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Abstract: Abnormal falls in public places have significant safety hazards and can easily lead to serious
consequences, such as trampling by people. Vision-driven fall event detection has the huge advantage
of being non-invasive. However, in actual scenes, the fall behavior is rich in diversity, resulting in
strong instability in detection. Based on the study of the stability of human body dynamics, the article
proposes a new model of human posture representation of fall behavior, called the “five-point
inverted pendulum model”, and uses an improved two-branch multi-stage convolutional neural
network (M-CNN) to extract and construct the inverted pendulum structure of human posture
in real-world complex scenes. Furthermore, we consider the continuity of the fall event in time
series, use multimedia analytics to observe the time series changes of human inverted pendulum
structure, and construct a spatio-temporal evolution map of human posture movement. Finally,
based on the integrated results of computer vision and multimedia analytics, we reveal the visual
characteristics of the spatio-temporal evolution of human posture under the potentially unstable state,
and explore two key features of human fall behavior: motion rotational energy and generalized force
of motion. The experimental results in actual scenes show that the method has strong robustness,
wide universality, and high detection accuracy.

Keywords: computer vision; fall behavior detection; five-point inverted pendulum model; motion
instability; human posture spatio-temporal map; rotational energy

1. Introduction

Understanding and recognizing human behavior remains a challenging and important task in
the field of computer vision. It can be applied to a variety of research cases, such as intelligent
video surveillance, human–computer interaction and video content understanding. According to
the different recognition targets, it can be divided into two categories: human normal behavior
recognition and classification [1–8] and human abnormal behavior detection and warning [9–13].
With the development of research theories and methods, human normal behavior recognition and
classification mainly study how to distinguish the different behaviors of human beings, and it has
evolved into research on the breadth and diversity of different behaviors. However, human body
abnormal behavior detection and early warning focuses on the study of the existence of abnormalities
in human behavior sequences, and continues to develop research into the detection depth and scene
complexity of a single behavior.

There are many different types of abnormal behaviors in the human body, and there are different
definitions. Common abnormal behaviors often include both group behavior and individual behavior.
Typical group anomalies include crowding, gathering and fighting, etc. Typical individual abnormal
behaviors include falls, retrogrades and evasion, etc. In crowded public places, an individual’s
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abnormal fall due to unknown reasons may lead to more vicious group abnormal events, such as
crowding, panic, and even trampling. In particular, if an elderly person or child who lacks mobility
has not been discovered and treated in time after falling, it is likely to cause more harm and even death.
Our research can help staff detect the behaviors in real time, automatically and intelligently in a large
amount of video data from the video surveillance system and make correct emergency responses in
time. It can play a positive role in the intelligent development of public safety. Therefore, the effective
detection of human fall behavior has important theoretical research value and social significance in
public scenes.

However, falls in public places are hard to find. There are two well-known difficult issues
here. One is in public places, and various uncontrollable disturbances often appear randomly in the
scene. The other is that the fall behavior itself has a different direction. When the view of camera
and the human body fall in the same line or direction, it is called the posture of same direction (SD
posture), the morphology change in the fall process is not obvious. These two problems inevitably
lead to a significant decline in the robustness of identifying human abnormal fall behavior in the wild
environment. In order to cope with the two problems above, we study the intrinsic dynamics of human
fall behavior from the human body structure. By explaining the morphological evolution characteristics
of the human body’s Part Affinity Fields (PAFs) in the unstable process, a motion description model
based on spatio-temporal information coupling is established. The abnormal fall behavior detection
method proposed in this article can dynamically analyze and judge motion continuously, with high
precision and strong robustness, which is very suitable for fall recognition in complex scenes. In this
article, our contributions are:

• We propose a five-point inverted pendulum model based on the key points of the human body
structure to describe the human motion pose. Based on this model, we construct a human body
posture spatio-temporal evolution map to reflect the pose evolution process in a time series.

• Using the theory of human body dynamics, two quantitative characteristics of rotational energy
and generalized force of motion are proposed, and the general instability law of fall behavior
is studied. Our method is able to detect fall behavior in different directions and achieve
higher precision.

The rest of this article is organized as follows. Section 2 describes the related work in the detection
of human fall behavior. Section 3 gives our system model, the five-point inverted pendulum model,
and describes its spatio-temporal information coupling mechanism. Section 4 proposes a fall detection
method based on the above model. We performed a thorough performance evaluation in Section 5.
Finally, Section 6 concludes our work.

2. Related Work

The existing fall detection methods based on machine vision have been widely studied. The flow
of the algorithm is generally composed of three stages: image preprocessing, feature extraction,
classification, and detection. The implementation and optimization of the latter two stages have
become the focus of the research.

From the perspective of feature extraction, existing solutions can be divided into two categories:
static features and dynamic features. Static feature analysis is essentially a morphological model of
fall behavior [14–20]. Typical examples are the shape matching cost defined by the full Procrustes
distance [14] and the application of an approximate ellipse [19] to describe the shape of human body.
The human contour is simplified as three basic parts of the head, body and legs, and at the same time,
the orientation, sum of the heights and height ratio are calculated and used to analyze the shape of
the human [17,21]. Then, a statistically determined method is used to collect a set of ratios of the
human body part occupied area of each frame and the writer uses it as input data of the MEWMA
chart [18–20,22,23]. In the above methods, their performance must depend on the extraction integrity
of the contour of the human body. However, in the actual scene, it is difficult for the target human
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body to avoid being blocked, which may affect the detection effect. In addition, some features are
only sensitive to partial fall posture recognition, and, in most cases, it is difficult to detect such on SD
posture. In summary, there are too many limitations in the application of this type of method.

Compared to statical features, dynamic features are more concerned about change of motion.
Generally, abnormal events that are different from the global motion trend can be identified through
motion speed and direction. The trajectory of the detected moving object is clustered and an anomaly
detection model is defined in [24]. By detecting motion path [25] or the change of energy [26], anomalies
can be reflected. Ref. [27] proposes a novel efficient high-level representation of trajectories called
snapped trajectories, and combines object trajectory analysis and pixel based analysis for abnormal
behavior inference. This enables detecting abnormal behaviors related to speed and direction of object
trajectories, as well as complex behaviors related to finer motion of each object.

In recent research, dynamic features can more fully describe the changes in the continuity of
anomalous events by combining spatial and temporal features. Most abnormal behaviors may last
for a while from beginning to end. We can not judge the result only by the limited features in a
single frame. These methods first construct feature vectors based on spatial feature extraction, and
then apply time analysis theory to improve their performance. This is a sequential and decomposed
fusion method. However, other studies have introduced the use of spatial and temporal features to
construct transient fusion feature vectors. Typically, Ref. [28] defines a new feature called Cmotion,
which quantitatively describes the intensity of of motion on spatio-temporality. Ref. [1] proposes a
new structure called Space Time Graph Convolutional Network (ST-GCN) for motion identification.
A large number of experimental evaluations have demonstrated that these transient fusion feature
vectors have significant advantages and can break through the limitations of previous methods by
automatically learning spatial and temporal patterns from the data.

From the perspective of classification and detection, recent research has evolved from simple
threshold determination to complex intelligent machine learning. This process illustrates that feature
selection and application are shifting from low-level feature discrimination to advanced feature
learning. According to the modeling requirements of anomaly classification, supervised learning
algorithms are usually used, such as hidden Markov model [28], neural network [18], and single
or multi-layer support vector machines [27]. In addition to traditional machine learning methods,
the deep learning classification model has become a new research hotspot. Convolutional neural
networks (CNN) with deep structural features have been widely studied and applied, such as [1,3,5],
and their improved algorithms, Region-CNN (R-CNN), fast R-CNN, Faster-RCNN [29] etc.

At present, in the published research, the detecting fall method of focusing on human body
structure is still rare. However, in fact, the dynamic characteristics of the human body pose structure
in the motion process are the fundamental basis for judging abnormal falls. Ref. [2] has also been able
to detect PAFs of human bone structure more stably through deep learning models. Based on the Part
Affinity Fields (PAFs) of the human skeleton structure, it has great research value to find the key points
closely related to the abnormal fall of the human body and to establish the coupling model of time and
space information at these key points in the fall process. Therefore, in our work, we focus on extracting
and studying the essential characteristics of abnormal fall behavior and discussing the relationship
between human body structure and posture stability. By quantitative analyzing spatio-temporal
characteristics of fall motion, we propose posture stability theory based on video analysis and reveal
the general rules of falls in different directions in two-dimensional (2D) images. Our method to detect
abnormal fall behavior is more adaptive in real scenes.

3. System Modelling

In the public scenes such as subway stations, bus stops and streets, the human behavior types
are different from in indoor scenes. The normal behaviors of people are generally walking, standing
or sitting. Fall event is a dynamic behavior, so static behavior of sitting is ignored. Then, the normal
behaviors mainly include walking and standing. We mainly distinguish fall behavior from them.
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Falling behavior is a direct result of the loss of stability during human movement. Whether it is
due to external forces or due to physical internal causes, the body has a dynamic change process
from the height to the ground. Compared with the normal walking and standing, the movement
and morphological changes of the fall process have significant characteristics. The key points of
the human skeleton help to deeply explore the motion essential characteristics of the fall process.
Therefore, this article proposes the analysis and detection of the fall anomaly behavior based on
the coupled map of motion space-time information. Starting from the human motion dynamics,
the physical characteristics and quantization algorithms of the loss of stability are studied, and a series
of continuous multi-scenario multi-directional falls are collected and tested to prove its rationality
and universality for the detection of abnormal behavior. The study consists of four steps, as shown in
Figure 1:

• Introducing two-branch multi-stage CNN to extract the Part Affinity Fields of human skeleton
structure and establishing a description model of human body instability—five-point inverted
pendulum model;

• Based on the five-point inverted pendulum model, constructing the vectors of human body
motion using spatio-temporal information coupling;

• Using the principle of human body dynamics and analyzing the characteristics of human
instability caused by abnormal behavior of falling and its quantitative theory;

• Realizing the detection and identification of human fall behavior.

3.1. Five-Point Inverted Pendulum Model for Human Body Motion Instability

The stability of motion is defined as the nature of an object or system that returns to its original
motion after it has deviated from its motion by external disturbances. If the object or system can
gradually return to the original motion, the motion is stable, otherwise it tends to be unstable.
The human body can be considered to be in a limited stable equilibrium when walking or standing.
When the human body is disturbed by external force or is unable to return due to the body’s own
reasons, the fall will occur, and the process is understood as motion instability.

In order to analyze the motion instability of the human body, we must first establish a description
model that fully describes the motion posture and is as simple as possible. The significance of the
simplification is to reduce the computational complexity and improve the robustness in a multi-person
scene. We start from the classic human standing balance model: the inverted pendulum model [30].
This model is widely used in robot motion balance and stability research [30–33]. According to the
theory of human body dynamics, the balance and stability of the human body are closely related to
the position of the human body and the position of the support plate. Therefore, the face and upper
limbs are ignored, and the trunk parts, including the head, the neck, the buttocks, and the left and
right knees that reflect the support position to a certain extent, are retained, shown in Figure 2. Thus,
the key points of the inverted pendulum of the body movement instability include: head (H); neck
(N); buttocks (B); left knee (Kl); right knee (Kr). Then, according to the natural connection rules of
the human body, (H, N), (N, B), (B, Kl), (B, Kr) are connected, and (Kl , Kr) are connected according
to the inverted pendulum shape, thereby constructing the five-point inverted pendulum model for
the movement instability process of the human body. The model can not only effectively reflect the
changes of the posture of the movement, but also relatively simplify the structure of the human body,
and avoid interference with the analysis of the posture due to the heterogeneity and randomness of
multiple key points of the body.
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Figure 1. An overview of the proposed method for abnormal fall behavior detection.
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Figure 2. Five-point inverted pendulum model. The left model indicates COCO model [2] that includes
18 key parts of orange color and the yellow dotted line for human skeleton and five-point inverted
pendulum model that includes five purple stars and the red real line for human skeleton. In the test,
different moving objects (or different persons) indicated by a five-point inverted pendulum model are
shown with different colors.

3.2. Spatio-Temporal Coupling Body Posture Evolution Based on an Inverted Pendulum Model

The human fall behavior is a dynamic process that changes from a finite steady state to an unstable
state. Through a large number of observations on the instability of the movement, the human fall
behavior has the following characteristics:

• The beginning of the fall behavior has fuzzy uncertainty: the human body may be unstable due to
external force interference, or may be out of equilibrium due to the body’s own reasons;

• The fall behavior has time-varying and continuity: after the fall behavior occurs, the human
body’s posture changes dynamically, and each part of the body continuously changes its position
according to its own degree of freedom;

• The posture of fall behavior is random, while the overall trend of the posture has a commonality:
the trend of fall motion is constantly close to the ground, and the center of gravity of the body
is reduced. However, due to the human stress reaction and the surrounding environment,
the behavioral posture is different in detail;

• The end of the fall behavior has static stability: the end of the fall behavior is often the human
body on the ground which can be regarded as static in a short time.

According to the characteristics of the above-mentioned fall behavior, the recognition of fall
behavior must not rely solely on the body contour at a certain moment. It is extremely necessary
to construct the evolution of human poses with coupling the information on time and spatial
dimension. Based on the proposed five-point inverted pendulum model, we present the following
steps for construction:

• Within each frame, we extract the morphological features of the human body’s PAFs, and establish
a transient human body description map according to the “five-point inverted pendulum” model;

• In two adjacent or equally spaced frames, we connect the same key points on the inverted
pendulum to form a motion vector capable of reflecting the displacement of the inverted
pendulum;

• In the continuous video frames of the specified duration, the human inverted pendulums on the
adjacent video frames are connected in pairs, and a motion vector set embodying the evolution
timing of the human body posture is constructed, that is, the temporal and spatial information is
coupled with the human body posture evolution map;
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• In the time-space information coupling human body posture evolution map, we solidify the
key point of each inverted pendulum B, and construct a standardized time-space information to
couple the human body posture evolution map.

In the standard evolution map obtained above, we naturally retain the spatial position information
of the key points of the human body motion at the complete time sequence, and make the motion
trajectory of the key points of the human body pose in the form of vectors, as shown in Figure 3.

Human Body Posture
Spatio-temporal Evolution Map The Standard Spatio-temporal Evolution Map

Fall BehaviorNormal Behavior

Figure 3. The standard spatio-temporal evolution map based on five-point inverted pendulum model.
The left shows spatio-temporal evolution map describes the human body motion at the complete
time sequence.

A standard evolution map based on the five-point inverted pendulum model is able to show a
series of positions for each individual key point. Particularly, we define the standard evolution map
using a directed graph.

Definition 1. A human body posture spatio-temporal evolution map is a directed graph on a series of body
skeletons with N key points (here, N is set to 5) in T frames featuring both inter-body and intra-frame
connections:

G = (V, E).

• V = {vt
i}—the node set including the all N key points of body skeletons in T continuous frames,

where i denotes the i-th key points having i ∈ {H, N, B, Kl , KR} and t denotes the t-th frame having
t ∈ {1, 2, . . . , T};

• E = {Es, E f }—the edge set including two subsets:

– Es denotes the connections between the key points in an individual body skeleton at one frame having
Es = {(v(·)i , v(·)j )}, where i and j are in {H, N, B, Kl , KR} and i 6= j;

– E f denotes the connections between the same key points in consecutive or equally spaced frames having
E f = {(vt

(·), vt+1
(·) )}, where t and t + 1 are two consecutive frames.

With the definition , all edges in E f represent the trajectory of one particular key point over time.
If there are multiple persons in the scene, we need to construct the spatio-temporal evolution maps of
human body using Gp = (V, E)p, where p ∈ {P1, P2, P3, . . .}.

4. Human Fall Detection Method Based on Motion Instability

Based on the five-point inverted pendulum model, the human body posture spatio-temporal
evolution map uses motion vector trajectory to couple the dynamic process of the spatial position
change of the human body’s PAFs in continuous time. The evolution map of abnormal falls and normal
walking is shown in Figure 3. From the figure, we can easily find that there is a significant difference
on the motion vector trajectory between abnormal fall and normal walking. Now, we need to analyze
the difference and extract robust features that can be used for quantitative analysis.
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4.1. Energy Analysis of Human Body Particle System Based on Moment of Inertia

In our proposed spatio-temporal evolution map of human body posture, in order to standardize,
the key point B of the five-point inverted pendulum model is solidified. The objective motivation
for fixing the key point B is that (1) The B on the hip part is less affected by human body rotation
on the z-axis, which is perpendicular to the image plane; (2) The impact of the human body’s height
difference can be reduced to some extent. In the real three-dimensional world, when the fall occurs,
the human body’s five-point inverted pendulum forwardly or backwardly swings about 90◦ with B as
the center. In the two-dimensional image, when the fall occurs, the five-point inverted pendulum of the
human body appears to rotate at the z-axis only. When walking, it does not have the characteristics of
rotational motion. Therefore, the fixed-axis rotational energy is introduced for quantification. The value
of rotational energy is higher, and the motion instability is stronger.

The moment of inertia I is a measure of the inertia of the fixed axis rotation of a rigid body, which
is defined as Equation (1):

I = ∑
EPi

Ii = ∑
EPi

mir2
i , (1)

where mi is the mass of point EPi, and ri is the distance from the point EPi to the rotation axis. Figure 4
gives a simple particle system composed of two particles of the end point EP1 and end point EP2.
To explain clearly, five-point inverted pendulum model with a different color shows the state of motion
at different moments. The yellow shows state of motion in the t-th frame and the blue shows state of
motion in the (t + 1)-th frame. The rotation energy Erot is given in Equation (2):

Erot =
1
2 ∑

EPi

Iiω
2
i , (2)

where ωi is the angular velocity of the point EPi. Assume that each end point is unit mass, where
mi = 1.
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Figure 4. A simple particle system composed of two particles of the end point EP1 and end point EP2.

Next, we adopt the rotation energy Erot as the feature to recognize the existence of fall behavior.
Positive samples are different directional falling events and negative samples include standing and
walking in public places. Each rotation energy Erot is extracted from these samples. In addition,
for the comprehensive study on the fall behavior in different directions posture, we arranged the
experimenters to fall in the eight directions at the same position in the No. 3 scene of Table 1.
The spatio-temporal evolution maps for falling and walking in the eight directions are shown in
Figure 5. From the maps, we can see that there are some significant differences between two behaviors.
The results using the rotational energy based on moment of inertia demonstrate the feasibility of
analyzing fully the motion instability.
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Figure 5. The standard spatio-temporal evolution maps for eight directional falling and walking
samples.

The pseudo code of the fall detection algorithm is generalized and shown in Algorithm 1.

Algorithm 1: Fall Detection Algorithm Using Rotation Eenergy Only.
Input: The continuous frames T in the video;
Output: The result of detection Dc: “Abnormal fall” or “Normal behavior”.
for i← 1 to #T do

Capture current frame Ti;
Extract the morphological features of the human body’s PAFs;
Separate the persons with their PAFs;
Build a five-point inverted pendulum model;
Construct the human body set P ;

end
for j← 1 to #P do

Establish a standard spatio-temporal evolution map GPj = (V, E)Pj for each person Pj;

Calculate EPj
rot for GPj using Equation (2);

end
Get a feature sequence ECODE with Erot;
Classify ECODE in Dc;
return Dc.
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Table 1. The illustration of our video dataset Postures of Fall (PoF)

No. Scenario Challenge Posture of Same Direction Size

1 light and shadow
√

20 M

2 light
√

10 M

3
occlusion

all directions
√

89.4 M

4 multiple persons
√

42.9 M

5 multiple persons
√

28 M

6 multiple persons − 17.6 M

7 multiple persons
√

28.9 M

8 crowded people − 86.2 M

9 crowded people
√

77.8 M

10 crowded people − 84.7 M

4.2. Generalized Force Analysis of Human Fall Based on Lagrangian Mechanics

The five-point inverted pendulum of the human body can be seen as a complex connecting
rod system. In order to study the human body fall process, we need to describe the posture and
motion state of the human body’s five-point inverted pendulum, which must analyze its dynamic
characteristics. A similar study is mainly embodied in the dynamics of robots [30,31,33]. The method is
to establish the dynamic model of the robot by applying the Lagrangian mechanical equation. The basis
of Lagrangian mechanics is the variational calculation of system energy from system variables and
time. As the complexity of the system increases, the Lagrangian mechanics of motion can become
relatively simple.

The human body fall based on the five-point inverted pendulum of the human body is mainly
based on the rotational motion in Lagrangian mechanics. The model is excavated to dynamic
characteristics of the body movement change and a two-connecting rod system is constructed, as shown
in Figure 6. The key point B of the system is taken as the origin of the system. The process in our
method is as follows:

• Select (H, N) and (N, B) to construct a two-connecting rod system;
• Select the coordinate system and the complete and independent generalized variable connecting

rods RD1 and RD2 ;
• Find the kinetic energy KRD1 and KRD2 , and potential energy PRD1 and PRD2 of each component

of the robot, and construct a Lagrangian function;
• Calculate the generalized force QRD1 and QRD2 on the corresponding connecting rods;
• Substitute the Lagrange equation to obtain the dynamic equation of the robot system.
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Figure 6. The two-connecting rod system based on five-point inverted pendulum mode. Here, C(·) is
the counter-acting force and G(·) is the gravity.

The dynamic equations are established in the two-connecting rod system. We denote that the
mass of connecting rod RD1 is mRD1 , and KRD1 represents the kinetic energy of the rod RD1. KRD1 can
be calculated using Equation (3):

KRD1 =
1
2

m1υ1
2. (3)

Here,
υ1

2 = ẋ2
1 + ẏ2

1. (4)

Consider {
x1 = − (d1 sin (θ1 + θ2) + d2 sin θ2)

y1 = − (d1 cos (θ1 + θ2) + d2 cos θ2)
(5)

we have: {
ẋ1 = −

(
d1 cos (θ1 + θ2)

(
θ̇1 + θ̇2

)
+ d2 cos θ2θ̇2

)
ẏ1 = d1 sin (θ1 + θ2)

(
θ̇1 + θ̇2

)
+ d2 sin θ2θ̇2

(6)

At the time, KRD1 can be calculated as follows:

KRD1 =
1
2

m1

[
d2

2θ̇2
2 + d2

1

(
θ̇2

1 + 2θ̇1θ̇2 + θ̇2
2

)
+ 2d1d2 cos θ1

(
θ̇1θ̇2 + θ̇2

2

)
]

(7)

We also denote PRD1 as representing the potential energy of the rod RD1. We then have:

PRD1 = m1g (y3 − y1)

= m1g (d2 cos θ2 + d1 cos (θ1 + θ2)) .
(8)

Similarly, the mass of connecting rod RD2 is mRD2 . KRD2 represents the kinetic energy of the rod
RD2, which is:

KRD2 =
1
2

m2υ2
2 =

1
2

m2d2
2θ̇2

2 (9)
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PRD2 represents the potential energy of the rod RD2, which is:

PRD2 = m2gh2 = m2gd2 cos θ2 (10)

Thus, we can obtain the total kinetic energy K of the system and the total potential energy P of
the system:

K = KRD1 +KRD2 (11)

P = PRD1 + PRD2 (12)

According to Lagrange’s Equations, the Lagrangian L is defined as:

L = K−P (13)

We then get the generalized force in the two-connecting rod joint space, QRD1 , and QRD1 using
Equations (14) and (15):

QRD1 =
d
dt

∂L
∂θ̇1
− ∂L

∂θ1

= m1d1 θ̈2
1

+
(

m1d2
1 + m1d1d2 cos θ1

)
θ̈2

+ m1d1d2 sin θ1 θ̇2
2 −m1gd2 sin (θ1 + θ2)

(14)

QRD2 =
d
dt

∂L
∂θ̇2
− ∂L

∂θ2

=
(

m1d2
1 + m1d1d2 cos θ1

)
θ̈1

+
[
(m1 + m2) d2

2 + m1d2
1 + 2m1d1d2 cos θ1

]
θ̈2

− 2m1d1d2 sin θ1 θ̇1 θ̇2 −m1d1d2 sin θθ̇2
1

− (m1 + m2) gd2 sin θ2 −m1gd1 sin (θ1 + θ2)

(15)

Thus, the generalized force Q can be derived using Equation (16):

Q = QRD1 +QRD2 (16)

In the light of the theory of motion stability, if the generalized force Q meets the condition of
Q = QRD1 +QRD2 → 0 or constant, the motion is balanced or in a stable state; otherwise, the motion
basically tends to instability. In the standard spatio-temporal evolution map, there are T five-point
inverted pendulum models in total. Their generalized forces Qt are analyzed sequentially; when the
instability is accumulated to the state that it cannot be adjusted dynamically, it will almost lead to the
fall behavior. This is the intrinsically dynamic principle of the fall behavior. Therefore, the pseudo
code of the fall detection algorithm is generalized and shown in Algorithm 2.
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Algorithm 2: Fall Detection Algorithm Using Generalized Force Only.
Input: The continuous frames T in the video;
Output: The result of detection Dc: “Abnormal fall” or “Normal behavior”.
for i← 1 to #T do

Capture current frame Ti;
Extract the morphological features of the human body’s PAFs;
Separate the persons with their PAFs;
Build a five-point inverted pendulum model;
Construct the human body set P ;

end
for j← 1 to #P do

Establish a standard spatio-temporal evolution map GPj = (V, E)Pj for each person Pj;

Calculate QPj for GPj using Equation (16);

end
Get a feature sequenceQCODE with Q;
Classify QCODE in Dc;
return Dc.

4.3. The Spatio-Temporal Motion Feature Tensor Construction and Classification

Combining the two types of characteristic indicators of the above analysis, including the rotational
energy and the combined motion force, the characteristic data of the “five-point inverted pendulum”
model in the spatio-temporal map are coded according to the time series and PAFs, and a feature tensor
is constructed using the time and space characteristic of the fall instability movement. The coding
method is described as follows:

• In the T frame of video images, a person’s standard spatio-temporal evolution map G = (V, E)
can construct a feature sequence. If there are multiple people in the scene, we need to build a
standard spatio-temporal evolution map by humans Gp = (V, E)p, where p ∈ {P1, P2, P3, . . .},
and repeat the same steps.

• We define three forms of new feature tensors, namely ECODE, QCODE and FCODE, where ECODE
consists only of rotational energy, QCODE consists only of generalized forces, and FCODE is rotated
energy and generalized forces are combined.

• In the T frame of images, we can calculate T results of Erot and arrange them in chronological
order to form a feature tensor. The feature tensor is set to ECODE.

• In the T frame of video images, we can calculate T results of Qt, which contain Qt
1 and Qt

2. We
also arrange them in chronological order to form a feature tensor. This feature tensor is denoted
as QCODE, which is 2× T in length.

• We concatenateQCODE and ECODE in order to construct a new feature tensor FCODE with a length of
(T− 1 + 2× T) = 3× T− 1 (In the experiment, the frame rate of the video is 25 fps, the sampling
frequency is 5 fps, and T is 6).

From this, we get the third algorithm for fall detection, whose pseudo code is shown in
Algorithm 3. An example of FCODE is shown in Table 2.

Table 2. The rule of human motion feature tensors

1 2 3 4 . . . 2× T − 1 2× T 2× T + 1 2× T + 2 . . . 3× T − 1

Qt
1 Qt

2 Qt+1
1 Qt+1

2 . . . QT
1 QT

2 E t,t+1
rot E t+1,t+2

rot . . . ET−1,T
rot
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Algorithm 3: Fall Detection Algorithm Using both Rotation Energy and Generalized Force.
Input: The continuous frames T in the video;
Output: The result of detection Dc: “Abnormal fall” or “Normal behavior”.
for i← 1 to #T do

Capture current frame Ti;
Extract the morphological features of the human body’s PAFs;
Separate the persons with their PAFs;
Build a five-point inverted pendulum model;
Construct the human body set P ;

end
for j← 1 to #P do

Establish a standard spatio-temporal evolution map GPj = (V, E)Pj for each person Pj;

Calculate EPj
rot for GPj using Equation (2);

Calculate QPj for GPj using Equation (16);

end
Get a feature sequence FCODE with Q and Erot;
Classify FCODE in Dc;
return Dc.

Based on the human skeleton results of deep learning architecture, further analysis, and research
on the extracted body posture, we obtain more fundamental dynamic motion characteristics of the
feature tensor. In the next step, we use a relatively simple but robust supervised learning method—the
logistic regression model to form a binary classifier to detect and identify the fall behavior caused the
human instability.

5. Experimental Evaluation

When detecting human abnormal behavior, “abnormalities” are often specified by the researchers
and occur in some particular scenarios. Therefore, the baseline data lack a systematic and
comprehensive test. In previous studies, such as a Hockey Fight in a stadium [34], Violence in
Subway (ViS) [35] on a subway platform, video clips from CAVIAR project [36] and FallVideo [17] in
indoor corridors and halls, the BEHAVE project’s dataset on outdoor roads (not crowded) [37], and
Violent Flows [38], these scenarios are different and focus on their specific problems.

Our experimental dataset called “Postures of Fall (PoF)” is different from existing fall datasets,
such as the University of Rzeszow fall detection dataset (URFD) and the fall detection dataset (FDD) [23]
and Multi-cam [19] in the indoor scenes. The comparison of these datasets and the proposed dataset
(PoF) is shown in Table 3. It is further highlighted that PoF serves the research of the the public scenes.
In this article, we mainly study human fall detection in different directions, especially for SD posture.
SD posture is the more challenging posture for the fall detection, as shown in sample images in Table 1
scenarios 1 and 2.

Table 3. The comparison of four datasets

Fall Dataset Scene Veiw Object Action Sensor Data

University of Rzeszow
Fall Detection (URFD) indoor (office) fall–two;

ADL–single
single person
(designated)

fall + activities of
daily living (ADL)

depth and RGB
cameras+ accelerator

PNG 16 format and
RGB images and

accelerometric data

fall Detection
Dataset (FDD)

indoor(office
\home\

coffee room)
single single person

(designated)
fall + activities of

daily living (ADL) RGB camera RGB images

Multi-cam
video dataset indoor (office) 8 cameras single person

(designated)
fall + confounding

events RGB camera RGB images

Postures of Fall
(PoF)

indoor (campus
corridor\subway
station);outdoor

(bus stops\streets)

single
single or

multi-person
(random)

fall + walking\
running\standing RGB camera RGB images
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There are 10 scenarios in PoF dataset of about 486 M that contain many real-world challenges
such as multiple people, occlusion, and contact. This dataset includes two parts: (1–4) lab-based and
(5–10) real-world tests, as shown in Table 1. According to the proposed algorithms, the important
precondition is establishing standard spatio-temporal evolution map: Gp = (V, E)p. In (1–4) lab-based
scenarios, it is easy to finish as shown in Figure 3 and Figure 5. However, in real-world video from the
video surveillance system, especially (8–10) scenarios, a standard spatio-temporal evolution map needs
a more reliable extraction model of a human skeleton to ensure key points as complete as possible.
The problem that key points are missing or a mistake is still inevitable. Considering the availability of
the algorithm, the supplementary mechanism is as below:

• Five-point inverted pendulum model which is missing more than three key points will be
considered invalid. The three key points need include head(H), neck (N), and buttocks (B).
They are the critical conditions where the proposed method works.

• In the standard spatio-temporal evolution map, if the invalid five-point inverted pendulum model
in T frames exists, the model of the former sample frame takes the place of the invalid one.

• In the multiple persons scenarios, there is the matching problem of a five-point inverted pendulum
model for each motion individual in the consecutive sample frame. For each individual, we may
have several candidates in the candidate region based on the effective motion distance. Inspired
by [2], we score each candidate model using the reciprocal sum of Euclidean distance computation
on the same type of key point, and the higher score is regarded to be stronger correlation between
two models.

The extraction results of standard spatio-temporal evolution map in real-world scenarios as
shown in Figure 7. In the processing, the problem of the missing or mistake key points still existed—for
example, the shoulder part is wrongly detected as the head. However, standard spatio-temporal
evolution maps showed in the right column are also very significant characteristic for the fall behavior.
The feature analytical method is proved to be fault-tolerant and robust, and fit for the detection
requirements of the real complex scenes.

The last step logistic regression classifier is used to identify abnormal fall behavior by the human
motion feature tensors. Firstly, for in order to verify the feasibility of algorithms, the 1–4 scenes
samples, 50% of them are used for training and the others used for testing. Then, we use ROC and
AUC to test and analyze the performances of three algorithm classifiers, as shown in Figure 8.

The main difference between the three algorithms is the component of the feature tensor. We use
the same dataset and logistic regression model parameters. The classifier performance indicators of the
three algorithms are shown in Table 4. From the graph in Figure 8, the Area Under Curve (AUC) and
Average Precision (AP) values of the third classifier are as high as about 99.4% and 96%, respectively,
which reflects the reasonableness of classifier in Receiver Operating Characteristic (ROC) curves and
the detection capability of fall behavior (positive samples) in P–R curves. Algorithm 1 (ALG1) and
Algorithm 2 (ALG2) can detect abnormal fall behavior to a certain extent because the characteristics
of rotational energy or generalized force can fully describe the human body posture and distinguish
between falling and walking, as shown in Figure 9. The processed feature data are represented by a
radar map in eight directional fall and walking samples. Compared with the first two algorithms of
ALG1 and ALG2, the results fully demonstrate that the two fusion feature tensors are more efficient
with Algorithm 3 (ALG3) with rotational energy Erot and generalized force Q.
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Figure 7. The extraction results of standard spatio-temporal evolution map in (5–10) scenarios. The left
are input images from each the scenario; the middle are spatio-temporal evolution maps which describe
the human body motion at the time sequence; the right are the standard spatio-temporal evolution
maps (if the rotational energy is less than the threshold value, the standard spatio-temporal evolution
map does not display for improving the efficiency of algorithms)
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Figure 9. The radar charts of the characteristics in eight directional falling and walking samples.

In addition, Radviz analyzed sample data for three feature tensors (radial coordinate visualization).
By mapping a multidimensional feature variable to a two-dimensional space by a nonlinear algorithm,
the characteristics of the data pattern can be more clearly presented. Then, we get the same conclusion,
that is, using the feature tensor FCODE is more reasonable and effective than using the feature tensors
Q and Erot alone, as shown in Figure 10. The feature tensor FCODE consists of 17 variables and contains
12 generalized force features and five rotation energy characteristics. It has good classification results
and also proves the rationality of the feature tensor coding rules.
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Table 4 shows that the recall values of the positive samples in the three algorithms are not very
satisfactory. This is because part of the algorithm is mainly based on kinetic energy, so there are some
limitations in detecting slow-down behavior. According to the experimental analysis, it is poor at
detecting abnormal fall samples in scenario 1, which has a negative impact on the performance of the
fall test and also confirms this problem.

Table 4. The evaluation of classifiers for algorithms.

Item Behavior Precision Recall F1-Score Accuracy Average Precision (AP)

ALG1
fall

normal
0.90
0.97

0.69
0.99

0.78
0.98 0.971 0.895

ALG2
fall

normal
1.00
0.98

0.85
1.00

0.92
0.99 0.958 0.954

ALG3
fall

normal
1.00
0.99

0.92
1.00

0.96
1.00 0.979 0.960

However, the outstanding advantage of the proposed algorithm, especially ALG3, is that
the robustness of the detection is better at the level of medium (normal) motion intensity even
under adverse conditions such as occlusion and contact. In addition, it appears to be able to
effectively recognize SD posture that cannot be distinguished from the conventional morphological
indicators due to being more confused with a walking posture. Next, in order to prove the
superiority of the algorithm, we test ALG3 using FallVideo [23]. The FallVideo data set is available at
http://foe.mmu.edu.my/digitalhome/FallVideo.zip. The results in Table 5 show that the proposed
ALG3 results are better than the traditional feature analysis methods.

Table 5. Comparison of our proposed algorithm with four fall detection approaches.

Algorithm Fall Detection Rate (%) False Alarm Rate (%)

Shape of the human [17] 90.50 6.70
Approximate ellipse [19] 85.70 20.10
Human Skeleton + ellipse [21] 90.90 6.25
Multivariate Exponentially Weighted Moving Average
(MEWMA) + Support Vector Machine (SVM) [23] 93.55 3.34

Our proposed ALG3 98.70 1.05

The final goal of this paper is to solve the detection of abnormal fall behavior in the public scenes,
and we add a large amount of data from the video surveillance system into the PoF to further verify
the performance of the algorithm. As shown in Table 1, No. 5–7 scenes are simple multi-person scenes,
No. 8 scene is occluded multi-person scenes, and No. 9–10 are extremely challenging crowded scenes.
The performance of fall detection is 95.1%, 88.7%, and 79.3%, respectively, by filtrating of invalid
objects and the supplementary mechanism of modeling. In addition, the algorithm can assure the
real-time ability in the sampling frequency 5 fps condition. It illustrates the value of the algorithm in
practical application and provides reference for the development of intelligence of anomaly detection
in outdoor public scenes.

6. Conclusions

Our focus is on detecting abnormal fall behavior caused by motion instability. The high robustness
of human bone detection based on deep learning is the premise and basis of this research. We designed
a simplified but very elaborate five-point inverted pendulum model for human body, and used
the human dynamics theory to analyze and construct the human body posture spatio-temporal
evolution map related to fall behavior. Through the spatio-temporal evolution map, we further analyze
and describe the basic characteristics of human fall behavior, including the rotational energy and
generalized force of motion, avoiding the difficulty of extracting the foreground or edge of motion



Sensors 2020, 20, 946 19 of 21

in the real scene in the traditional methods, which theoretically guarantees the robustness of the
algorithm. Our experiments not only use the mainstream video datasets but also provide a new
datasets of fall postures in different directions. The experimental results show excellent accuracy and
high robustness. It also proves that the proposed feature tensor can provide new research ideas and
attempts abnormal fall detection.
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