight platform. This system consists of
an IMU, a flight data recording (FDR), flight controller (FC), real-time kinematics (RTK), the GNSS,
a three-axis magnetometer, MSDF, 3D LiDAR, an RGB-D camera, and an OFS. The IMU, the three-axis
magnetometer, the FDR, the GNSS, and the flight controller constitute an independent flight control
system (FCS).

In this paper, we adopt a hybrid fusion mode, including two-level fusion. The first-level local
nodes perform local estimation of the UAV’s state and the second-level fusion node performs a global
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estimation of the UAV’s state. First-level fusion node 1 fuses the data from the IMU, magnetometer,
GNSS, RTK, etc. This node can output the 3D position, attitude, and velocity of the UAV. An STM32F4
series processor is employed in first-level fusion node 1 as the operation unit. First-level fusion node 2
fuses the LiDAR, RGB-D camera, and IMU data and outputs the pose of the UAV. The second-level
fusion node fuses the data from the two first-level nodes, and outputs the final pose and velocity
of the UAV in multi-environments. The focus of this paper is the multi-sensor fusion module, i.e.,
the second-level fusion node. The fusion algorithm based on the EKF algorithm runs on the second-level
fusion node. The computing platform of the second-level fusion node is an STM32F4 series processor.
The IMU, FDR, FC, RTK, GNSS, and three-axis magnetometer sensors were connected to the MSDF
algorithm via CAN bus 1, and the 3D LiDAR, RGB-D, and OFS sensors were connected to the MSDF
algorithm via Universal Asynchronous Receiver/Transmitter (UART). FDR1 recorded the UAV’s flight
data, and FDR2 recorded the fusion data. One of the advantages of using a CAN bus is that these
sensors are networked together and can share data via the CAN bus. Another advantage of using a
CAN bus is that sensors can be easily added and removed. A system composition diagram is shown in
Figure 2.
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Figure 2. The modules of the system communicate in real time through the Controller Area Network
(CAN) bus and the Universal Asynchronous Reciever/Transmitter (UART) bus.

In Figure 2, The GNSS, Magnetometer, RTK, Flight Controller, IMU and FDR1 are connected to
the MSDF node via Controller Area Network (CAN) bus 1. FDR2 is connected to MSDF node through
CAN bus 2; the computing unit used by LiDAR and RGB-D node is an X86-based CPU, and the SLAM
algorithm based on LiDAR and vision runs on this processor; the LiDAR and RGB-D node connected
to MSDF node through UART; the OFS module connected to MSDF node through another UART.

4. Multi-Sensor Fusion Algorithm

The Kalman filter (KF) [29] was created in the 1960s. After more than half a century of development,
it remains one of the most powerful multi-sensor fusion algorithms for estimating the states of robots.
The KF is generally applicable to state estimation in linear systems. However, many practical systems
are nonlinear, such as the UAV system that we consider in this paper. Therefore, scholars have proposed
many suboptimal approximate estimation methods, including the EKF, UKF, and particle filter (PF).
In view of our hardware conditions and previous design experience, we selected the EKF as the data
fusion algorithm in this paper.

4.1. MSDF System Model

In this study, the sensors were directly fixed onto the UAV, and were pre-corrected. The model of
the continuous-time nonlinear system of the UAV based on the EKF for MSDF is expressed as follows

x1 = f (x1, u) + G1w1 (1)
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where x1 =
[

p v q bb
gyro bb

a b
]T
∈ R17×1 denotes the state of the MSDF system,p =[

px py pz
]T

denotes the position with respect to the world frame, v =
[

vx vy vz
]T

is the 3D

velocity in the North East Down (NED) frame, q =
[

q1 q2 q3 q4
]T

are the quaternions in the

world frame, which are used to represent the attitude of the UAV, bb
gyro, bb

a represent the bias of the
gyroscopes and accelerometers, respectively, in the body frame, and bh is the altitude bias of the
3D LiDAR, single-line Laser range finder, or barometer in the world frame. In primary local node
1, the altitude error that is estimated based on LiDAR SLAM is large, and the altitude error of the
barometer is also large. Therefore, the altitude error bh was added to the system state equation as a
state variable in order to improve the accuracy of height estimations. The system equation does not
take into account the control input u. We assume that w1 is the zero-mean Gaussian process noise,
w1 ∼ N(0, Q).

4.1.1. The State Equations of the MSDF System

We can obtain the differential equations of the MSDF system based on [3,30,31].

.
p = v (2)

.
v = C(q)(am − ba) +

[
0 0 g

]T
(3)

.
q =

1
2

q⊗ (wm − bgyro) (4)

.
bgyro = 0,

.
ba = 0,

.
bh = 0 (5)

In Equation (3), C(q) denotes a rotational matrix. In Equation (4), ωm denotes the angular velocity,
which can be obtained from the gyroscopes. We can obtain Equation (5) based on Equations (15) and
(18), which are described in Appendix A.

4.1.2. Relative Measurement Model

The measurement model of the MSDF system in an indoor environment contains three sensor units:
the LiDAR module, the RGB-D module, and the OF module. Each sensor module is independent and
can be considered as a black box. The LiDAR module that was used in this study was a 3D scanner able
to output 3D position and attitude estimations in space. The RGB-D module can output a 3D estimation
of pose. The OF module can output the velocity in the X and Y directions. However, the altitude
estimations from the LiDAR and the RGB-D modules are insufficiently accurate, and neither sensor
module outputs 3D velocity estimations. Although the OF sensor module has a 2D velocity output, it is
typically used when a UAV is hovering and is not suitable for large-scale flight operations. In order
to solve these problems, we estimated the state of the UAV in multi-environments by constructing
an EKF model based on a variety of homogeneous and heterogeneous sensors. Based on the above,
the observation equation is given as follows

y1 = h(x1) + v1 (6)

where y1 =
[

p v a
]T
∈ R9×1 comprises the position measurement p, the velocity measurement vb,

and the acceleration measurement a. p comes from the LiDAR module or the RGB-D module, a comes

from the IMU, v =
[

vx vy 0
]T

comes from the OF module, and v1 represents the zero-mean
Gaussian measurement noise, v1 ∼ N(0, R1).
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4.1.3. Extended Kalman Filter Algorithm

In field engineering applications, the functions f (·) and h(·) are usually nonlinear and need to be
linearized. The state transition matrices Fk and Hk can be obtained by calculating partial derivatives of
the nonlinear function, that is, calculating the Jacobian matrix of these functions, as follows

Fk =
∂ f
∂x

∣∣∣∣∣
x=x̂k−1

, Hk =
∂h
∂x

∣∣∣∣∣
x=x̂k

(7)

where x̂k is the estimate of xk, and we can obtain Fk and Hk after derivation, respectively.

Fk =



03×3 I3×3 03×4 03×3 03×3 0
03×3 03×3 δ1 03×3 −C(q)3×3 0
04×3 04×3 δ2 δ3 04×3 0
03×3 03×3 03×4 I3×3 03×3 0
03×3 03×3 03×4 03×3 I3×3 0
01×3 01×3 01×4 01×3 01×3 1


Here, δ1 = (am − ba)

∂(C(q))
∂q , δ2 =

∂ f
∂q , δ3 =

∂ f
∂bgyro

.

Hk =


I3×3 03×3 03×4 03×7

03×3 I3×3 03×4 03×7

03×3 03×3 δ33×4 03×7


Here, δ3 = ∂h

∂q

∣∣∣∣
3×4

.
Based on the above parameters, we can use the well-known EKF to estimate the pose and velocity

of a UAV. The procedure is as follows.
EKF Algorithm (xk−1, Pk−1, yk):

xk|k−1 = Fk|k−1xk−1 (8)

Pk|k−1 = Fk|k−1Pk−1FT
k|k−1 + Qk−1 (9)

Kk = Pk|k−1HT
k

[
HkPk|k−1HT

k + Rk
]−1

(10)

xk = xk|k−1 + Kk
[
yk −Hkxk|k−1

]
(11)

Pk = [I −KkHk]Pk|k−1 (12)

return xk, Pk.
In this study, both Qk and Rk were set to be constant diagonal matrices. As mentioned above, state

estimation in an indoor environment is usually based on LiDAR or a visual sensor, and the measured
value is a relative measurement [4].

4.1.4. Absolute Measurement

In an outdoor environment, the GNSS receiver can be used to estimate the state of a UAV, as it has
the ability to provide absolute measurements. Because the measurement models of the two systems
are different, the absolute measurement model is introduced separately. The details are as follows

y2 =
[

pLLA vr
]T

+ v2 (13)

where y2 is the observed measurement from the GNSS receiver, pLLA =
[
φ λ h

]T
represent the

latitude, longitude, and altitude, respectively, in the Latitude, Longitude, Altitude (LLA) coordinate
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frame, vr =
[

vN vE vD
]T

denote the velocity in the North East Down (NED) frame, and v2 ∼

N(0, R2) denotes the absolute measurement noise.

5. Simulation and Experiment

Before a field experiment, a simulation is necessary to verify whether a system model is correct.
The key parameters of an MSDF system, such as the covariance matrices Q and R, are often adjusted
through simulation. The MSDF system was simulated in MATLAB.

5.1. Simulation

The pose and velocity of primary node and high-precision sensor data were collected by UAV
before field experiments, and the sensors involved in this study were mounted on a drone to obtain
simulation data through an actual flight. The fusion algorithm was run in MATLAB, and the offline
fusion state data were compared with the data of high-precision sensors to test the effectiveness of the
MSDF algorithm. Next, we introduced the performance of the commercial high-precision sensors (IMU
inertial sensors, RTK systems, and a 3D motion capture system (VICON)) that we used to compare the
accuracies of pose estimations. The high-precision IMU sensor that we used was Ellipse-N, which came
from SBG Systems [32]. VICON is a highly accurate system that is the premier solution for drone
studies, providing a ground truth for UAV localization experiments. The details of their performance
are shown in Table 1.

Table 1. Comparison of the accuracy of different sensors.

Sensor State Accuracy

IMU
ELLIPSE-N

Roll/Pitch
Heading

0.1◦

0.5◦

GNSS (RTK) Horizontal Position 1 cm + 1 ppm
GNSS (RTK) Vertical position 2 cm + 1 ppm
GNSS (RTK) Velocity <0.03 m/s

VICON Position <0.5 mm

The simulation was based on the above MSDF system model, and included position, velocity and
attitude. In order to verify the accuracy of pose and velocity estimations, we compared our results with
the data on high-precision IMU, RTK, and VICON sensors; the experimental data for the simulation
were taken from the data collected by a UAV during an actual flight, and the scenes included an indoor
scene, an outdoor scene, and indoor to outdoor transitions. The outdoor scene position accuracy
was compared with the RTK system, and the indoor scene position accuracy was compared with the
VICON system. In an outdoor environment, because the LiDAR SLAM algorithm only works when
there are reflections around 3D LiDAR, we collected data in an outdoor environment that contained
obstacles. The results of the comparison of different states are shown in Figure 3.

In order to evaluate the accuracy of the fusion algorithm in an outdoor environment, the sensors
involved in the MSDF system and the high-precision sensors that were used for comparison were
simultaneously mounted onto the UAV, and the ground truth was provided by the RTK system in the
outdoor environment. Then, we manually flew the UAV in attitude mode and recorded data on the
UAV’s state in the FDR. The state value that was estimated by the fusion algorithm was compared
with the value estimated by the high-precision sensor in MATLAB. In addition, we converted the
state values from different coordinate systems to the same coordinate system. As can be seen from
Figure 3a,b, the position and velocity estimated by the fusion algorithm follow the position and velocity
estimated by the RTK system, and the maximum position error accuracy is less than 10 cm. As shown
in Figure 3c, the maximum error of ± 3◦ occurred after the flight stabilized, which meets the flight
requirements of the rotorcraft.
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In the indoor environment, the estimated pose and velocity were compared with a ground truth
that was provided by the VICON system. The results of the comparison are shown in Figure 4.

In the indoor environment, we evaluated the accuracy of the fusion algorithm’s state estimation
by comparing it with the ground truth provided by the VICON system. First of all, we sent the data
on the pose and velocity of the UAV to a computer through a wireless link, and the computer also
received the data provided by the VICON system, so that the accuracy of the fusion algorithm could
be verified by comparing the data, and then we manually flew the UAV in attitude mode and recorded
data on the UAV’s state in the personal computer (PC). The state value that was estimated by the
fusion algorithm was compared with that estimated by the VICON system in MATLAB. As can be
seen from Figure 4a,b, the position and velocity estimated by the fusion algorithm follow the velocity
and position estimated by the VICON system, and the maximum position error accuracy is less than
10 cm. As shown in Figure 4c, there is a maximum error of ± 3◦, which meets the flight requirements of
the rotorcraft. Next, we show the state estimation in an indoor-to-outdoor transition area.
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Figure 3. Comparison of multi-sensor data fusion (MSDF)-based estimation and high-precision
sensors in an outdoor environment. (a) Contrast between the position estimations of the real-time
kinematics (RTK) and fusion-based systems; (b) Contrast between the velocity estimations of the RTK
and fusion-based systems; (c) Contrast between the attitude estimations of the IMU (SBG-N) and
fusion-based systems. The red line represents the fusion data and the black line represents the ground
truth, which was provided by the RTK system or the high-precision inertial measurement unit (IMU).

It can be seen from Figure 5 that the satellite signal is good between 0 and 300 s. The position
estimated by the fusion algorithm is consistent with the position estimated by the RTK system.
After 300 s, there is no satellite positioning signal, because the drone transitioned from outdoors to
indoors; the position and velocity estimated by the multi-sensor fusion algorithm remained normal,
and the position and velocity estimated by the RTK system began to drift. After 700 s, the position and
velocity estimated by the multi-sensor fusion algorithm returned to their original values.
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Figure 4. Comparison of the estimated pose and velocity of the unmanned aerial vehicle (UAV) in an
indoor environment. (a) Contrast between the position estimation of the VICON system and that of the
fusion-based system; (b) contrast between the velocity estimation of the VICON system and that of the
fusion-based system; (c) contrast between the attitude estimation of the VICON system and that of the
fusion-based system. The red line represents the fusion-based system’s velocity estimation, and the
black line represents the ground truth, which was provided by the VICON system.
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number of satellites, the red solid line represents the fusion data, and the black solid line represents the
ground truth, which was provided by the RTK system.

5.2. Field Experiment

In this section, we introduce the UAV platform, the power allocation, and the state estimation
results for different experimental scenarios.

5.2.1. Experimental Platform

In addition to the simulation, we also verified the effectiveness of the algorithm through a practical
experiment. The sensors that we used in the experimental platform that we employed in this study
included 3D LiDAR, RGB-D, IMU, OF, barometer, and GNSS receiver (BDS/GPS and RTK) sensors.
The computing unit was equipped with two embedded boards and an X86-based PC. Our UAV flight
platform is shown in Figure 6. The main specifications of the flight platform are shown in Table 2.
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The RGB-D module updates more slowly than the LiDAR module, and can output a complete 3D 
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Figure 6. Our 8.5 kg drone platform (including paddles and batteries), which is equipped with
three-dimensional (3D) Light Detection and Ranging (LiDAR), an RGB-D camera, an inertial
measurement unit (IMU), an optical flow sensor (OFS), a barometer, and a global navigation satellite
system (GNSS) receivers (BDS/GPS, RTK).

Table 2. UAV Platform specifications.

Type SPECS

Weight
(with 12,000 mAh TATTU batteries) 8.5 kg

Diagonal Wheelbase 1000 mm
Max Takeoff Weight 12 kg

Hovering Accuracy (RTK) Vertical: ± 10 cm, Horizontal: ± 10 cm
Max Speed 43 km/h (no wind)

Max Wind Resistance 10 m/s
Hovering Time No payload: 25 min, 3 kg payload: 10 min

5.2.2. Introduction to the Calculation of Power

The MSDF system introduced in this paper contains first-level local fusion nodes and a second-level
global fusion node. The first-level local fusion nodes are independent. The local fusion nodes include
the IMU and the LiDAR and RGB-D modules. Attitude estimation using data from the IMU is
performed by an embedded STM32F4 series processor, which can output an attitude estimation or
the quaternion at 50 Hz. The 3D LiDAR module can output a complete 3D pose estimation at 20 Hz.
The RGB-D module updates more slowly than the LiDAR module, and can output a complete 3D pose
estimation at 10 Hz. The Graph-SLAM algorithm running on the LiDAR and RGB-D modules is based
on a Robot Operating System (ROS) and the hardware platform is based on mini PC (i5-8250u), with a
frequency of 3.4 GHz and 16 GHz of RAM. The second-level global fusion node is used to process the
data from the first-level local fusion nodes. Its computing platform is a STM32F405 series processor
with a 168 MHz CPU, 210 DMIPS, and 1 Mb of Flash memory. It can output complete 3D position and
velocity estimations at 10 Hz and attitude estimations at 50 Hz.

5.2.3. Experimental Results

In order to prove that our MSDF system can be applied in all environments, we chose an indoor
environment, a woodland area, an area near high-rise buildings, and an indoor–outdoor transition
area to verify the effectiveness of the MSDF system. We provide the experimental results that were
obtained in the area near the high-rise buildings.

The drone can only achieve hover control and velocity control based on the fused data of MSDF
system; the experimental results are shown in Figure 7a–c. In Figure 7a, the hover scene was a wood.
In Figure 7b, the drone was hovering adjacent to high-rise buildings, and in Figure 7c, the drone was
hovering in an indoor environment.
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Figure 7. Images of the UAV in flight in different environments. (a) The drone flying in the woods;
(b) The drone flying adjacent to high-rise buildings; (c) The drone flying in an indoor environment.

We used the manual attitude mode to fly the UAV adjacent to high-rise buildings. The experimental
results are shown in Figure 8, and were transformed by coordinates and units. The data shown in
Figure 8a–d were calculated in real time through the embedded board (the details are described in
Sections 3 and 5.2.2). These data were stored in the FDR. The trajectory was obtained by simultaneously
transmitting the position data from the onboard RTK system and the position data from the embedded
board to a station on the ground through a wireless link. The number of satellites is shown at the top of
Figure 8a. The area that is marked by red ellipses in Figure 8a shows the trajectory when the number
of satellites is less than six, and is enlarged, as shown in Figure 8b. It can be seen that the position data
from the onboard RTK system, which depend on a GNSS signal, starts to drift and jump, while the
position estimated by the fusion algorithm remains stable. In Figure 8c, the horizontal axis represents
longitude and the vertical axis represents latitude. The data shown in Figure 8d were obtained by
sending the position of RTK and MSDF to the ground station computer at the same time, the red line
represents the position of the RTK, and the blue line represents the fused position. The areas that were
marked by red ellipses in Figure 8c,d show the stage of drift from another perspective.
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Figure 8. The flight trajectory of the UAV near high-rise buildings. (a), (b) and (c) A comparison of 
the traces displayed in MATLAB. The red dashed line represents data from the fusion-based system, 
and the black line represents the ground truth, which was provided by the RTK system; (d) A 
comparison of the trajectories of the UAV via the station on the ground. The blue line represents the 
data from the fusion-based system, and the red line represents the ground truth provided by the RTK 
system. 

Figure 8. The flight trajectory of the UAV near high-rise buildings. (a–c) A comparison of the traces
displayed in MATLAB. The red dashed line represents data from the fusion-based system, and the
black line represents the ground truth, which was provided by the RTK system; (d) A comparison of
the trajectories of the UAV via the station on the ground. The blue line represents the data from the
fusion-based system, and the red line represents the ground truth provided by the RTK system.
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6. Conclusions

In this paper, a hybrid MSDF architecture was presented. The first-level local fusion nodes in
the proposed MSDF architecture are regarded as black boxes that are independent of each other and
connected by a CAN bus or a UART bus. The most important advantage of this architecture is that
local sensor fusion nodes can be conveniently added or removed according to a task’s requirements.
The second-level global node fuses the results from the first-level local fusion nodes using the EKF
algorithm. The convergence of the algorithm was verified by a simulation, and the covariance
matrices Q and R were optimized and adjusted. Then, the real-time performance and practicability
of the EKF algorithm were verified by experiments in indoor, forest, a high-rise building vicinity,
and indoor–outdoor transition areas. From the simulation and experimental results, it can be seen that
the proposed MSDF system not only estimates states that a single sensor is unable to observe, but also
enhances the space coverage and improves the accuracy of the estimated values of the state variables.
The sensor fusion method proposed in this paper provides target-level fusion. In the future, we will try
to fuse data from the raw data layer and adopt intelligent algorithms, such as deep learning, to achieve
MSDF. In addition, with the development of solid-state LiDAR towards light-weight and low-cost
sensors, the application of 3D LiDAR in Rotor UAVs will become more widespread.
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Appendix A

The inertial sensors that we used in this study are based on the Micro Electro Mechanical
System (MEMS) technology, and are inaccurate in long-term operation. Measurements of the MEMS
accelerometer and gyroscope are denoted as [33].

am = a + ba + na, wm = w + bgyro + ngyro (A1)

where a,ω ∈ R3 denotes the real value, ba, bgyro ∈ R3 denotes the bias, na, ngyro ∈ R3 denotes the white
Gaussian noise, and E(na) = 03×1, E(ngyro) = 03×1. Furthermore, the bias ba, bgyro is modeled as follows

.
ba = nba ,

.
bgyro = nbgyro (A2)

Single-line laser range finders and barometers are used to measure the relative and absolute
altitudes of drones. Laser range finders are also used to measure relative height, and are often mounted
on the bottom of a drone and face downward. The measured altitude is denoted by dLaser:

dLaser =
−1

cosθ cosϕ
phe + ndLaser (A3)

where θ,ϕ denote the pitch and roll angle, respectively, −pze denotes the real height from the ground,
and ndLaser denotes the white Gaussian noise in the single-line laser range finder.

Barometers are commonly used to measure the absolute and relative altitudes of drones.
The altitude db is denoted as

db = −phe + bdb
+ ndb

(A4)

where bdb
denotes the bias and ndb

represents white Gaussian noise. bdb
can be expressed as

.
bdb

= nbdb
(A5)
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where nbdb
represents the white Gaussian noise in the barometer. Next, we discuss the multi-sensor

fusion navigation scheme in indoor and outdoor scenarios.
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