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Abstract: A method for channel estimation in wideband massive Multiple-Input Multiple-Output
systems using hybrid digital analog architectures is developed. The proposed method is useful
for Frequency-Division Duplex at either sub-6 GHz or millimeter wave frequency bands
and takes into account the beam squint effect caused by the large bandwidth of the signals.
To circumvent the estimation of large channel vectors, the posed algorithm relies on the slow time
variation of the channel spatial covariance matrix, thus allowing for the utilization of very short
training sequences. This is possibledue to the exploitation of the channel structure. After identifying
the channel covariance matrix, the channel is estimated on the basis of the recovered information.
To that end, we propose a novel method that relies on estimating the tap delays and the gains
as sociated with each path. As a consequence, the proposed channel estimator achieves low
computational complexity and significantly reduces the training overhead. Moreover, our numerical
simulations show better performance results compared to the minimum mean-squared error solution.
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1. Introduction

Massive Multiple-Input Multiple-Output (MIMO) and millimeter wave (mmWave) technologies
are promising candidates to satisfy the demands of future wideband wireless communication systems.
A common feature of these technologies is the deployment of antenna arrays with a large number
of elements while keeping the size of the antenna aperture small. This way, advantages such as large
beamforming gains necessary to compensate the propagation losses at mmWave frequencies, or the ability
to support many spatially multiplexed streams, are efficiently achieved [1,2]. In addition, it has been shown
that in multi-cell massive MIMO systems the capacity increases without bound as the number of antennas
increases, even under pilot contamination, if the channel covariance matrices of the contaminating users
are asymptotically linearly independent [3]. Measurements campaigns have proved that this is usually
the case in practice [4].

Deploying massive antenna arrays raises concerns in terms of hardware cost and power
consumption, especially at mmWave frequencies. To alleviate these requirements, hybrid architectures
with an analog preprocessing network operating in the Radio Frequency (RF) domain have been proposed
to reduce the number of complete RF chains [2]. Hybrid approaches imply stringent limitations,
such as the reduced spatial dimensionality and the lack of flexibility of the analog part, usually implemented
with a Phase Shifter (PS) network. Thus, results obtained for fully digital scenarios are not applicable
to the hybrid case in general, and new precoding or combining solutions are needed.

The benefits of large antenna arrays rely on the accuracy of the Channel State Information (CSI).
Considering wideband systems with multicarrier modulations, this information should be acquired
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for the whole frequency band. However, acquiring the CSI is challenging in this scenario, especially
when the system operates in Frequency-Division Duplex (FDD) mode. In this case, if the channel
is sounded in the downlink, the length of the training sequence depends on the number of transmit
antennas [5]. Thus, most prior art on channel estimation focused on systems operating on Time-Division
Duplex (TDD) mode [6]. Moreover, the aforementioned restrictions related to hybrid architectures
are even more challenging on wideband scenarios, since the analog network is frequency-flat [7].
This‘is incompatible with methods independently designing the spatial signature of the training
sequences for each subcarrier, such as those employed in [8,9], or fully digital narrowband solutions.
Therefore, hybrid approaches usually compensate these limitations with longer training overheads [10].
This problem is even more relevant if large bandwidths are considereddue to the beam squint effect [11],
which causes that the channel statistics change in each subcarrier.

A common approach to reduce the training overhead is to as sume that the channel is sparse [12–15].
Some authors conducting measurement experiments reported sparsity at mmWave frequencies,
with a few channel propagation paths and small angular spreads [16,17]. Nevertheless, measurement
campaigns on sub-6 GHz frequencies with local scatterers around the Base Station (BS) show
that these channels are not sparse in general [10,18]. As a consequence, dropping the sparsity
as sumption enables a wider applicability, and allows us to circumvent the power leakage typically
arisingdue to basis mismatching.

Other authors consider that the channel second order statistics are known in a dvance.
Unfortunately, these channel statistics have to be acquired too in practical settings. In case the channel
is almost spatially uncorrelated or Rician-distributed, it has been proved that it is a good approximation
to estimate only the diagonal elements of the covariance matrix of the channel [19,20]. Under correlated
channels with Rayleigh fading, the training sequences are designed according to the main eigenvectors
of the downlink channel covariance [21,22]. However, these training sequences cannot be used
in hybrid architectures given their hardware constraints. In TDD scenarios, this covariance
can be computed from the uplink [23,24] and extrapolated to the downlink by means of channel
reciprocity. However, uplink and downlink channels are different in FDD mode, and in that case
angular reciprocity is assumed [25–29]. However, the computational complexity of these solutions
for fully-digital narrowband scenarios is high, and they require an additional training period
in the downlink to obtain the instantaneous channel realizations.

Channel covariance estimation techniques usually rely on the assumption of Toeplitz covariance
matrices, a circumstance that occurs in usual antenna arrangements, such as Uniform Linear
Array (ULA), and channel as sumptions, such as Rayleigh fading and the one-ring channel
model [19,21,27]. This structure can be exploited to design short training sequences based on sparse
rulers. Previous works designed these rulers using coprime arrays [30,31], but this strategy cannot
attain the shortest possible training lengths for any number of antennas. There are works that consider
more efficient ruler designs for small covariance matrices [32,33], but they lack an efficient method
to design these training sequences for an arbitrary number of antennas.

Regarding frequency selective channels, solutions have been proposed [15,34,35]. In [34], authors
address covariance estimation in TDD mode for hybrid architectures. The proposed algorithm
is an application of Orthogonal Matching Pursuit (OMP) and solves the Multiple Measurement
Vector (MMV) problem by allowing for a dynamic sensing matrix. In addition, this method is extended
to wideband scenarios under the assumption of common subcarrier support, as done in [8,14,15].
Conversely, authors consider approximately frequency flat second order channel statistics in [35].
These as sumptions are impractical for scenarios where the signal bandwidth is as large as several
GHz [10] because of the beam squint effect. Recently, refs. [28,29] considered the wideband scenario
under beam squint and relied on angle reciprocity and channel sparsity to estimate the downlink
channel in FDD. However, this approach shares the same drawbacks as other works based on similar
as sumptions, namely, large computational complexity and additional training in the downlink,
as explained above.
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In this work, we propose a downlink channel estimation method for wideband massive MIMO
systems over hybrid architectures based on the explicit acquisition of the channel covariance matrix.
With the aim of achieving low training overheads, the proposed method employs training sequences
based on sparse rulers. The considered setup typically arises in mmWave frequencies, but the proposed
framework is general enough to be applicable in sub-6 GHz bands since channel sparsity is not required.
Indeed, our approach only as sumes (1) the channel is wide-sense stationary over a period
of time, and (2) the channel covariance matrix has a Toeplitz structure. Moreover, we consider
the nonlinear spatial transformation caused by the beam squint effect. In the following, we summarize
the contributions of our work:

• We propose a wideband downlink channel covariance estimation method for hybrid FDD massive
MIMO systems that can be utilized for mmWave frequencies. The covariance matrices for different
subcarriers lie in distinct subspacesdue to the beam squint effect. The proposed covariance
estimation algorithm implements dictionary rotations to overcome this difficulty and exploit
the common structure of the wideband covariance matrices.

• Differently from the prior art, and with the aim of reducing the training overhead, Wichmann
sparse rulers [36] are used to design the training sequences. Prior work made use of coprime arrays,
but this solution cannot attain the lowest training lengths for a given number of transmit antennas.
Other works that relied on sparse rulers did not provide methods to design the training sequences
for a number of antennas arbitrarily large.

• We analyze the limitations of the proposed method based on MUltiple SIgnal Classification
(MUSIC): (1) The low rank characteristic of the sample covariance matrices limits the applicability
of MUSIC-like techniques. The use of sparse rulers make it possible to extend the proposed method
using spatial smoothing techniques and allows for even shorter training sequences; (2) Prior knowledge
on the number of channel paths. We show numerically that the number of channel paths
can be estimated without significant performance losses and negligible computational cost.
(3) The dictionary dependency. We provide a discussion on dictionary sizes, posing that moderated sizes
provide enough angular resolution. Furthermore, since sparsity is not a requirement for the proposed
method, we show empirically how to avoid the power leakage arising when the Angle of Departures
(AoDs) do not lie on the dictionary.

• We propose a low complexity channel estimator, leveraging on the structure of the wideband
channels to avoid the individual per-subcarrier procedure. This estimator obtains the delays
and gains corresponding to each channel propagation path exploiting underlying the common
information for all the subcarriers. Moreover, the estimation is performed using the training
sequence employed for the acquisition of the covariance matrices, and it does not require
an additional training stage.

Notation

In this work, scalars are represented by lower case letters, vectors by bold lower case letters,
and matrices by bold capital letters. The superscripts T and H are the transpose and the Hermitian
operators, respectively. The operator | · | with a scalar argument represents the absolute value,
‖ · ‖ with a vector argument represents its norm and ‖ · ‖F with a matrix argument the Frobenius
norm. The operator b·c represents the element-wise floor operation. A⊗ B is the Kronecker product
of matrices A and B, and A ◦ B the Khatri–Rao product (or the column-wise Kronecker product)
of matrices A and B. diag (·) is the diagonal matrix with the arguments in its main diagonal,
and blockdiag (·) constructs a diagonal supermatrix in which the diagonal elements are given
by the matrices in the argument, and the off-diagonal elements are zero matrices. 0 and 1 denote
the vectors of zeros and ones of the right dimension, respectively. The constant c is the speed of light.
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2. System Model

We consider a hybrid FDD massive MIMO system with M transmit antennas and NRF RF
chains communicating with several single-antenna users over a multipath channel. To overcome
the channel frequency selectivity, we assume an Orthogonal Frequency-Division Multiplexing (OFDM)
modulation with Nc subcarriers and a cyclic prefix large enough to avoid intercarrier and intersymbol
interference. One of the aims of this work is to estimate the downlink channel covariance; hence,
as suming that the channel is locally stationary, we will consider several blocks k ∈ {1, . . . , K}
with the duration of the channel coherence time. At the beginning of each block, the BS transmits
a training sequence of length Ttr OFDM symbols to sound both the covariance and the channel.
The remaining time is devoted to data transmission. That is, we collect K wideband observations
of size Ttr during K training periods. Since the block duration is limited by the channel coherence time,
the training sequence length must satisfy Ttr � Mdue to the large antenna array deployed at the BS.
Indeed, we circumvent the requirement of training sequence lengths larger than the number of paths
L, i.e., we propose solutions to the scenario Ttr ≤ L.

Finally, we will as sume that the users feed the observations back to the BS using, e.g., scalar
quantization [8,37]. With the received feedback, the BS estimates the channel covariance matrices for all
users and frequency subcarriers. This scheme allows for tracking the channel covariance matrices
using subsequent received feedbackdue to the slow variation of the channel statistics. As previously
mentioned, these slow changes make channel covariance acquisition simpler than estimating
the channel itself. Next, with the aid of the obtained channel covariance matrices, we estimate the wideband
channels employing the K aforementioned observations.

2.1. Channel Model

We represent the channel response to an arbitrary user using a model similar to that in [34,38].
We as sume a multipath channel model with N taps, where the gains for all antennas in the f -th
subcarrier during the k-th coherence block are given by

hk( f ) = ∑N−1
n=0 hn,k( f )e−j2π f n/Nc , f = 0, . . . , Nc − 1, (1)

where hn,k( f ) ∈ CM are the channel coefficients of the n-th tap of the channel. Each tap, in turn,
is decomposed into L paths as

hn,k( f ) = ∑L
l=1 gl,k prc(nTs − τl)a(ϑl , f ), (2)

where the a(ϑl , f ) ∈ CM are the steering vectors for the AoD of the l-th path ϑl , gl,k ∼ NC(0, σ2
l )

and τl are the complex channel gain and the relative delay corresponding to the l-th path, respectively,
and prc(t) is the transmit filter as sociated with the Digital to Analog Converter (DAC) sampled
with time interval Ts. We as sume that the channel gains for different paths are statistically independent,
i.e., E[gl g∗l′ ] = σ2

l δ(l − l′).
Regarding the steering vectors, we consider a ULA configuration together with the so-called

beam squint effect that arises for the typical antenna apertures in massive MIMO and large relative
signal bandwidths B/ fc [11]. We express this effect as a rotation of the steering vectors with respect
to the central frequency fc, i.e.,

a(ϑl , f ) = Γ(ϑl , f )a(ϑl), (3)

where a(ϑl) ∈ CM is the steering vector for ϑl in a ULA, whose elements are [a(ϑl)]m =

e−j 2π
λ d(m−1) sin ϑl , m = 1, . . . , M, with d is the distance between two consecutive array elements, λ
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is the carrier wavelength, and Γ(ϑl , f ) is a diagonal matrix with the beam squint rotation coefficients.
Under the common as sumption of inter-antenna distance d = c

2 fc
, the elements of Γ(ϑl , f ) read as

[Γ(ϑl , f )]m,m = ejπ sin ϑl(m−1)
(

1+
∆ f
Nc

B
fc

)
, m = 1, . . . , M, (4)

where ∆ f
B
Nc

is the frequency offset of the f -th subcarrier with respect to fc, and ∆ f = f − Nc−1
2 is its

relative position to the central one. This frequency-dependent rotations allows for exploiting the common
structure of the wideband covariance matrices, since the beam squint effect for the subcarriers is isolated
as a rotation of the frequency-independent vectors a(ϑl).

Combining Equations (1) and (2), the channel frequency response for the f -th subcarrier reads as

hk( f ) =∑L
l=1 gl,kβl( f )a(ϑl , f ) (5)

where N is the number of delay taps and βl( f ) = ∑N−1
n=0 prc(nTs − τl)e−j2π f n/Nc .

Since the actual AoD of the channel are unknown, the linear combination of steering vectors in (5)
can be approximated by means of the steering vectors as sociated with G predefined angles θ1, . . . , θG
comprised in a frequency-dependent dictionary A( f ) = [a(θ1, f ), . . . a(θG, f )], that is,

hk( f ) = ∑L
l=1 gl,kβl( f )a(ϑl , f ) ≈ A( f )B( f )gk, (6)

where gk ∈ CG is a vector with L non-zero entries in the positions corresponding to the AoDs,
i.e., gk ∼ NC(0, G) with G = diag(σ2

1 , . . . , σ2
G), and B( f ) = diag(β1( f ), . . . , βG( f )). Note that equality

holds for (6) if the AoDs lie on the dictionary. According to the assumptions regarding the channel
statistics, we obtain hk( f ) ∼ NC(0, Ch( f )). Moreover, we use the approximation in (6) yielding

Ch( f ) ≈ A( f )B( f )GBH( f )A( f )H = A( f )G̃( f )A( f )H , (7)

with Ch( f ) being Toeplitz, and G̃( f ) = B( f )GBH( f ) the effective gains for the f -th subcarrier.
In the following, we will consider that the AoDs belong to the dictionary, i.e., we as sume Ch( f ) =

A( f )G̃( f )A( f )H . The consequences of this as sumption are discussed in Section 4.4.

2.2. Channel Observations

We aim to estimate the channel response using hybrid architectures to reduce the power
consumption and implementation costs. This is achieved by using a number of RF chains significantly
lower than the number of antennas, i.e., NRF � M. As a counterpart, the feasible hybrid precoding
vectors are restricted to the subspace imposed by the hardware limitations. Considering hybrid
precoding, the signal received by the users during the k-th training block in the f -th subcarrier is

ϕk( f ) = T( f )hk( f ) + vk( f ) = X( f )Phk( f ) + vk( f ), f = 0, . . . , Nc − 1, k = 1, . . . , K, (8)

where vk( f ) ∼ NC(0, σ2
v( f )I) is the noise, T( f ) = X( f )P ∈ CTtr×M is a matrix whose rows

are the training vectors for each of the Ttr training channel uses, such that TT( f ) = [t1( f ), . . . , tTtr( f )],
tt( f ) ∈ CM, X( f ) = diag(x1( f ), . . . , xTtr( f )) contains the transmitted pilot symbols in the f -subcarrier
satisfying |xt( f )| = 1, and PT = [p1, . . . , pTtr

] is the hybrid precoder. Therefore, each of these training
vectors is the result of the product

tt( f ) = ptxt( f ) = PA,t pD,txt( f ), t = 1, . . . , Ttr, (9)

where pt is the configuration of the precoders during the t-th training period of k-th training block,
and PA,t ∈ CM×NRF and pD,t ∈ CNRF denote the analog and digital precoding matrices. Recall that PA,t
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is flat in the frequency domain. Hence, it is not possible to design independent training sequences
for each subcarrier.

After the transmission of the Ttr vectors and the subsequent feedback stage, the channel
observation ϕk( f ) of the k-th training period will be available at the BS. Since the channel and the noise
vectors are statistically independent, the covariance of the observations is given by

Cϕ( f ) = T( f )Ch( f )T( f )H + σ2
v( f )I. (10)

By considering the channel covariance matrix model in (7), we rewrite the previous equation as

Cϕ( f ) = Ψ( f )G̃( f )ΨH( f ) + σ2
v( f )I, (11)

where we introduce the measurement matrices Ψ( f ) = [ψ1( f ), . . . , ψG( f )] = T( f )A( f ). When the K
samples of the random variable of (8) are available at the BS, Cϕ( f ) is estimated. Furthermore, given
that both Ψ( f ) and σv( f ) are known, determining Cϕ( f ) is equivalent to estimating G̃( f ).

3. Training Design

This section is devoted to the design of training sequences to estimate the channel covariance,
together with bounds on their length to guarantee its correct identification under the assumption
of a Toeplitz structure.

Toeplitz covariance matrices of size M×M have M different coefficients and a training sequence
of length Ttr allows for defining (T2

tr + Ttr)/2 equations. This establishes the following trivial lower
bound on the training length: Ttr ≥

√
2M + 1/4− 1/2. A necessary condition to achieve this bound

is that the training sequence should allow for measuring the correlation between pairs of antennas
for any separation. This has a strong connection with complete sparse rulers, defined mathematically
as an ordered integer sequence of with T elementsR = (r1, . . . , rT), such that r1 = 0 and any z ≤ rT
can be written as z = ri − rj for some ri, rj ∈ R. In this case, we speak of a complete sparse ruler
of length rT , and a perfect ruler is a complete ruler that contains the minimum possible number
of elements for a given rT . It has been shown that a training sequence built from a perfect sparse ruler
is sufficient for determining Toeplitz covariance matrices [32,33]. In that case, the length of the training
sequence is equal to the number of elements of the ruler, i.e., Ttr = T, and the last element of the ruler
is rT = M− 1.

In the following, we summarize some results found in the literature for sparse rulers.
First, there exist bounds on the size of perfect rulers for a given length [39].

Theorem 1. (see [39]) Denoting l(r) as the minimum number of marks of a complete sparse ruler of length r,

lim
r→∞

l2(r)
r exists and

2.434 ≤ lim
r→∞

l2(r)
r
≤ 375

112
≈ 3.348. (12)

Hence, it is possible to identify a Toeplitz covariance matrix using sparse rulers with a training
length that satisfies

√
2.434M ≤ Ttr ≤

√
3.348M when M approaches infinity.r.

Utilizing the bounds provided by (12), we evaluate the efficiency of the training sequences
employed in previous works on AoD estimation [30,31]. Let us start by introducing a trivial example
of a complete sparse ruler of length m2, for any arbitrary m. Using the 2m− 1 marks (0, 1, 2, . . . , m−
1, 2m− 1, 3m− 1, . . . , m2 − 1) provides a length of m2 − 1 different differences. This complete ruler

achieves a value of lim
m→∞

(2m−1)2

m2 = 4, larger than the bound of (12). A similar result is obtained

with the use of coprime arrays [30,31]. This method is based on two co-prime numbers p and q,
i.e., mcd(p, q) = 1, and on generating the ruler as the set {mp : 0 ≤ m < q} ∪ {nq : 0 ≤ n < p}.
This method achieves a training length of Ttr = p + q and allows for identifying pq different lags.
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Thus, the limiting function reads as (p+q)2

pq . Setting p = q =
√

M provides the bound lim
M→∞

(2
√

M)2

M = 4.

Hence, coprime arrays cannot improve the asymptotic efficiency of the previous trivial complete ruler.
In the literature, we can find some techniques to build sparse rulers for arbitrary lengths satisfying

the bound in (12). The following section summarizes a method to obtain rulers that are close to that bounds
with very low computational complexity.

3.1. Wichmann Rulers

Wichmann [36] proposed a direct method to obtain sparse rulers of any size that, denoted
as the differences between consecutive terms, have the form

W = (1, . . . , 1︸ ︷︷ ︸
r

, r + 1, 2r + 1, . . . , 2r + 1︸ ︷︷ ︸
r

, 4r + 3, . . . , 4r + 3︸ ︷︷ ︸
s

, 2r + 2, . . . , 2r + 2︸ ︷︷ ︸
r+1

, 1, . . . , 1︸ ︷︷ ︸
r

) (13)

for some positive integers r and s such that 2r− 2 ≤ s ≤ 2r + 4. The number of elements of this ruler
is l(r, s) = 4r + s + 3 and its length n(r, s) = 4r2 + 8r + 3 + (4r + 3)s. Hence, if the elements
of W are denoted as wi, i = 1, . . . , l(r, s), the sparse ruler is R = (r1, . . . , rl(r,s)+1) with ri =

ri−1 + wi, i = 2, . . . , l(r, s) + 1 and r1 = 0.
With a change of variable s = s′ + (2r− 2), the length expression changes to

n(r, s′) = 12r2 + 6r− 3 + (4r + 3)s′

= nlo(r) + (4r + 3)s′, s′ = 0, . . . , 6. (14)

The parameter r roughly adjusts the length to intervals starting at nlo(r). Then, for each r value,
the s′ parameter finely adjusts length in steps of size 4r + 3. This allows for finding parameters r and s′

that generate a sparse ruler whose length is as close as possible to a given value.
Finally, the ruler can be completed up to the desired length, relying on the following observation:

it is always possible to build a ruler that contains all differences in the interval [a, b] with a set
of the form R′ = (0, 1, 2, . . . , c, b− c(c + 1), . . . , b− 2c, b− c, b), with c = b

√
b− ac. The cardinality

of this set is at most 2c + 3. In this case, given a Wichmann rulerR = (r1, . . . , rl(r,s)+1) of length n(r, s),
and a setR′ that contains all differences in the interval [n(r, s), M], a new ruler extended to length M
can be found byR∪R′.

3.2. Training Based on Sparse Rulers

A training sequence to estimate a Toeplitz covariance matrix can be built from a sparse ruler.
In that case, the length of the ruler must be equal to M− 1, the number of correlation coefficients. Given
a sparse ruler of length M− 1 with elements (r1, . . . , M− 1) ∈ ZTtr , a training sequence for a Toeplitz
covariance matrix can be designed as TT( f ) = [er1+1, . . . , eM], where ei is the M-length indicator
column vector of zeros and a one in the i-th element.

In the case of Wichmann rulers, it is not possible to obtain them for arbitrary lengths, but instead
a length close to a given value. Hence, to obtain a ruler close to length M − 1, the r parameter
can be found as the largest such that nlo(r) ≤ M− 1, which is r∗ =

⌊√
12M+33−3

12

⌋
. The other parameter

is the largest s′ such that n(r∗, s′) ≤ M− 1, implying that s
′∗ =

⌊
M−1−nlo(r∗)

4r+3

⌋
. The length of the ruler

can be completed up to M− 1 by the method detailed in the previous section. Since the Wichmann
rulers always contain entries from 0 to r, and the s parameter increases length in steps of 4r + 3,
this completion procedure will add always at most

⌈
4r+3

r

⌉
= 5 marks to the ruler, and the minimum

training period will be in the interval Ttr ∈ [l(r∗, s∗), l(r∗, s∗) + 5]. Figure 1 shows the training length
obtained with this strategy compared to the upper and lower bounds in (12). It also shows the length
achieved with the coprime arrays strategy.



Sensors 2020, 20, 930 8 of 20

1,000 2,000 3,000 4,000 5,000

40

60

80

100

120

140

Number of antennas [M ]

T
ra
in
in
g
p
er
io
d
[T

tr
]

Coprime arrays

Wichmann rulers

Figure 1. Training length vs. number of antennas with Wichmann rulers. Dashed lines show
as ymptotic upper and lower bounds on the minimum training size based on (12).

In the following, we show that the mild as sumption NRF ≥ 2 is enough to obtain the sparse
ruler training sequence T( f ) according to (9). Let φr, r = 1, . . . , NRF be blueeligible arbitrary phases
for the PSs in the analog processing network, and PT

A,t = [pA,t,1, . . . , pA,t,M], with the pT
A,t,m ∈ CNRF

is the m-th row of the analog precoding matrix for the t-th channel training use. Since the desired
training based on sparse rulers must satisfy tt( f ) = ert xt( f ), we obtain PA,t pD,t( f ) = ert as

pT
A,t,m =

{
[ejφ1 , ejφ1 , ejφ2 , . . . , ejφNRF−1 ], if [ert ]m = 1

[ejφ1 , ej(φ1+π), ejφ2 , . . . , ejφNRF−1 ], otherwise,
(15)

with the digital part as pD,t( f ) = 1
2 e−jφ1 [1, 1,

NRF−2︷ ︸︸ ︷
0, . . . , 0]T . Note that only two elements of pT

A,t,m
are employed to achieve PA,t pD,t( f ) = ert . Indeed, NRF = 2 is enough to apply (15).

4. Covariance Matrix Estimation

In this section, we propose algorithmic solutions to estimate the downlink covariance
in wideband massive MIMO systems under the beam squint effect. It is apparent that per-subcarrier
(or per-sub-band) covariance estimation is not a practical approach since it does not exploit the structure
of the wideband channel. Furthermore, system scalability is compromised when the number of subcarriers
is large. The proposed method is based on the estimation of the subspace spanned by the steering
vectors corresponding to the L AoD of the channel propagation paths. Well-known estimation
methods like MUSIC have been employed to estimate a single signal subspace. However, the beam
squint effect results in different subspaces for the channel covariance matrices at distinct frequencies.
Resorting to the rotation matrices in (4), we extend MUSIC to the considered setup.

4.1. Subspace Estimation

To estimate the subspace, let us start by computing the eigendecomposition of the sample
covariance matrices Ĉϕ( f ) = U( f )Λ( f )UH( f ) for all the frequencies f . Given that the covariance
converges to the second order moment of the channel for a large number of samples, we have
Ĉϕ( f ) → Cϕ( f ) when K → ∞. Next, the eigenvectors corresponding to the L largest eigenvalues
are discarded to obtain the basis Ū( f ) that spans the noise subspace of the f subcarrier. Due to the beam
squint effect, the relationship among dictionary matrices for different frequencies is nonlinear.
Therefore, it is not feasible to perform this step jointly for all the subcarriers unless the relative
signal bandwidth B/ fc is very small. A remarkable feature of this subspace discrimination is its lack
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of dependency with the SNR, as long as the noise is spatially white. Under such as sumption,
for the approximation in (11), we get

Cϕ( f ) = Ψ( f )G̃( f )ΨH( f ) + σ2
v( f )ITtr = U( f )(Λ( f ) + σ2

v( f )ITtr)U
H( f ). (16)

Therefore, it is crucial to force this condition by applying a pre-whitening filter, if necessary.
According to this observation, the search is performed in the effective subspace, contrarily to OMP-based
methods like Covariance OMP (COMP) [34]. Thus, we identify the support S = {θs1 , . . . , θsL},
with si ∈ {1, . . . , G} ∀i, with the following wideband estimator function

Ji =
Nc

∑
f=1

1
‖ψH

i ( f )Ū( f )‖2
2

, i = 1, . . . , G, (17)

where ψi( f ) = T( f )a(θi, f ). Note that this function greatly increases the robustness of the decision,
compared to a per-carrier estimator because it exploits the common structure for all the frequencies, given
that the vectors a(θi, f ) are generated from a common dictionary as shown in (3). Finally, the support S
is identified as the L largest values of Ji.

4.2. Estimating Gain Variances

Once the angles are determined, we construct the matrices ΨS ( f ) = T( f )[a(θs1 , f ), . . . , a(θsL , f )].
Recall that the path delays τl of (2) are unknown, as well as the matrices B( f ) in (7). Therefore, we aim
at estimating the per-carrier gain variances G̃( f ) in (7). In particular, we denote by ĜS ( f ) the estimated
gain variances as sociated with the angles in the support S . Then, it is possible to use the estimator
in [40], i.e., ĜS ( f ) = Ψ†

S ( f )(Ĉϕ( f ) − σ2
v( f )I)(Ψ

†
S ( f ))H . This solution clearly depends on the rank

of ΨS ( f ), and cannot be applied in the following situations:

1. L > Ttr. This scenario corresponds to short training sequences compared to the number
of propagation paths. Under this as sumption, the pseudo-inverse Ψ†

S ( f ) cannot recover the L
variance gains.

2. L ≤ Ttr. In this case, the rank of ΨS ( f ) depends on the choice of the dictionary matrix, A,
for a proper training matrix T . Recall that the dictionary contains non-orthogonal vectors when M
is finite. When the distance between two consecutive angles in the dictionary is small, a situation
that arises when G is large, this may lead to dictionary matrices such that rank(A) ≤ min{M, G},
thus making ΨH

S ( f )ΨS ( f ) ill-conditioned.

To circumvent (2), one possibility is to reduce the dictionary size (see Section 4.4).
Alternatively, we propose to exploit the diagonal structure of G̃( f ) and estimate it as

vec(ĜS ( f )) = (Ψ∗S ( f ) ◦ΨS ( f ))† vec(Ĉϕ( f ) − σ2
v( f )ITtr), (18)

with ◦ the Khatri–Rao product (or the column-wise Kronecker product). The product Ψ∗S ( f ) ◦ΨS ( f )
produces L-rank matrices when the columns of ΨS ( f ) are not co-linear (see Appendix A).

Regarding the channel gain variances, it is again possible to exploit the channel structure
to increase the estimation accuracy. Consider the relationship between the values of βl( f ) across
frequencies, in particular,

βl( f ) =
N−1

∑
n=0

prc(nTs − τl)e
−j2π f n/Nc =

N−1

∑
n=0

prc(nTs − τl)
(

e−j2π(− f )n/Nc
)∗

= β∗l (− f ), (19)

and, denoting f ′ = − f + Nc, we obtain βl( f ) = β∗l ( f ′). Recall now that the L non-zero diagonal
elements of G̃( f ) are βl( f )σl β

∗
l ( f ) = |βl( f )|2σl , l = 1, . . . , L. This implies that G̃( f ) = G̃( f ′),

and we can increase the robustness of the estimated gain variances in (18) with



Sensors 2020, 20, 930 10 of 20

vec(ĜS ( f )) = 1
2
(
(Ψ∗S ( f ) ◦ΨS ( f ))† vec(Ĉϕ( f ) − σ2

v( f )I) + (Ψ∗S ( f ′) ◦ΨS ( f ′))† vec(Ĉϕ( f ′) − σ2
v( f ′)I)

)
. (20)

Observe that not all the gains can be calculated by means of the latter expression. In the case
of odd Nc, f = 0 has to be determined using (18), whereas f = 0 and f = Nc/2 have to be computed
via (18) for Nc even.

The proposed method, labeled as DR-W-MUSIC (Dictionary-Rotation Wideband MUSIC),
is summarized in Algorithm 1.

Algorithm 1 Dictionary-Rotation Wideband MUSIC

1: g ← [σ2
1 , . . . , σ2

G]
T

2: for all f ∈ {1, . . . , Nc} do

3: Ĉϕ( f ) ← 1
K ∑K

k=1 ϕk( f )ϕH
k ( f )

4: Ū( f )← compute noise basis (16)
5: end for
6: for all i ∈ {1, . . . , G} do

7: Ji ← 0
8: for all f ∈ {1, . . . , Nc} do

9: a(θi, f )← Γ(θi, f )a(θi) rotate dictionary
10: ψi( f )← T( f )a(θi, f )
11: Ji ← Ji + ‖ψH

i ( f )Ū( f )‖−2
2

12: end for
13: end for
14: S ← L larger values on Ji

15: for all f ∈ {1, . . . , Nc/2} do

16: ΨS ( f )← T( f )[a(θs1 , f ), . . . , a(θsL , f )]
17: ΨS ( f ′)← T( f ′)[a(θs1 , f ′), . . . , a(θsL , f ′)]
18: vec(ĜS ( f )), vec(ĜS ( f ′))← compute using (20)
19: end for

4.3. Dictionary-Rotation Wideband Spatial Smoothing

Note that Algorithm 1 requires rank(Ĉϕ( f )) > L, i.e., the number of estimated paths (or angles)
is bounded by the number of training periods and the number of observations, i.e., L ≤ min{Ttr, K}.
Solutions to address rank deficient scenarios have been proposed in [41,42]. In particular, these solutions
apply when rank(Ĉϕ( f )) < L. Nevertheless, in the proposed scenario, it is desirable to reduce the training
sequence length Ttr as much as possible. Unfortunately, we obtain a more involved setup for rank(Ĉϕ) =

Ttr < L. This scenario can be addressed by using spatial smoothing.
Spatial Smoothing (SS) is an array processing technique based on nested arrays with different

antenna separation [43]. An effect similar to that of the nested arrays is obtained thanks to the use
of sparse rulers [44]. Again, the proposed methods addressed the identification of signals lying in a single
subspace, and we have to resort to dictionary rotations to exploit the wideband channel structure.

We start by introducing the sample covariance matrix vectorization y( f ) = vec(Ĉϕ( f )), i.e,

y( f ) = (Ψ∗( f ) ◦Ψ( f ))diag(G̃( f )) + σ2
v( f )e

′, (21)
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where e′ = [eT
1 , . . . , eT

Ttr
]T . Observe that, due to the utilization of a perfect sparse ruler training T( f ),

(Ψ∗( f ) ◦Ψ( f )) contains the products corresponding to the spatial differences z ∈ {−M + 1, M− 1}.
Conventional SS in [44] discards the repeated distances. However, this means employing 2M − 1
elements out of T2

tr from y( f ) in (22). Hence, we propose to refine the estimation by averaging
over all the samples from the same inter-antenna distance. To that end, let us introduce yj

z( f ), j =
1, . . . , Jz, z = −M + 1, . . . , M − 1 as the j-th sample of the z-th difference in y( f ). Note that Jz

represents the number of samples available for the z-th difference, and its values depend on the sparse
ruler structure and Ttr. Next, we introduce the reduced vector y̌( f ) ∈ C2M−1 with sorted elements
[y̌( f )]z = 1

Jz
∑Jz

j=1 yj
z( f ) corresponding to the 2M − 1 distances. Accordingly, we define the matrix

Z( f ) containing 2M− 1 sorted rows from (Ψ∗( f ) ◦Ψ( f )). Thus, the reduced vector is

y̌( f ) = Z( f )diag(G̃( f )) + σ2
v( f )eM. (22)

These differences in y̌( f ) are next seen as a phase shift of the M differences to be estimated.
Considering M overlapping subarrays, such that the m-th subarray comprises the differences
{−M + m, m − 1} in y̌m( f ) ∈ CM, the spatial smoothed matrix is obtained as follows: Y̌( f ) =
1
M ∑M

m=1 y̌m( f )y̌H
m( f ). As shown in [43], Y̌( f ) = Y̌1/2

( f )Y̌1/2
( f ) where the matrix Y̌1/2

( f )
can be rewritten as

Y̌1/2
( f ) =

1√
M

(
A( f )G̃( f )AH( f ) + σ2

v( f )IM
)
. (23)

Due to the beam squint effect, (23) has to be computed individually for each subcarrier f .
Nevertheless, we desire to achieve the benefits of exploiting the structure of the wideband channel.

In this regard, we employ
√

MY̌1/2
( f ) = U( f )Λ( f )UH( f ) as the sample covariance matrix in line 3

of Algorithm 1. Then, following Algorithm 1 steps, the L eigenvectors corresponding to the L largest
eigenvalues are discarded to obtain an incomplete basis Ū( f ) spanning the noise subspace. Hence,
the wideband estimator incorporating the dictionary rotation capability of line 11 is updated as
Ji = Ji +

∥∥aH(θi, f )Ū( f )
∥∥−2

2 , where θi is the i-th angle contained in the dictionary matrix A. To estimate
the variance gains, we follow a similar procedure as that in Section 4.2 to derive the robust estimator

vec(ĜS ( f )) =
1
2
(
(A∗S ( f ) ◦ AS ( f ))† vec(Y̆( f )) + (A∗S ( f ′) ◦ AS ( f ′)† vec(Y̆( f ′))

)
,

with AS ( f ) = [a(θs1 , f ), . . . , a(θsL , f )] and Y̆( f ) =
√

MY̌1/2
( f )− σ2

v( f )IM. This procedure replaces
lines 16 to 18, and completes the posed DR-W-SS method.

4.4. Dictionary Size

In this section, we provide some insight regarding the choice of the dictionary size G. Let us
start by determining a sufficient condition for unique angular identification. To that end, we first
define the Kruskal rank of a matrix X, krank(X). If krank(X) = x, then x is the maximum number
such that any x columns of X are linearly independent.

Theorem 2. In the noiseless scenario, and assuming AoD lying on the dictionary A( f ) and rank(Ĉϕ( f )) = L,
the inequality L < krank(Ψ( f )) guarantees the unique identification of the L AoD [41]. See [45] for the proof.

Therefore, when krank(A) is small, the probability of identifying false directions increases.
To illustrate the dependence with G, we compute in Figure 2 an upper bound of the Kruskal rank
for G and M. This upper bound is computationally feasible and takes into account only z consecutive
columns, a reasonable approximationdue to the structure of A. As shown in the figure, large G values
complicate the AoD detection, which suggests to reduce the dictionary size. However, this strategy
entails a power leakagedue to basis mismatching, that is, a performance lossdue to off-grid AoDs.
However, the basis mismatching is moderate in practical settingsdue to the finite angular resolution
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of the ULA. For instance, a typical inter-antenna spacing d = λ/2 entails an angular resolution
of about 2

M radians [46], leading to G ≈ ∆ϑπ
360o M for an angular range ∆ϑ. That is, G ≈ M provides

enough resolution to cover the sector ∆ϑ = 120o. In addition, an alternative to increasing the dictionary
size is to overestimate the number of channel propagation paths L. This strategy is explored
in Section 6.2.

200 220 240 260 280 300 320 340 360 380 400

20

40
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80

Dictionary size

k
ra
n
k

Nt=100

Nt=200

Nt=300

Figure 2. Kruskal rank upper bound for different array and dictionary sizes.

5. Delay-Gain Channel Estimator

As a means to estimate the channel, we propose a (DG) Delay-Gains estimator that exploits
the structure of the wideband channels. This method employs the observations for all the subcarriers ϕk( f )
to estimate the frequency independent gains of each propagation path gk (cf. (6)). Thus, even in the case
where certain frequencies present very poor SNR, their corresponding channels can be estimated
by using the information from the remaining frequencies.

The covariance estimation procedure provides the measurement matrix ΨS ( f ) and the estimated
gain variances ĜS ( f ) for all the frequencies. Using this information, we estimate the delay matrices
B( f ) and the gain vector gk from the observations gathered in the covariance estimation stage.
Next, a robust low complexity estimator is calculated for the frequency selective channels.

First, notice that the observations in (8) can be rewritten as ϕk( f ) = ΨS ( f )BS ( f )gS ,k + vk( f ),
where ΨS ( f ) was introduced in Section 4.2, BS ( f ) = diag(βs1( f ), . . . , βsL( f )) and gS ,k contains
the gains for the positions s1, . . . , sL of gk. Then, we focus on the unknown vector ζk( f ) = BS ( f )gS ,k
that contains the channel gains affected by the shaping pulse. Accordingly, the linear Minimum Mean
Squared Error (MMSE) estimator of ζk( f ) reads as

ζ̂k( f ) =ĜS ( f )ΨH
S ( f )

(
ΨS ( f )ĜS ( f )ΨH

S ( f ) + σ2
v( f )ITtr

)−1
ϕk( f ). (24)

Once ζ̂k( f ) is determined, we have to identify the matrices BS ( f ) before performing the estimation
of gS ,k jointly using the vectors ζ̂k( f ) for all the frequencies. Since BS ( f ) contains samples
of the shaping filter prc(·) in the frequency domain, we obtain BS ( f ) by estimating the delays
corresponding to the L channel paths. In particular, to determine delay for the l-th path τl , we collect
the entries as sociated with the l-th path for all the frequencies, i.e., [ζ̂k( f )]l for f = 1, . . . , Nc, in a vector.
Then, we multiply this vector times the first N columns of the Discrete Fourier Transform (DFT) matrix,
F ∈ CNc×N , that is

ζl,k = FH
[
[ζ̂k(1)]l , . . . , [ζ̂k(Nc)]l

]T
. (25)
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Observe now that ζl,k = gl,k prc(τl) + wk contains the aforementioned N stacked pulse
samples prc(τl) = [prc(−τl), prc(Ts − τl), . . . , prc

(
(N − 1)Ts − τl

)
]T , and the estimation noise

wk ∼ NC(0, σ2
wINc). Unfortunately, these samples are scaled by the unknown complex-valued channel

gain gl of (2). Note that we assume that the error is statistically independent for different frequencies.
Hence, for given shaping filter prc(t), we propose the following estimator function for τ

D(τ) =
K

∑
k=1

|pT
rc(τ)ζl,k|

‖prc(τ)‖2‖ζl,k‖2
, (26)

where prc(τ) = [prc(−τ), prc(Ts − τ), . . . , prc
(
(N − 1)Ts − τ

)
]T contains the pulse samples

for the delay τ. Unfortunately, D(τ) is a non-monotonic function. Thus, we minimize D(τ) over
τ, e.g., by linear search over [0, (N − 1)Ts] to obtain the delay estimate τ̂l . In the high SNR regime,
it is enough to sound within the interval corresponding to the two samples of prc(τ) with larger
absolute values.

Recall that the channel gains are multiplied times BS ( f ) in the unknown vector ζk( f ) of (24).
Thus, employing the estimated delays τ̂l , we compute B̂S ( f ) for all frequencies (see (6)). To eventually
estimate the channel gains gS ,k, we compute the minimum variance unbiased estimator [47] using

information from all the frequencies, i.e., ĝS ,k = B̂†
ζ̂k, where B̂ = [B̂T

S (1), . . . , B̂T
S (Nc)]T and ζ̂k =

[ζ̂
T
k (1), . . . , ζ̂

T
k (Nc)]T . Finally, by invoking (6), the estimated channel yields

ĥk( f ) = AS ( f )B̂S ( f )ĝS ,k. (27)

6. Simulation Results

The following setup is considered for the numerical experiments. We as sume a training sequence
T generated from a Wichmann ruler of length Ttr. The number of transmit antennas is M = 200,
while we consider a hybrid architecture using NRF = 2 RF chains, Nc = 64 subcarriers, and a dictionary
of size G = 400 with equally spaced angles within the range [0, π]. We consider the channel covariance
model of (6) with L propagation paths uniformly distributed in [0, π]; different number of training
periods K, and N = 8 random delay taps uniformly distributed in [0, N − 1]Ts, with Ts = 1/B.
The numerical results are averaged over 200 channel covariance realizations for independent users,
and over the different subcarriers Nc. To evaluate the accuracy of the covariance identification,

we employ the Normalized Mean Squared Error (NMSE) metric defined as NMSE =
‖Ĉh−Ch‖2

F
‖Ch‖2

F
with the Frobenius norm ‖ · ‖F. In the case of channel estimation, we use the efficiency η ∈ [0, 1]

given by η = |ĥH
h|

‖ĥ‖‖h‖ , which is similar to the figures of merit in e.g., [26,34,48]. This insightful metric
evaluates the signal power lost by beamforming using the estimated channels. Note that this metric
is averaged over the number of channel blocks.

As a benchmark, we include an LS (known θ) curve that individually estimates the gain variances
for each subcarrier using (18) as suming that the channel angles are known. That is, it does not exploit
the symmetry with respect to the central frequency of (19) to estimate the variance gain.

6.1. Wideband Covariance Estimation

Figure 3a shows the NMSE obtained with the proposed algorithms. The training sequence length
is set to Ttr = 25 and the channel parameters are adjusted according to massive MIMO settings
with fc = 5 GHz, B = 20 MHz, L = {15, 30} channel propagation paths, and a SNR of 15 dB.
Using the same training sequence, we compare our methods with COMP in [34], which supports
wideband estimation in the absence of beam squint. For L = 15, the proposed methods achieve
better performance than COMP when the number of training blocks K is large, but the accuracy
of the estimation deteriorates when K < 20. This behavior is motivated by the lack of similarity
between the sample covariance matrix Ĉϕ( f ) and the actual channel covariance matrix Cϕ( f ) that
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makes difficult the discrimination of the signal and noise subspaces (see Algorithm 1). Nevertheless,
values of K above 50 are feasible in practical settings, since K is not restricted by the channel coherence
time. We also include the case of L = 30 channel paths in Figure 3a. Under such as sumption, COMP
and DR-W-MUSIC do not applydue to the lack of angular sparsity, and the limited rank of the sample
covariance matrices, respectively. Conversely, the DR-W-SS approach performs close to the benchmark
with known angles, denoted by LS (known θ).
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−15
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Training periods [K]

N
M
S
E
[d
B
]

COMP L = 15 DR-W-SS L = 15

DR-W-MUSIC L = 15 DR-W-SS L = 30

LS (known θ) L = 15 LS (known θ) L = 30

(a)
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−15
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S
E
[d
B
]

COMP DR-W-SS

DR-W-MUSIC LS (known θ)

(b)

Figure 3. NMSE of different covariance estimation strategies for M = 200 antennas: (a) SNR = 15 dB,
and L = {15, 30} propagation paths; (b) SNR = 0 dB, and L = 5 paths.

Figure 3a shows the NMSE for a mmWave setup with L = 5, SNR = 0 dB, a small signal
bandwidth B = 200 MHz and fc = 28 GHz. The robustness against the noise of the proposed strategies
is remarkable, especially in the case of DR-W-SS. On the contrary, COMP does not achieve good
performance results in this SNR regime compared to the proposed methods.

To evaluate the performance impact of the training sequence length Ttr, we fix the parameters
to M = 100, L = 50, SNR = 15 dB and K = 50 in Figure 4a. The training sequence is shorter
than the number of paths and takes the values 19, 25, 32, 40, 50, to show the capability of DR-W-SS
in the challenging scenario L > Ttr. As shown, the proposed method performs better than the LS
benchmark with known support S .
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Figure 4. NMSE of covariance estimation for (a) M = 100 antennas, L = 50 propagation paths, K = 50,
SNR = 15 dB, and different training sequence lengths; (b) M = 200 antennas, L = 5 propagation paths,
and different signal bandwidths B for fc = 28 GHz.
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We now evaluate the consequences of neglecting the beam squint effect for the setup considered
in Figure 3a, that is, fc = 28 GHz and different signal bandwidths, B = 200, 800, 1200, 2000 MHz.
The methods referred to as W-MUSIC consist of Algorithm 1 ignoring the dictionary rotation. Figure 4b
exhibits the performance impact of beam squintdue to the lack of a common subspace for different
frequencies. As shown, the proposed dictionary rotation is able to exploit the structure even in the case
of B = 2000 MHz.

6.2. Covariance Subspace Estimation

In the previous numerical examples, the number of paths L was as sumed to be known. Subspace
estimation methods, like the one in [49], can be used to estimate L by comparing the differences
between consecutive eigenvalues of the sample covariance matrix with a threshold ε. In the wideband
case, we employ the information of all frequencies jointly, to increase the detection accuracy.
Moreover, the computational cost over DR-W-MUSIC and DR-W-SS is negligible while it is significant
for other approaches not performing a subspace discrimination.

Figure 5a shows the robustness against uncertainty in the number of channel propagation
paths L. We employ Algorithm 2 in [49] and empirically adjust the parameter ε for the different
estimation methods. For the considered scenario with SNR = 0 dB, we set the threshold as ε =

0.025 for DR-W-MUSIC and ε = 0.01 for DR-W-SS. Remarkably, the performance obtained
with subspace estimation for DR-W-SS is similar to that of the strategies with known L. In particular,
for DR-W-MUSIC, overestimating the number of channel paths L improves the performance.
This observation reveals that the support identified by Algorithm 1 with known L was incorrect.
Recall that the support S comprises the angles corresponding to the L larger values on the estimator
function Ji. Under the strong noise conditions considered in Figure 5a, some angles belonging
to the covariance support might be ignored (see line 14 of Algorithm 1). Instead, step 14 selects
angles in the dictionary whose steering vectors are linearly dependent. Thus, overestimating L enables
a better detection of the channel covariance subspace where angles with lower Ji are included in S .
In addition, we compare the effect of discarding the repeated distances in DR-W-SS, as performed
in conventional SS [44]. In Figure 5a, this strategy is labeled DR-W-SS Discard. As shown, for Ttr = 50,
the performance loss is significant.
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Figure 5. NMSE of covariance estimation for (a) M = 200 antennas, L = 15 propagation paths,
Ttr = 50, SNR = 0 dB, and subspace estimation; (b) M = 200, SNR = 0 dB, L = 5 propagation paths,
and off-grid AoDs.

In Section 4.4, we discussed the advantages and practical orientation of moderate dictionary sizes.
Nevertheless, we investigate the effect of off-grid AoDs in Figure 5b for the mmWave setup
and B = 200 MHz. The error floordue to basis mismatch is clear. As an alternative to increase G,
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we propose to compensate the basis inaccuracy by overestimating the number of channel paths L. This
way, part of the power leakage is recovered with the additional AoDs. These approaches are denoted
DR-W-MUSIC Overestimated L and DR-W-SS Overestimated L. For the LS estimator with known
angles, we choose the closest dictionary angles to the real ones.

6.3. Wideband Channel Estimation

Figure 6a shows the performance of the channel estimator with the covariance identified
and the two different channel estimation methods: LMMSE [21,25,47]

ĥk( f ) = Ĉh( f )T
H
(

TĈh( f )T
H + σ2

v( f )ITtr

)−1
ϕk( f ) (28)

and the proposed DG estimator of (27). The number of channel blocks is set to K = 100,
and the number of delay candidates τ considered in (26) is 20 N. Since the proposed DG method
uses the information of all the subcarriers to produce the estimates, it is very robust against noise
and results in a considerable performance gain. Indeed, more than 80% of the signal power is captured
at −10 dB with the proposed strategies.
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Figure 6. (a) efficiency of channel estimation for M = 200 antennas, L = 5 propagation paths, Ttr = 25,
and K = 100 training periods; (b) normalized computational complexity for M = 200 antennas,
dictionary size G = 2M, K = 150 training periods, training length Ttr = 50, Nc = 64 subcarriers,
and different number of paths.

6.4. Computational Complexity

Table 1 summarizes the computational complexity of the proposed methods. Recall that
a fast covariance estimation is important, but not as critical as the actual channel estimation.
Indeed, we only employ a training stage contrarily to other approaches like [21,37].

For the favorable scenario, DR-W-MUSIC(a) and DR-W-SS(a), the gain variances are estimated
using well-conditioned measurement matrices, while (18) with the Khatri–Rao product is considered
for MUSIC(b) and DR-W-SS(b). The complexities have been calculated as suming Ttr > L
for DR-W-MUSIC and COMP. It is noticeable that neither DR-W-MUSIC nor COMP depend
on the number of antennas, although both of them linearly depend on the dictionary size G.
The number of channel taps N is also relatively small, and T is the number of τ candidates evaluated
to estimate the delays using (26). Since COMP and DR-W-MUSIC apply to scenarios where L
and Ttr are very small compared to M or G, the complexity of the latter is smaller in general.
Furthermore, the number of steps performed by COMP is larger, and its computational burden
depends on the number of training periods K.
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Table 1. Complexitiesof estimation methods.

Covariance Estimation

DR-W-MUSIC(a) O
(

Nc(T3
tr + (T2

tr + Ttr)G + L2Ttr + 2LT2
tr)
)

DR-W-MUSIC(b) O
(

Nc(T3
tr + (T2

tr + Ttr)G + L4T2
tr + L2T2

tr)
)

DCOMP O(Nc(2KT2
trG + KL3Ttr + 2KT2

tr(L2 + L) + KLT3
tr)
)

DR-W-SS(a) O
(

Nc(M2 + M3 + (M2 + M)G + L2 M + 2LM2)
)

DR-W-SS(b) O
(

Nc(M2 + M3 + (M2 + M)G + L4 M2 + L2 M2)
)

Computing Estimator

DG O
(

Nc(3L2Ttr + T3
tr + NL + L3 + ML2 + ML) + KNTL

)
LMMSE (28) O(Nc(3M2Ttr + T3

tr)
)

Channel Estimation

DG O
(

Nc(LTtr + ML + L2)
)

LMMSE (28) O(Nc MTtr)

When L 6� M, the computational complexity virtually depends on the number of antennas.
Hence, DR-W-SS and DR-W-MUSIC establish a trade-off among Ttr, L and M, since we could use
the less complex option by adjusting Ttr and K. The effect of increasing L is depicted in Figure 6b.
Interestingly, in the region where the channel is sparse and Dynamic COMP (DCOMP) applies, L < 10,
the computational complexity of the proposed approaches is lower than that of DCOMP.

We now differentiate between the operations computed once using the estimated covariance
matrix, referred to as “Computing Estimator”, and the channel estimation for each observation, referred
to as “Channel Estimation”. Remarkably, the complexity of computing the proposed estimator (DG)
linearly depends on M, cf. (24)–(26) whereas for the LMMSE estimator this dependency is quadratic.

Regarding the actual channel estimation, in scenarios suitable for DR-W-MUSIC with L < Ttr,
DG channel estimation is more efficient. This applies to mmWave frequencies and other massive
MIMO scenarios, e.g., [8,37,50–53]. Conversely, LMMSE estimator might be less complex for large
number of channel propagation paths, i.e., L >

√
M.

7. Conclusions

In this work, we proposed a covariance and channel estimation method for FDD wideband hybrid
massive MIMO systems. The numerical experiments showed the good performance of the posed
covariance estimation approaches compared to other methods in the literature, even when considering
very short training sequence lengths. In addition, we developed a robust channel estimator
with computational complexity depending linearly on the number of antennas. Both facts contributed
to a reduction in the channel training overhead. Finally, we evaluated the performance of the proposed
scheme for a wide variety of scenarios. The extension to Uniform Planar Array (UPA) antenna
arrangements, and the use of shorter training sequences is an interesting research line for future works.
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Appendix A

To prove the linear independence, we consider two cases: (1) If the columns of ΨS ( f ) are linearly
independent, the same property holds for the columns of Ψ∗S ( f ) ◦ΨS ( f ). (2) Consider that the i-th
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column of ΨS ( f ), ψSi
for notation simplicity, is a linear combination of the columns whose indices

are in the set T ⊆ S , i.e., ψSi
= ∑

|T |
j=1 cjψTj

with ψTj
6= 0, ∀j ∈ T . Then, for the i-th column

of (Ψ∗S ( f ) ◦ΨS ( f )), we obtain

|T |

∑
j=1

c∗j ψ∗Tj
⊗
|T |

∑
n=1

cnψTn
=
|T |

∑
j=1

|T |

∑
n=1

c∗j ψ∗Tj
⊗ cnψTn

. (A1)

Notice that it is not possible to write this column as a linear combination of the form

∑
|T |
j=1 bjψ

∗
Tj
⊗ψTj

unless ψTj
= ∑

|T |
n=1 cnψTn

, ∀j. This condition holds only if ψSi
= cjψTj

.
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