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Abstract: Person re-identification (re-ID) is among the essential components that play an integral
role in constituting an automated surveillance environment. Majorly, the problem is tackled using
data acquired from vision sensors using appearance-based features, which are strongly dependent
on visual cues such as color, texture, etc., consequently limiting the precise re-identification of
an individual. To overcome such strong dependence on visual features, many researchers have
tackled the re-identification problem using human gait, which is believed to be unique and
provide a distinctive biometric signature that is particularly suitable for re-ID in uncontrolled
environments. However, image-based gait analysis often fails to extract quality measurements
of an individual’s motion patterns owing to problems related to variations in viewpoint, illumination
(daylight), clothing, worn accessories, etc. To this end, in contrast to relying on image-based motion
measurement, this paper demonstrates the potential to re-identify an individual using inertial
measurements units (IMU) based on two common sensors, namely gyroscope and accelerometer.
The experiment was carried out over data acquired using smartphones and wearable IMUs from
a total of 86 randomly selected individuals including 49 males and 37 females between the ages of
17 and 72 years. The data signals were first segmented into single steps and strides, which were
separately fed to train a sequential deep recurrent neural network to capture implicit arbitrary
long-term temporal dependencies. The experimental setup was devised in a fashion to train the
network on all the subjects using data related to half of the step and stride sequences only while the
inference was performed on the remaining half for the purpose of re-identification. The obtained
experimental results demonstrate the potential to reliably and accurately re-identify an individual
based on one’s inertial sensor data.

Keywords: deep learning; human re-identification; human-gait analysis; inertial sensors;
inertial-based person re-identification; gait-based person re-ID

1. Introduction

Person re-identification (re-ID) is an important and active research area with potential applications
particularly in the field of automated surveillance/monitoring, robotics, human–computer interaction,
and digital forensics. The research aims to re-identify an individual by establishing correlation between
features of the same person captured at different positions and time instances [1]. This is done by
assigning a unique identification to individually detected persons the first time, followed by keeping
track of them if identified at another location at a different time. A vast majority of the literature has
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addressed the person re-ID problem using vision sensors [2–5]. This is evident by the growing number
of publications related to object re-ID appearing in top venues over recent years (see Figure 1).

Figure 1. Plot depicting the increasing trend of re-ID publications in top computer vision conferences
including CVPR, ICCV and ECCV.

Approaches making use of vision sensors primarily rely on appearance-based features
to re-identify the same person in a non-overlapping multi-camera network. A drawback of
appearance-based methods is that they make re-ID systems strongly dependent on visual cues such as
color, texture, etc., consequently limiting the potential to short-term re-ID only. Similarly, in the context
of practicality, these image- or features-based re-ID approaches are only suitable to work in controlled
scenarios where the change in appearance (e.g., actual change in clothing, etc.) have significant impact
and adversely affect their performance. Furthermore, the issues pertaining to image blurring, optical
motion, effects of gender, varying illumination, etc. pose additional challenges in extracting vital
features for distinctive representation resulting in the degraded re-ID accuracy.

To cope with problems presented by appearance-based solutions, several researchers have opted
to incorporate other distinguishing attributes for re-identification representation. Among them, one of
the most promising unique traits is the human gait. The gait of an individual is believed to be unique [6]
and provides a distinctive biometric signature that is suitable for re-ID, especially in an uncontrolled
environment and for smart surveillance. Research has shown the possibility of recognizing individuals
solely on gait analysis (provided that the measurements of the motion patterns are unambiguously
observed) [1]. However, in image-based gait analysis, it is often hard to extract quality measurements
of an individual’s motion patterns in unconstrained scenarios (such as person re-ID) mainly due to
problems related to scale, 3D to 2D projectile geometry, occlusions, etc. These issues are further
amplified when considering conventional image related problems, which include variations in
viewpoint, illumination (daylight), clothing, worn accessories, etc. These factors as a consequent
limit the accurate representation of the motion patterns and therefore lead to imprecise estimation of
the respective gait patterns.

With recent advancements in hardware, the use of wearable devices in estimating soft
biometrics (particularly gait for behavioral analysis) has been consistently growing. Gait analysis
by estimating motion patterns through wearable sensors has shown profound potential in various
applications such as age estimation [7,8], gender classification [9,10], person identification [11,12],
medical (diagnosis/rehabilitation) [13,14], sport activities [15], terrain classification [16], and many
others. The triaxial accelerometer provides the ability to efficiently capture human motion data
for gait analysis, albeit with slightly less accuracy when compared to modern motion capture
devices [17,18]. The reason for this stems from the fact that these devices have the ability to capture
and reconstruct human motion [19] in an inexpensive and convenient manner even with limited
inertial observations [20,21]. Motion capture using inertial MEMS sensors is prone to error due to the
inherent bias and the impact of external environmental noise. Despite this, an advantage of using
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triaxial accelerometer MEMS sensor is that it is now a standard integrated component in all modern
digital devices and has a credible accuracy. This being a low-cost solution also takes away the need
to mount an external sensor/device to capture motion related data. Use of inertial data obtained
using smartphones has shown reasonable estimate of person’s age [8], identity [22], gait [23,24],
step count [25], stride length [26], walk distance [27], etc.

This paper demonstrates the potential of re-identification of an individual by using inertial
measurements units (IMU) based on two common sensors, namely gyroscope and accelerometer.
Specifically, the six-axis (gyro + accelerometer) motion tracking device MPU-6500 embedded on a
smartphone and a wearable inertial sensor (APDM Opal IMU) were used to capture and record the
motion data of an individual. The inertial gait data, which were used in this study, were captured in
one of our previous studies [8] under three different experiment setups. In total, 86 randomly selected
individuals were engaged in the data acquisition process with 49 males and 37 females between the
ages 17 and 72 years. The sensors (smartphones and wearable IMUs) were tightly attached on the
chest of the participant with elastic belts to capture gait data. During the first step, the data signals
were segmented into single strides and steps, which were individually fed to a deep neural network
(DNN) architecture to learn features for re-identification. Since the data are temporally correlated,
the application of Gated Recurrent Unit (GRU) [28] was appropriate instead of the conventional feed
forward DNN. The GRU is a type of recurrent neural network, having two hidden layers using softmax
activation functions. This allows the capture of implicit arbitrary long-term dependencies in the single
stride input sequences. The experimental setup was devised in a fashion to train the network on all
the subjects using data related to half of the sequences only while the inference was performed on the
remaining half for the re-ID purpose. The obtained experimental results demonstrate the potential to
reliably and accurately re-identify an individual based on ones inertial sensor data.

2. Literature Review

Human re-identification methods can be grouped into two categories, i.e., visual
feature-based [2,3,29] and non-visual approaches [30,31]. Visual feature-based approaches rely on
learning of features related to appearance and texture. A query-adaptive system is developed to
know the importance of good and bad features for image search and person re-identification in [32].
Person Re-id is a special case of image searching where learning of similarity is done with different
types of distance functions including Mahalanobis distance, Manhattan distance, Euclidean distance,
etc. The Mahalanobis distance function has been used to solve the person variation problem by
imposing spatial constraints [33]. A Re-id network uses a video input, extracts frames from the input
video at different times and uses the extracted frames to perform Re-id. You et al. [34] extracted and
combined both spacetime- and appearance-based features for solving the video-based Re-id challenges
with reasonable accuracy. Ansar et al. [35] presented a two stream deep learning technique that fuses
temporal and spatial information for video person re-identification removing meaningless frames via
attentive pooling. The Re-id methods that are based on only appearance face the challenge of rapidly
changing appearance. The problem is further compounded due to the impact of camera calibration,
occlusion, illumination, deformation, and the impact of motion in scene capture.

In the context of non-visual-based approaches, the analysis of gait using inertial sensors is
employed. To achieve this, one or more inertial measurement units are worn/carried to record gait
patterns of the user. Accelerometers and gyroscopes play a good role in the development of motion
analysis field due to their wide availability in modern devices and low-powered electromechanical
sensors. They provide the potential for dynamic three-dimensional motion analysis without the
constraints of a vision-based optoelectronics system [36]. Different types of inertial sensors have
been experimented with in numerous studies but the reason for widespread use of accelerometer
and gyroscope for human motion analysis are their small size, portability, and suitability. Optical
motion capture systems for gait analysis perform well in indoor settings but fail to perform in outdoor
scenarios, as the systems are sensitive to varying lighting conditions commonly witnessed in the
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natural environment. A suitable solution is to use inertial sensors that are low cost and equally
applicable to outdoor activities as they also perform well in natural light [37].

Human identification and authentication using deep learning in an unconstrained environment
with inertial sensors was previously studied by Zou et al. [38]. They recognized human gait using
smartphones in an open environment. Besides this, human gait data through inertial sensors have
been used to solve different problems. For instance, Qiu et al. [39] differentiated between healthy and
unhealthy adults using gait data obtained through inertial sensors. An inertial motion capture system
is proposed in [40] that combines visual and inertial sensors to estimate human gait with low cost and
high accuracy. The proposed system solves the nonlinear optimization problem. Similarly, wearable
sensors have been employed for monitoring the pathological gait disorders and diagnosis of different
diseases [41]. Ahmed et al. [42] used gait samples to predict body mass index and age. A considerably
alarming value of the above physiological parameters can be used to provide suitable healthcare
recommendations. The increase in age variation leads to large estimation error in independent age
groups. A human age estimation technique that is dependent on age-group using support vector
machines and regression model was proposed by Li et al. [43] for improving the accuracy of the system.
In-depth analysis of previous research has shown that Re-id is an important area that has been well
explored, however, various challenges in the vision-based method limit the potential of the application.
This research addressed this problem through the usage of inertial sensors for analysis of human gait
and we propose human gait as a suitable candidate for person re-identification.

3. Methodology

This section describes the basic architecture of the proposed system for gait-based human
re-identification. This includes a brief description of the gait dataset, pre-processing of the data,
network architecture, and implementation details.

3.1. Description of the Gait Data

This research used the inertial gait datasets collected in one of our previous studies [8]. In total,
86 randomly selected subjects (Asians and Europeans) voluntarily participated in the data collection
sessions (age (years): 33.8 ± 14.8; height (cm): 172.1 ± 8.9; male:female ratio: 49:37). The participants
were instructed to walk back and forth twice in a straight line on a 10-m surface (40 m per trial).
The subjects kept their shoes on in all of the trials. Three different types of experimental setups were
used to capture data under varying conditions and hardware setup: Setup A (40 participants), Setup B
(20 participants), and Setup C (26 participants). The subjects walked on a concrete floor (indoor) in
Setups A and C, while, in Setup B, the subjects walked on six different indoor and outdoor surfaces
(carpet, grass, concrete floor, soil, laminate tiles, and asphalt). With a standard sampling rate of
75 Hz, Setups A and B used a smartphone’s on-board IMU (MPU-6500) for inertial gait data collection,
whereas, in Setup C, a wearable IMU (APDM Opal) was used. The sampling rate of 50–120 Hz has
been extensively used in similar applications to estimate human soft biometrics [8,9,44–46]. Moreover,
it is known that choosing a higher sampling rate increases the impact of noise and requires more
processing power, which is not suitable for battery-powered/resource-constrained devices as it will
result in considerably faster battery drain [47]. In the experiments, 6D accelerations and angular
velocities were captured for further analysis. In all experiments, the sensors were firmly worn on the
chest of with the help of a harness (Figure 2). The raw low-level 6D inertial signals recorded during a
gait trial are shown in Figure 3.

It is important to note that the gait data used in this study are heterogeneous in nature which,
provides several worthy benefits in human gait analysis. The subjects are demographically diverse,
thus ensuring distributive justice and equipoise. Subjects intentionally modified their gait patterns
(Setup A) to forge their gait; walked on a variety of surfaces, which differ in the coefficient of friction
(Setup B); and used different sensor modalities (smartphones vs. wearable). These heterogeneous
properties are key to correctly analyzing the correctness of the proposed person re-identification
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method under variations in gait for a single subject. The characteristics of the subjects who participated
in experiments are shown in Table 1.

Table 1. Characteristics of the population. The data were collected by Riaz et al. [8] under three
different setups: Setups A and B using smartphone’s on-board IMU (MPU-6500) and Setup C using the
APMD Opal IMU.

All Setups Setup A Setup B Setup C

Participants 86 40 20 26
Male:Female 49:37 26:14 11:9 12:14
Age (years, µ ± σ) 33.8 ± 14.8 25.2 ± 5.9 32.6 ± 13.7 48.1 ± 12.7
Height (cm, µ ± σ) 172.1 ± 8.9 171.6 ± 8.4 169.8 ± 7.9 174 ± 10.2

(a) Smartphone (MPU-6500) (b) APDM Opal IMU

Figure 2. The sensors were attached tightly on the chest of the subject using elastic bands:
(a) smartphone (MPU-6500) sensor; and (b) APDM Opal IMU.

(a) 3D accelerations (b) 3D angular velocities

Figure 3. Raw low-level 6D inertial signals captured during a gait trial: (a) 3D accelerations; and (b) 3D
angular velocities.

3.2. Signal Segmentation

Unlike many creatures in nature, human locomotion is characterized by repetitive bipedal
movements of the lower extremities which form gait cycles. A gait cycle predominantly consists of a
swing phase where the the foot is swung forward and a stance phase where the foot is in contact with
the ground [48]. A stride is characterized as consecutive heel strikes of the same foot (swing and stance),
whereas a step is described as the heel strike of one foot followed by that of the other foot (swing).
During normal human walk, the stepping frequency remains between 1 and 2 Hz [49]. Since the data
were recorded at a sampling rate of 75 Hz, a frequency of 100 Hz would match the normal stepping
frequency of a human walk (i.e., 1–2 Hz). Similarly, a frequency of 200 Hz will match the normal stride
frequency of a human walk (i.e., twice 1–2 Hz). Based on the aforementioned, the low-level inertial
gait signals recorded with triaxial accelerometer and triaxial gyroscope were segmented into 100 Hz
for step-based human re-identification and 200 Hz for stride-based human re-identification.
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3.3. Proposed Architecture

This section briefly describes the proposed architecture, which is composed of gated recurrent
units (GRUs)—a type of recurrent neural networks (RNNs)—to model long sequences of gait data
recorded from standard human locomotion activities.

3.3.1. Introduction to Gated Recurrent Unit

Sequential modeling using deep neural networks is mainly performed using RNNs.
The architecture of RNNs is similar to traditional multilayer perceptrons except that they include
feedback loops, which means that output of the network is fed back together with the input.
This directed cycle allows RNNs to exhibit temporal behavior, meaning that they contain a kind
of memory that takes into context the previous computations to determine the next ones. The RNN is
inherently deep (in time) and is usually trained through a variant of the standard backpropagation
algorithm, i.e., backpropagation through time [50]. However, similar to conventional deep neural
network architectures, they also suffer from the gradient vanishing problem [51], especially when the
input sequences are long. In such scenarios, the use of RNNs potentially poses such an issue where the
back propagated gradients, which are used to update the weights of the neural network, become too
small during the backpropagation process and consequently no longer contribute in learning.

To overcome the vanishing gradient problem, several sophisticated variants, e.g., the gaited
recurrent units (GRUs) and long short-term memory (LSTM), are proposed. In this work, we employed
GRUs to model inertial gait signals composed of essentially long 1D temporal sequences recorded
while locomotion. GRUs are similar to LSTMs but have fewer tensor operations and are internally
simple and a bit faster to train than LSTMs. Both LSTMs and GRUs have internal structures known as
gates that regulate the flow of information. The purpose of the gates is to retain important sequences
in the data while discarding others. LSTMs have three gates, namely the input, forget, and output
gates, whereas the GRUs have only reset and update gates (see Figure 4). The update gate of GRUs
works similarly to that of the forget gate of LSTM, where it updates the information based on its
appropriateness, while the reset gate is responsible for deciding how much past information should be
retained. Mathematically, these reset and update gates in GRUs can be expressed as follows [52]:

rt = sigm(Wxrxt + Whrht−1 + br) (1)

zt = sigm(Wxzxt + Whzht−1 + bz) (2)

h̃t = tanh(Wxhxt + Whh(rt � ht−1) + bh) (3)

ht = zt � ht−1 + (1 − zt)� h̃t (4)

Figure 4. GRU with update and reset gates; the update gate decides what information to keep and
what to throw away while the reset gate decides which information to keep.
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In the above equations, r represents the reset gate, z represents an updated gate, � shows
element-wise multiplication, h is used for current, and h is used for previous activation. The activation
ht of the GRU at time t is the linear interpolation between the previous activation ht−1 and the current
activation ht. The unit updates in activation or content is defined by the update gate zt. The sigm() is
an activation function known as sigmoid activation function, which is frequently used in GRUs to map
nonlinearity. Alternate forms of this function can be created by changing zt and rt.

3.3.2. Model Architecture and Implementation Details

Figure 5 illustrates the architecture details of the proposed network. The input of the model
consists of raw inertial data of the accelerometer and gyroscope sensors. The stream of data is first
divided into segments of 100 timesteps to extract individual steps and 200 timesteps to extract out
individual strides prior to feeding them separately into the network for re-identification. The recurrent
layers are bidirectional, i.e., if there are n number of neurons, then the output will be (n × 2). In our
model, we used 512 neurons per layer. Thus, the dimension of the output tensor of each recurrent
layer is (1024, 100) for steps and (1024, 200) for strides, which means there are 1024 features for
every timestep. Each recurrent layer is subsequently followed by an activation and a dropout layer.
We employed the most commonly used activation functions in hidden layers such as tanh and ReLU
(Rectified Linear Unit). Both activations provided similar results with tanh slightly outperforming
ReLU. The neural networks tend to overfit, thus an effective technique to reduce the problem of
overfitting is to use dropout. This simply drops a given percentage of values, so that, rather than
depending too much on specific values, the model learns the generic data pattern (i.e., does a more
generic prediction/inference). For the sake of data normalization, we used robust scaling instead of
normal scaling (normalization). Unlike normalization, which subtracts mean and standard deviation,
the robust scalar subtracts median and quartiles from the input data. The robust scalar is more robust to
outliers and in the proposed algorithm it increased the model’s accuracy. We used raw signals to train
the model as deep learning algorithms can extract features automatically from the input data (unlike
signal smoothing/segmentation, etc. as in the case of hand crafted features approach). We employed
different values for dropout and found 0.5 as the most optimal. Finally, the time distributed dense
layer is added to predict one out of 86 classes for each timestep. It is essentially a fully connected layer,
in which each input is connected to every neuron in the hidden layer. To take the probabilistic output,
softmax activation function is used at the end. Instead of just giving one output to the whole sample
with timesteps, we found that it is better to predict the output on each timestep. For this purpose,
we used the time distributed layer, which enables us to obtain label for each timestep.

To train the overall network architecture, we used bidirectional CuDNN GRU and tensorflow.
Categorical cross entropy loss function along with adam optimizer was used for training the network.
The learning rate was set to 0.001 and batch size was kept 32 and the network was trained for 30 epochs.
The value of dropout layer was set to 0.5, which was employed to prevent over-fitting. With the
aforementioned configurations, the overall training took approximately 1 h on a single Tesla K80 GPU
equipped desktop computer with the following details: Intel Xeon CPU model E5-2620 v4 @2.10 GHz
and 16 GB RAM.
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Figure 5. An overview of the proposed method. The gait pattern is captured using IMUs and raw
signals from 6D components are used to train deep learning model.

4. Results

In this section, the results of person re-identification computed with the step data and the
stride data is presented. Three datasets were created for evaluation purposes, namely hybrid gait
data (smartphone and wearable combined), smartphone gait data, and wearable IMU gait data.
Furthermore, the results were computed for different sensor modalities (smartphone vs. wearable IMU),
applying gender and age restrictions to evaluate the effect of gender and age on person re-identification.
For performance measures, the cumulative matching characteristics curve (CMC) and mean average
precision (mAP) were used. CMCs are useful to find the matching accuracy; for example, if the rank 10
accuracy of the proposed model is 90%, then it means that a match will occur somewhere in the top 10
with an accuracy of 90%. The effects of age and gender restrictions are described as classification rates
with the help of bar graphs.

4.1. Sensor Modalities

4.1.1. Hybrid Gait Data

The goal of evaluating results against hybrid gait data was to test the performance of the
presented approach against the data collected with two different sensor modalities, i.e., smartphones’
on-board IMUs and the wearable IMUs. As explained in Section 3.1, the database is composed of 86
subjects (Asian and European) with a female to male ratio of 37:49 and 252 min of gait data recorded.
This results in 1,134,000 frames, 19,614 steps, and 9807 strides of gait data. The ranking results along
with mean average precision computed with the step data and the stride data are shown in Table 2.
For both steps and strides, above 86% of the subjects were correctly re-identified in Rank-1, whereas
above 97.50% of the subjects were correctly re-identified in Rank-5. The mean average precision
remained above 90% in both cases. The comparison of the matching rate of steps and strides are
presented as CMCs in Figure 6 where only slight variations in the matching rate are observable. Figure 7
shows the confusion matrices computed from the hybrid data of steps using (Figure 7, left) train/test
split and (Figure 7, right) 10-fold cross validation. Similarly, Figure 8 shows the confusion matrices
computed from the hybrid data of strides using (Figure 8, left) train/test split and (Figure 8, right)
10-fold cross validation. In all of the cases, the classification accuracies remained above 85%. In sum,
the classification accuracies of the model trained with the stride data outperformed the model trained
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with step data in most cases. From the confusion matrices, it is observable that most of the misclassified
subjects are 23–28 years old. The confusions are also gender dependent in most cases, where the
male/female subjects are misclassified with other male/female subjects of similar ages.

Table 2. The ranking results along with mean average precision computed with the steps and the
strides hybrid data are shown. For both steps and strides, above 86% of the subjects were correctly
re-identified in Rank-1, whereas above 97.50% of the subjects were correctly re-identified in Rank-5.

Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-20 (%) mAP (%)

Step 86.23 98.36 99.6 99.91 90.33
Stride 87.15 97.89 99.16 99.70 91.77

Figure 6. The matching rate computed against step data and stride data are shown as CMCs. Only slight
variations in the matching rate are observable.

Figure 7. Confusion matrices computed from the steps using hybrid data: (left) train/test split;
and (right) 10-fold cross validation. The convention of notations used in the axes are (gender, age,
experimental setup), e.g., (F, 22, A) means that the subject is a female who is 22 years old and the data
were captured under experimental Setup A. The person re-identification accuracies remained higher
for most of the subjects.



Sensors 2020, 20, 949 10 of 23

Figure 8. Confusion matrices computed from the strides using hybrid data: (left) train/test split;
and (right) 10-fold cross validation. The convention of notations used in the axes are (gender, age,
experimental setup), e.g., (M, 27, A) means that the subject is a male who is 27 years old and the data
were captured under experimental Setup A. The person re-identification accuracies remained higher
for most of the subjects.

4.1.2. Smartphone Data

This section studies the performance of the proposed approach against the data recorded with
smartphone’s on-board IMUs. The database includes 60 Asian subjects (collected under Setups A and
B) with a female to male ratio of 23:37. The ranking results and mean average precision computed for
the step data and the stride data are shown in Table 3. For both steps and strides, above 86% of subjects
were correctly re-identified in Rank-1, whereas above 98% of subjects were correctly re-identified
in Rank-5. The mean average precision remained above 91% in both cases. The comparison of the
matching rate of steps and strides are presented as CMCs in Figure 9. The matching rate of steps
was slightly better than that of the stride. Figure 10 shows the confusion matrices computed from
the smartphone data of steps using (Figure 10, left) train/test split and (Figure 10, right) 10-fold
cross validation. Similarly, Figure 11 shows the confusion matrices computed from the smartphone
data of strides using (Figure 11, left) train/test split and (Figure 11, right) 10-fold cross validation.
The classification rates remained above 85% in all of the cases.

Table 3. The ranking results and mean average precision computed with the steps and the stride data
collected using the smartphone’s IMU are shown. For both steps and strides, above 86% of the subjects
were correctly re-identified in Rank-1, whereas above 98% of the subjects were correctly re-identified
in Rank-5.

Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-20 (%) mAP (%)

Step 86.18 98.13 99.05 99.93 91.36
Stride 86.95 98.09 99.02 99.07 91.09
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Figure 9. The graph shows that, for both steps and strides, above 86% of the subjects were correctly
re-identified in Rank-1, whereas above 98% of the subjects were correctly re-identified in Rank-5.

Figure 10. Confusion matrices computed from the steps using smartphone’s IMU data: (left) train/test
split; and (right) 10-fold cross validation. The convention of notations used in the axes are (gender, age,
experimental setup), e.g., (F, 22, A) means that the subject is a female who is 22 years old and the data
were captured under experimental Setup A. The person re-identification accuracies remained higher
for most of the subjects.
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Figure 11. Confusion matrices computed from the strides using smartphone’s IMU data:(left) train/test
split; and (right) 10-fold cross validation. The convention of notations used in the axes are (gender, age,
experimental setup), e.g., (F, 22, A) means that the subject is a female who is 22 years old and the data
were captured under experimental Setup A. The person re-identification accuracies remained higher
for most of the subjects.

As observed previously, the classification accuracies computed with the model trained on stride
data predicted better than the model trained on step data. In general, the stride-based method
performed better because a stride has more information (frames) than a step; however, in some rare,
cases a step-based method can perform better. From the confusion matrices, it is noticeable that most of
the misclassified subjects are 21–27 years old. The confusions are also gender dependent in most cases
where the male/female subjects are misclassified with other male/female subjects of similar ages.

4.1.3. Wearable IMU Data

In the case of the data collected with wearable IMU, the database consists of 26 subjects (European)
with a female to male ratio of 14:12. The ranking result along with mean average precision computed
with the step data and the stride data are shown in Table 4 and in the form of CMCs in Figure 12.
For both steps and strides, more than 98% subjects were correctly re-identified in Rank-1, whereas
more than 99% subjects were correctly re-identified in Rank-5. The mean average precision remained
above 99% in both cases. The comparison of matching rate of steps and strides are presented. Figure 13
shows the confusion matrices computed from the wearable data using steps (Figure 13, left) and strides
(Figure 13, right) by employing train/test split validation strategy. Similarly, Figure 14 shows the
confusion matrices computed from the wearable data using steps (Figure 14, left) and strides (Figure 14,
right) by employing 10-fold cross validation strategy. In all cases, the person re-identification accuracies
remained higher for most of the subjects.
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Table 4. The ranking results along with mean average precision computed from the steps and the
stride data collected using wearable IMU are shown here. For both steps and strides, above 98% of
the subjects were correctly re-identified in Rank-1, whereas above 99% of the subjects were correctly
re-identified in Rank-5.

Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-20 (%) mAP (%)

Step 98.06 99.96 99.99 100.00 99.26
Stride 98.73 99.98 100.00 100.00 99.34

Figure 12. The combined curves for steps and strides is shown for comparison using wearable data.

Figure 13. Confusion matrices computed from the wearable IMU data for: steps (left); and
strides (right). The dataset consists of 26 subjects and it was collected under Setup C. The person
re-identification accuracies remained higher for most of the subjects.
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Figure 14. Confusion matrices computed from the wearable IMU data with 10 fold cross validation for:
steps (left); and strides (right). The dataset consists of 26 subjects and it was collected under Setup C.
The person re-identification accuracies remained higher for most of the subjects.

4.2. Age Restrictions

4.2.1. Applying Age Restrictions to Hybrid Data

The ages of individuals who participated in the data collection sessions were placed into six age
groups: G1: 10–19 years; G2: 20–29 years; G3: 30–39 years; G4: 40–49 years; G5: 50–59 years; and G6:
60–79 years. The details of the number of subjects belonging to each group are shown in Table 5.
The results of person re-identification on hybrid data after applying age groups restrictions are shown
in Table 6 and Figure 15. For the steps, the classification accuracies remained within 83–90% for the age
groups 20–29, 30–39, and 40–49. For the remaining age groups, the classification accuracies remained
above 90%. In the case of strides, the classification accuracies remained at 85% and 90% for the age
groups 20–29 and 30–39, respectively. For the remaining age groups, the classification accuracies
remained above 90%.

Table 5. The subjects participated in the data collection sessions are placed in six age groups.
The number of subjects in each age group under different datasets, i.e., hybrid, smartphone,
and wearable IMU, are shown.

No. of Subjects

Age Groups (y) Hybrid Smartphone Wearable IMU

G1 10–19 3 3 0
G2 20–29 48 47 1
G3 30–39 9 1 8
G4 40–49 10 4 6
G5 50–59 9 4 5
G6 60–69 7 1 6
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Table 6. Results of test accuracies computed with the models trained on steps and strides hybrid data
when applying age restriction are shown here. The numbers in parentheses indicate the number of
subjects in the respective group.

Test Accuracies (%)

G1 (3) G2 (48) G3 (9) G4 (10) G5 (9) G6 (7)

Step 93.03 83.58 90.53 89.13 97.23 97.59
Stride 98.57 85.55 94.31 98.07 97.36 100.00

(a) Step

(b) Stride

Figure 15. Bar graph shows the effect of age-groups on: (a) step data; and (b) stride data. In general,
higher classification accuracies were achieved with the stride data.

4.2.2. Applying Age Restrictions on Smartphone Data

The ages of subjects who participated in the data collection sessions held under experimental
Setups A and B were placed into six age groups: G1: 10–19 years; G2: 20–29 years; G3: 30–39 years;
G4: 40–49 years; G5: 50–59 years; and G6: 60–79 years. The details of the number of subjects belonging
to each group are shown in Table 5. The results of person re-identification on smartphone data after
applying age groups restrictions are shown in Table 7 and Figure 15. For the steps, the classification
accuracies remained at 84% and 89% for the age groups 20–29 and 30–39, respectively. For the
remaining age groups, the classification accuracies remained above 90%. In the case of stride data,
the classification accuracy of 86% was achieved against age group 20–29. The classification accuracies
for all of the remaining groups remained above 90%.

Table 7. Results of test accuracies computed with the models trained on steps and strides smartphone’s
IMU data when applying age restriction are shown here. The numbers in parentheses indicate the
number of subjects in the respective group.

Test Accuracies (%)

G1 (3) G2 (47) G3 (1) G4 (4) G5 (4) G6 (1)

Step 90.74 84.17 98.55 93.53 94.82 96.43
Stride 98.59 85.86 96.43 95.83 100.00 100.00

4.2.3. Applying Age Restrictions on Wearable Data

The ages of subjects participated in the data collection sessions held under experimental Setup C
were grouped into five age groups: G1: 20–29 years; G2: 30–39 years; G3: 40–49 years; G4: 50–59 years;
and G5: 60–79 years. The details of the number of subjects belonging to each group are shown in
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Table 5. The results of person re-identification on wearable data after applying age groups restrictions
are shown in Table 8 and Figure 15. The classification accuracies remained above 90% for both models
trained with the step data and the stride data. In general, the model trained with the stride data
produced better predictions.

Table 8. Results of test accuracies computed with the models trained on step and stride wearable IMU
data when applying age restriction are shown here. The numbers in parentheses indicate the number
of subjects in the respective group.

Test Accuracies (%)

G1 (1) G2 (8) G3 (6) G4 (5) G5 (6)

Step 98.97 100.00 93.53 98.55 100.00
Stride 100.00 100.00 95.83 100.00 100.00

4.3. Gender Restrictions

4.3.1. Applying Gender Restrictions on Hybrid Data

The results ertr evaluated to analyze the effect of gender on person re-identification. The hybrid
data include a male to female ratio of 48:38. To analyze the effect of gender, the models were trained
and tested for each gender separately. On the step data, the classification accuracies of female and male
subjects remained at 86.50% and 85.67%, respectively. On the stride data, the classification accuracies
were slightly better than those of the step data. Classification accuracies of 89.12% for female group
and 88.34% for male group were observed, as shown in Table 9 and Figure 16.

Table 9. This table shows that, using step and stride data, the accuracy of female subjects was about 1%
greater than male subjects.

Test Accuracies (%)

Male (49) Female (37)

Step 85.67 86.50
Stride 88.34 89.12

(a) Step

(b) Stride

Figure 16. This bar graph shows the effect of gender on steps and strides for hybrid data.
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4.3.2. Applying Gender Restrictions on Smartphone Data

The results of gender restrictions on hybrid data were evaluated to analyze the effect of
gender on person re-identification. The smartphone data include a male to female ratio of 37:23.
To analyze the effect of gender, the models were trained and tested for each gender separately.
For the step data, the classification accuracies of female and male subjects were 86.75% and 85.71%,
respectively. The classification accuracies for stride data were slightly better than those of the step data.
The classification accuracies were 87.25% for male group and 90.12% for female group. The results are
shown in Table 10 and Figure 16.

Table 10. This table shows the accuracies of 37 male and 23 female subjects.

Test Accuracies (%)

Male (37) Female (23)

Step 85.71 86.75
Stride 87.25 90.12

4.3.3. Applying Gender Restrictions on Wearable Data

The female to male ratio in wearable data is 14:12. Table 11 shows the classification accuracies of
male and female with reference to step and stride data. The observed accuracies remained above 99%
on step data while 100% on stride data. For visual difference in age-groups, the bar graphs are shown
in Figure 16.

Table 11. This table shows the re-identification accuracies of 12 male and 14 female subjects.
The accuracy was above 99% on step data while 100% on stride data.

Test Accuracies (%)

Male (12) Female (14)

Step 99.32 99.36
Stride 100.00 100.00

5. Discussion

The objective of the work was to recognize and identify a person using the inertial gait data
of normal human walk collected by means of body mounted sensors. For this purpose, the inertial
gait data collected in one of our previous work [8] were used.The data were obtained using 6D
accelerometer and gyroscope embedded on a smartphone and wearable device at a sampling rate
of 75 Hz. The sensors were mounted on the body of the subjects at chest position. The dataset is
composed of data from 86 individuals and the data were recorded under varying conditions such as
varying surface types and their frictions, subjects trying to fake their gait, etc. By exploiting the fact
that the stepping frequency of normal human walk remains within 1–2 Hz, we segmented the low-level
input signals into 100 Hz to extract steps and into 200 Hz to extract strides. A stride is characterized
as consecutive heel strikes of the same foot, whereas a step is described as the heel strike of one foot
followed by that of the other foot (alternation of heel strikes). Both datasets, i.e., step data and stride
data, were used to train four deep learning models: GRU, CuDNNGRU, LSTM, and CuDNNLSTM.
In general, CudNNGRU outperformed the rest of the deep learning models by re-identifying persons
with higher accuracies, as shown in Figure 17. The precision–recall graphs computed from the different
deep learning models using step and stride data are shown in Figure 18, where it is observable that
CuDNNGRU outperformed the rest of the models. The results were computed on hybrid data (where
data collected with wearable’s IMU and smartphone’s IMU were mixed), smartphone’s IMU data,
and wearable’s IMU data. The results show that above 86% of the subjects were accurately re-identified
in Rank-1 and above 95% subjects were accurately re-identified in Rank-5 for all three datasets and for
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both models trained with the step data or the stride data, respectively. The trend remained the same
when age and gender restrictions were applied to the aforementioned datasets. In terms of comparison
of the classification accuracies achieved with the model trained over the step data and the model
trained over the stride data, the latter model outperformed the former in most cases.

To optimize the model performance, we tuned and tested the network under different
hyperparameter settings. In particular, we varied four basic hyperparameters: the size of the network
(specified by the number of neurons), the drop-out rate, the learning rate, and the number of epochs.
The results of this ablation study are shown in Figure 19. Here, we see that the model’s performance
increased (i.e, testing accuracy improved) by increasing the size of the network and the number of
training epochs. By further increasing the number of neurons and additional layers, we observed a
relative dip in model accuracy. Such a degraded performance was probably due to the well-known
vanishing gradient problem. In addition, by increasing the size of the network, the model started
to overfit to the training data owing to the growth in network parameters. The optimal network
parameters obtained after number of trials are 512 number of neurons trained for 30 epochs with a
learning rate of 0.001 and a dropout value of 0.5. The relationship between the network recognition
effect and its training times is shown in Figure 20. The model was trained for 100 epochs.

(a) Scatter plot (b) Radar graph

Figure 17. (a) Scatter plot; and (b) radar graph show the performance of models trained and tested on
our gait data. The results show higher accuracies for the stride dataset (200 timesteps) than the step
dataset (100 timesteps).

(a) Step dataset (b) Stride dataset

Figure 18. Precision–recall graphs computed by four different deep models (CuDNNGRU, GRU,
CuDNNLSTM, and LSTM) from: (a) step data; and (b) stride data. CuDNNGRU outperformed the rest
of the models in all cases.
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Figure 19. The effect of different hyperparameters including size of the network (specified by the
number of neurons), drop-out rate, learning rate, and number of epochs are shown here. The optimal
network parameters were 512 neurons trained for 30 epochs with a learning rate of 0.001 and a dropout
value of 0.5.
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(a) Step dataset (b) Stride dataset

Figure 20. The relationship between the network recognition effect and its training times from: (a) step
data; and (b) stride data. The model was trained for 100 epochs.

Moreover, we also compared the results with other deep neural network architectures such
as convolutional neural network (CNN). We used the same parameters settings but the obtained
testing accuracy was found to be lower as compared to the sequential CuDNNGRU architecture.
These comparison accuracies of both step and stride using hybrid data are reported in Table 12.
Furthermore, one could also train conventional machine learning classifiers such as support vector
machines instead of deep neural network architectures but that requires the tedious and challenging
task of feature engineering, which often lacks the generalization capabilities. Owing to these
well-known drawbacks, we opted to bypass such hand-crafted feature extraction with the automatic
feature learning (i.e., representational learning) ability of deep recurrent neural network-based
architectures and therefore selected them for training/learning in this work.

Table 12. Results comparison of CuDNNGRU with Convolutional Neural Network (CNN) using
same parameters.

Accuracy CuDNNGRU CNN

Step 87.15% 69.05%
Stride 86.23% 76.04%

The proposed system gives us several interesting insights. It has the potential to physically
track subjects, i.e., if the system has already seen the gait patterns of a particular subject, then it can
easily re-identify the subject based on the learned gait signatures. Furthermore, the results on sensor
modalities show that, once the gait signatures of a subject are exposed and learned by the system,
the system can reliably track the subject despite a change in the body mounted sensor, e.g., replacing a
wearable IMU with a smartphone. Re-identification and tracking of a subject by the proposed system
also raises serious privacy concerns as the system has the ability to track subjects solely based on the
inertial signatures of their gait.

6. Conclusions and Future Work

The proposed work is independent of the challenges that occur in vision-based techniques,
i.e., occlusion, illumination, view point variation, camera calibration, etc. Human gait is believed to be
unique [6,53], therefore the walking signatures of human gait can be used for human identification.
The proposed approach learns and exploits this uniqueness in human gait signatures, which
works regardless of the device a subject is carrying provided that it has on-board inertial sensors.
We extensively tested the uniqueness in human gait signatures under different experimental setups
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using the data collected with smartphones and wearables (see Section 4.1). The results show that
persons can be re-identified with high accuracy and confidence based on the analysis of their gait.
In addition to that, the higher classification accuracies of the proposed architecture shows that
human gait is a suitable candidate for identification. In the future, the model can be extended
for solving open-world re-identification in real time, where the system will identity the already existing
subjects as well as new subjects, who are new in the open loop. Person identification, tracking,
and surveillance at public places by utilizing inertial sensors of smartphones and wearables are the
possible future application areas. We can also build a multi-modality system by fusing inertial sensors
with vision sensor.

The results obtained with the current experimental set up are only for the sake of proof of concept.
There exist several challenging open areas which need to be addressed to develop an adoptable
solution. A key limitation of the proposed work is statistically unbalanced population where there
are variations in male to female ratio, age groups, ground surfaces, etc. In the future, we will extend
the datasets to minimize the aforementioned variations in the population and will test the proposed
approach with a larger database. Another important limitation of the work is unbalanced data as only
approximately 33% of the data were collected with the wearable sensor. Collection of more data with
the wearable sensors is another direction of the future work. The sensor placement, which was firmly
fixed on the chest of the subjects, is another notable restriction in the proposed work. A practical
direction, which is still an open challenge, would be collecting data with a wearable sensor regardless
of its orientation and its use for person re-identification.
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