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Abstract: The electrocardiogram (ECG) is a non-invasive, inexpensive, and effective tool for
myocardial infarction (MI) diagnosis. Conventional detection algorithms require solid domain
expertise and rely heavily on handcrafted features. Although previous works have studied
deep learning methods for extracting features, these methods still neglect the relationships
between different leads and the temporal characteristics of ECG signals. To handle the issues,
a novel multi-lead attention (MLA) mechanism integrated with convolutional neural network
(CNN) and bidirectional gated recurrent unit (BiGRU) framework (MLA-CNN-BiGRU) is therefore
proposed to detect and locate MI via 12-lead ECG records. Specifically, the MLA mechanism
automatically measures and assigns the weights to different leads according to their contribution.
The two-dimensional CNN module exploits the interrelated characteristics between leads and extracts
discriminative spatial features. Moreover, the BiGRU module extracts essential temporal features
inside each lead. The spatial and temporal features from these two modules are fused together as
global features for classification. In experiments, MI location and detection were performed under
both intra-patient scheme and inter-patient scheme to test the robustness of the proposed framework.
Experimental results indicate that our intelligent framework achieved satisfactory performance and
demonstrated vital clinical significance.

Keywords: myocardial infarction; electrocardiogram; attention mechanism; convolutional neural
network; bidirectional gated recurrent unit

1. Introduction

Myocardial infarction (MI), as one of the most prevalent cardiovascular diseases worldwide,
commonly emerges when the coronary artery is occluded by thrombus. It is estimated that the annual
incidence of MI is 605,000 new attacks and 200,000 recurrent attacks in the United States [1]. In fact,
MI is also described as silent heart attack and most patients suffer from MI without awareness. Even
worse, acute MI occurs rapidly and unexpectedly with a high mortality rate. Therefore, early diagnosis
and timely treatment are of utmost significance to guarantee the life safety of MI patients.

Electrocardiographic (ECG) can be employed to recognize MI [2], which serves as the most
popular diagnostic tool for its convenience, non-invasiveness and low cost. ECG records the electrical
signals generated by the heart muscle fibers during the alternate contraction and relaxation of the heart
chambers [3]. A normal ECG is characterized by the cardiac cycle sequence, and each cycle mainly
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contains P, QRS, and T waves. In general, ECG consists of 12 leads (I, II, III, aVR, aVL, aVF, and V1–V6)
that reflect the heart in various regions and perspectives. The location of MI can be detected by the
alterations among different leads [2]; therefore, it is essential to take more leads into account in the
diagnosis of MI. However, it is strenuous and time-consuming for the trained physicians to evaluate
every lead precisely. Moreover, because of ECG individualized polymorphism, the diagnostic criteria
are perplexing and complicated to follow [4]. The ST-segmental elevation is one of the diagnostic
indicators of MI [2], but even experienced cardiologists may only identify 82% of this indicator among
MI subjects [5]. A computer-aided diagnosis (CAD) system can exceed the limitations of manual
inspection of ECG signals by its rapid, objective, and reliable analysis [6]. Hence, effective diagnosis of
MI with 12-lead ECG signals analyzed by CAD system is advantageous and preferable.

Various frameworks have been proposed and developed in the CAD system for MI detection
and location. Most of the studies follow the procedure of feature extraction, feature selection, and
classification. Conventionally, the process of feature extraction is manual operation and requires
solid domain expertise. Several characteristic values can be extracted from ECG morphology
as relevant features of MI, such as ST deviation and T wave amplitude [7]. However, most of
morphological features are heavily dependent on the accuracy of ECG wave delineation. To mine
additional information, wavelet transform, principal component analysis (PCA), empirical mode
decomposition, random projections, hidden Markov model, and reproducing kernel Hilbert space
are employed to extract the representative features [8,9]. After feature extraction or selection, diverse
classifiers are developed to discriminate between MI and healthy controls (HCs) through the obtained
features. Additionally, multi-classification classifiers are applied to localize different types of MI.
The classifiers can be typically categorized into traditional thresholding methods [10] and machine
learning algorithms. Conventional machine learning classifiers include K-nearest neighbor [11],
random forest [12], and support vector machine [13]. Although the above off-the-shelf methods
work well, they still have obvious defects and limitations. In essence, the feature extraction and
classification are two separate modules with substantially different parameters and complexity. It is
hard to determine whether the information is fully excavated or redundantly used, which exerts
adverse impact on the subsequent classification. Furthermore, specific feature extraction algorithms
have unconvinced robustness under different influence factors, such as age, gender, and acquisition
equipment. Therefore, an automatic and end-to-end framework that integrates effective feature
extraction and classification processes is required to improve the effectiveness of MI diagnosis.

In recent decades, deep learning methods, including convolutional neural network (CNN), gated
recurrent unit (GRU), attention mechanism, and autoencoder, have been widely and superbly applied
to analyze biomedical signals [14–16]. Instead of separate feature extraction and classification processes,
deep learning architectures automatically extract critical features required for classification from vast
samples [17]. Furthermore, CNN and GRU are two typical end-to-end learning paradigms with
multiple levels of representation and especially suitable for discovering the spatial and temporal
characteristics in high-dimensional data [18]. To alleviate the disadvantages of conventional
frameworks, deep learning methods are exploited in MI diagnosis continuously and rapidly[19–24].
To a large extent, new research lays the foundations for the development of deep learning frameworks
that make full use of 12-lead ECG signals.

Although there exists plenty of research on MI diagnosis, several detailed issues are still without
due consideration. Basically, most studies only utilized the single lead of ECG, but the rest should also
be taken into account. It is more in conformity with the authentic rules of MI diagnosis to consider
12-lead ECG records [24]. Secondly, thus far, importance evaluation and weighted combination of each
lead in MI diagnosis have been sparsely investigated. Even though the authors of [22–25] considered
12 leads simultaneously, each lead contained distinctive and complementary information that deserved
different and separate processing rather than identical treatment. Thirdly, only a few researchers
considered the inter-patient scheme on the Physikalisch-Technische Bundesanstalt (PTB) dataset. Since
the individual variation exists in different patients, inter-patient scheme is closely relevant to clinical
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practice and applications. On the contrary, intra-patient scheme cannot substantiate the feasibility and
adaptability of the model and may even bring about overly sanguine diagnosis.

To address the aforementioned limitations, a novel, practical, and medical-grade framework is
proposed for the detection and location of MI. More precisely, the main contributions of this study are
listed as follows.

1. A novel multi-lead attention (MLA) mechanism integrated with CNN and bidirectional gated
recurrent unit (BiGRU) framework (MLA-CNN-BiGRU) is proposed. The parallel deployed CNN
and BiGRU modules are innovatively utilized to extract features to detect and locate MI via
12-lead heartbeat signals. As far as we know, this fills the gap of applying deep learning methods
to automatically extract spatial and temporal features from 12-lead ECG signals in MI diagnosis.
The proposed feature extraction method paves a new way for feature engineering.

2. The MLA is developed by the designed activation function. The proposed attention mechanism
measures and exploits the contribution of each lead to boost the diagnostic performance. Existing
studies mainly focus on manual selection of leads or treat all the leads equally with repeated
and redundant information. With the proposed model-based approach, this study serves as
a preliminary exploration on the importance evaluation of each lead for MI detection and location.

3. Different leads are interrelated and correlated. It is essential to fully exploit available features
to enhance the performance. To our knowledge, it is the first time to adopt 2D-CNN to extract
spatial features based on multi-lead fusion in MI diagnosis. Three different convolutional kernels
are innovatively applied to extract correlation and regional features among different leads.

4. MI detection and location under intra-patient and inter-patient schemes are all performed to test
the robustness of MLA-CNN-BiGRU. In addition, elaborate and exhaustive ablation experiments
are carried out to verify the effectiveness of the framework. Experimental results indicate that
the proposed intelligent framework achieves satisfactory performance and demonstrates vital
clinical significance.

2. Related Work

Before introducing the proposed hybrid deep learning framework, background information of
attention mechanism, CNN, and GRU is illustrated as guidance.

2.1. Attention Mechanism

Inspired by the efficient allocation of limited resources by the human brain, attention mechanism
is widely applied to emphasize the most valuable information in visual image recognition [26] and
natural language processing [27]. Since redundant information is time- and resource-consuming in
the data processing, self-attention mechanism [28] is proposed for sequential models to calculate
the weights for different features. Generally, self-attention is deployed on the outputs of GRU- or
CNN-based sequential models [29].

Recently, attention mechanism has been popular in clinical diagnosis. Deep fusional attention
network was adopted to extract elaborate features from biological signals in seizure detection and
sleep stage classification [16]. In MI diagnosis, the heartbeat-attention mechanism was introduced to
automatically weight the difference between unlabeled heartbeats [22]. Furthermore, the attention
mechanism has strong interpretability. Its ability to evaluate importance and contribution can be
implemented not only for feature extraction, but also for multi-channel screening.

2.2. Convolutional Neural Network

CNN is the most established architecture in image recognition field, which is enlightened by
the natural visual perception mechanism of creatures [30,31]. Typically, CNN consists of three
types of stacked layers combined with a series of manipulations. Convolutional layers apply
convolutional kernels to learn different spatial feature maps of the input data. Pooling layers reduce
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the dimensionality of the feature maps from convolutional layers with shift-invariance [32]. Fully
connected layers perform the final classification or prediction. Batch normalization manipulation can
improve the training rates by preventing the phenomenon of internal covariate shifting [33]. Dropout
manipulation can reduce overfitting by avoiding complex co-adaptations on the training data [34].
Activation functions introduce nonlinearities to neural networks. Typical activation functions are
sigmoid, tanh, and rectified linear unit (ReLU) [32]. The loss function defines the difference between
the real value and the predicted value. During the training process, the optimizer minimizes the loss
function, and the best fitting parameters can be obtained.

In the medical field, there has been a rapid surge of applications of CNN among radiology [31]
and physiological signals [14]. Researchers have applied CNN by treating ECG signals as the 1D image
in the diagnosis of MI [19,35–37]. Deep CNN was applied to automatically diagnose MI through one
single lead and attained good performance [19,35]. Baloglu et al. [36] achieved impressive results
based on CNN model with all the 12 leads. Multiple-feature-branch 1D CNN was created to take
full advantage of 12 leads [37]. Multi-lead residual neural network was proposed, and three residual
blocks were designed to capture remarkable features by convolutional layer through 1D convolutional
kernel [24]. Additionally, sub 2D CNN structure extracted different feature representation with shared
1D convolutional kernels among four leads during MI detection [20]. In essence, 1D CNN only focuses
on the features within the single lead. Although the sub 2D CNN was applied, the feature map
was still generated based on the shared 1D convolutional kernel inside the same lead. Therefore,
the powerful feature extraction ability of 2D CNN through multi-lead convolutional kernels remains
further development in the diagnosis of MI.

2.3. Gated Recurrent Unit

Recurrent Neural Network (RNN) is widely used in the processing of time series data due to its
ability to memorize sequential information. RNN implements a recursive task with the output being
dependent on all the historical information [17]. However, the total memory capacity is restricted in
standard RNNs. Long Short-Term Memory (LSTM) [38] is designed to avoid sacrificing too much
information in learning long-term dependencies by addressing the vanishing gradient problem. In
LSTM, a memory block continuously transmits and renews memory by three gates: the input, output,
and forget gates. The input gate identifies what new information is important and needs to be reserved
in the previous state. The output gate determines what information is conveyed to the next state.
The forget gate identifies what relevant information needs to be retained in the previous state. GRU [39]
is created as an enhanced variant of LSTM that can extract features selectively through a reset gate
and an update gate. Compared with LSTM, GRU has no cell state and straightforwardly uses hidden
state for the transmission of information. The reset gate of GRU is utilized to determine how much
previous information requires to be forgotten. The update gate determines what previous information
to keep and what new information to merge. Apart from optimizing the internal structure, GRU can
be further improved by taking all the previous and subsequent context information into consideration.
Therefore, bidirectional GRU that is integrated by two GRU layers [40] is proposed. BiGRU processes
information in backward and forward directions and is therefore able to exploit both the past and the
future information.

In processing biomedical signals, BiGRU has been successfully applied for human emotion
classification through continuous electroencephalogram signals [41], and human identification through
ECG based biometrics [42]. ECG signal is a typical kind of time series data, and LSTM has been
effectively applied in MI diagnosis [21–23]. GRU architecture can achieve performance comparable to
or even superior than LSTM [42], but its potential has been rarely investigated in MI diagnosis thus far.

3. Dataset and Pre-Processing

The ECG data utilized in this study were from PTB dataset provided by the German National
Metrology Institute [43]. The PTB dataset contained 549 records from 290 subjects. Each record was
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obtained by synchronous acquisition of 15 leads, including conventional 12 leads ECG and the 3 Frank
signals. The sampling frequency of electrical signals in PTB dataset was 1000 Hz. In the dataset,
148 MI patients (368 records) and 52 healthy volunteers (80 records) were collected. The ECG signals
of 148 MI patients were identified as ten different types of MI, but only five categories were selected in
MI location. Specifically, 314 records were used for MI location, including 47 records of anterior MI
(AMI), 43 records of antero-lateral MI (ALMI), 79 records of antero-septal MI (ASMI), 89 records of
inferior MI (IMI), and 56 records of inferolateral MI (ILMI).

The pre-processing of ECG signals included denoising, removing baseline drift and data
segmentation. To eliminate the magnitude difference between different records, data standardization
transformed all input data into values within [−1,1]. Daubechies 6 (DB6) wavelet basis function [44]
was applied to eliminate noise and remove baseline drift. Additionally, Pan–Tompkin algorithm [45]
was employed to segment or select the pre-processed ECG signals by QRS-wave detection. In detail,
250 sample points were selected before the QRS-peak point and 400 sample points were chosen after the
QRS-peak point, which formed a heartbeat segment composed of 651 points. Moreover, the first and
last heartbeats were removed from each ECG signal record. Table 1 demonstrates the data distribution
of 12-lead heart beats in this study.

Table 1. Summary of Physikalisch-Technische Bundesanstalt (PTB) dataset in this study.

Class No. of Records No. of 12-Lead Beats

AMI 47 81,168
ALMI 43 80,988
ASMI 79 140,256
IMI 89 151,716

ILMI 56 97,296
Other MIs 54 81,516

HCs 80 127,188
Total 448 760,128

Anterior myocardial infarction (AMI); Antero-lateral myocardial infarction (ALMI); Antero-septal myocardial
infarction (ASMI); Inferior myocardial infarction (IMI); Inferolateral myocardial infarction (ILMI); Myocardial
infarction (MI); Healthy control (HC).

4. Methodology

The framework of hybrid neural network is comprised of three sub-modules, as shown in Figure 1.
Firstly, pre-processed data are inputted into the MLA-CNN-BiGRU framework. An attention layer
is trained to determine the importance of each lead. After adaptive selection, CNN is applied to
extract spatial features. Thereinto, features are weighted and integrated via attention mechanism.
Simultaneously, BiGRU with feature integration attention mechanism mines optimal features in the
temporal dimension. Ultimately, the spatial and temporal features from two modules are joined and
fed into the fully connected layer for classification.
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Figure 1. Overall scheme of the research.

4.1. Multi-lead Attention Module

In a segmented heartbeat with 12 leads, each lead reflects the heart condition from different
perspectives. Undesired and unnecessary information could have a reverse impact on the training
process, even limiting the maximum performance of the model. For this reason, the identification
of effective input data is particularly important. However, treating all the leads equally could result
in redundant information. Training neural networks with repetitive information is time-consuming
and resource-wasting. When analyzing 12 leads for MI identification, not all leads make equal
contributions. Therefore, the attention mechanism is elaborately employed to evaluate the significance
of each lead. The attention mechanism shown in Figure 2 makes the weighted information of 12 leads
more condensed and refined, thus facilitating the subsequent processing.

In this study, self-attention mechanism is modified to measure the importance of each lead.
The proposed MLA, an extension of the conventional attention mechanism, can be used for lead
selection through the designed activation function. The proposed MLA mechanism aims to heavily
weight key leads and eliminate redundant leads. To achieve this purpose, a modified version of the
activation function ReLU is therefore adopted.

StepReLU(x) =


0
x
1

(x < 0)
(0 ≤ x ≤ 1)
(x > 1)

(1)

As shown in Equation (1), the StepReLU is created to simulate the step function. After the weight
is activated by the StepReLU, its value is distributed between zero and one. In this way, the crucial leads
could be entirely retained and leads of no use could be completely abandoned. The remaining leads are
assigned with partial weights. The ordinary step function is either zero or one, and its derivative is zero,
therefore it cannot be applied to train neural networks. StepReLU can be used in the back-propagation
algorithm and serves a similar purpose as a step function. Moreover, the proposed activation function
solves the issue that maximum values after traditional ReLU activation are uncontrolled.

The implementation process of MLA can be summarized by Equations (2) and (3).

M1 = tanh (W1L + b1) (2)

α1 = StepReLU (M1w1) (3)

X = α1 ⊗ L (4)

where LT = [l1, l2, . . . , lk](l ∈ Rt, L ∈ Rk×t) is the input heartbeat sample with 12 leads and 651 time
points (k = 12, t = 651). W1 ∈ Rk×k is a trainable parameter matrix. w1 ∈ Rt is the parameter
vector and b1 ∈ Rk is the bias term. Function tanh(·) denotes hyperbolic tangent function. After
the computation, the vector α1(α1 ∈ Rk) represents the importance of each lead. Finally, XT =
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[x1, x2, . . . , xk](x ∈ Rt, X ∈ Rk×t) shown in Equation (4) is the 12-lead signal after selection, where
the self-defined multiplication ⊗ is xi = α1

i · li(i ∈ [1, 2, . . . , k]). Through MLA mechanism, L is
transformed into X, which serves as the input for subsequent feature extraction.

Figure 2. Schematic diagram of multi-lead attention (MLA) mechanism: (a) heartbeat segmentation;
and (b) MLA mechanism outputs the weighted heartbeat signals.

4.2. CNN with Attention Mechanism for Spatial Feature Extraction

As a feature extraction module with the ability to identify the optimum spatial features for
diagnosis, CNN is combined with attention mechanism to form one branch of the hybrid framework.
This module consists of two alternated convolutional and pooling layers, as well as an attention layer
in the end, as shown in Figure 3b.

Different leads are interrelated and correlated, but each lead is one-dimensional, thus making
2D CNN inapplicable. Inspired by multi-sensor data fusion [46], we utilized time dimension as
the horizontal axis and arranged 12 leads in vertical axis to convert one-dimensional signal into
two-dimensional data. Therefore, each 12-lead beat sample has the size of 12× 651. To enable 2D CNN
to effectively mine useful spatial features, three different convolutional kernels, namely 3× 3 kernel,
5× 1 kernel, and 7× 1 kernel, are innovatively applied to extract the correlated and regional features
among different leads. In this way, the 5 × 1 kernel can consider five leads at a time. Similarly,
7× 1 kernel takes the information of seven leads into account at the same time point.
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Figure 3. Feature extraction process after lead selection: (a) 12-lead heartbeat signal after lead selection;
(b) spatial feature extraction process by CNN module; and (c) temporal feature extraction process by
BiGRU module.

4.2.1. Convolutional Layer

In the convolutional layer of CNN, high-order information can be extracted though convolution
and activation operation. The input data are convolved with a set of kernels with different shapes
to generate discriminative feature maps for diagnostic representation. Then, the nonlinearity is
introduced by element-wise activation function. As illustrated in Equation (5), the feature value xm

i,j,n
is computed by the nth kernel at location (i, j) in the mth layer.

xm
i,j,n = f (WmT

n xm−1
i,j + bm

n ) (5)
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where xm−1
i,j is the input patch centered at location (i, j) in the (m− 1)th layer. Wm

n and bm
n are the

weight and bias term of the nth kernel filter (n ∈ [1, 2, . . . , N]) in the mth layer, respectively. Each kernel
generates one feature map through sliding data window with shared weight and bias parameters.
There are N kernels in each layer, which means N feature maps can be generated as input to the next
pooling layer. Activation function is denoted as f (·) to produce nonlinearity.

4.2.2. Pooling Layer

To reduce the dimensions and improve the robustness of the learned feature maps, pooling layer
is generally concatenated between two convolutional layers. Features in the local patches of input
maps are compressed to more robust representation to achieve subsampling. Therefore, pooling layers
possess shift-invariance to minor transformations in the input images [47]. Moreover, computation
burden during the training process can be reduced. Considering each beat may vary in morphology
and numerical values, pooling layers can alleviate the influence of these variations to enhance the
robustness. Max pooling is one of the typical pooling operations, which computes the maximum
values in the pooling windows. Max pooling is effective for retaining texture information [47]. It is
applied in this study because the texture characteristics, such as the peak and fluctuation of heartbeat,
could be reserved during the subsampling.

4.2.3. Attention Layer for CNN

After the operation of convolutional and pooling layers, a series of feature maps is ultimately
formed. If all the feature maps are directly concatenated for classification, the parameters in the fully
connected layer are doomed to be vast and easy to be overfitted. Furthermore, the contribution of each
feature map is not equal. In fact, some feature maps are redundant and unnecessary in classification
and thus should have small weights. On the contrary, pivotal and discriminative feature maps deserve
greater weights.

Compared with conventional CNN models that treat all the feature maps in the same manner,
an attention layer is added on top of CNN to integrate different feature maps and form optimal spatial
feature representation for classification. The calculation process of the weight vector α2 is shown in
Equation (6) and the final spatial feature vector fs is obtained by Equation (7). The input x′n ∈ X′

denotes the nth feature vector in the whole features X′ = [x′1, x′2, . . . , x′N ] generated from the last
pooling layer. The activation function so f tmax(·) ensures that all calculated weights in the vector α2

add up to 1. W2, b2, w2 are trainable parameters.

α2 = So f tmax
(

w2 tanh
(

W2X′T + b2

))
(6)

fs =
N

∑
n=1

α2
n · x′n (7)

Therefore, CNN combined with attention mechanism can better characterize the spatial features
from signal data. Additionally, the proposed CNN module pays more attention to the correlation of
adjacent leads and integrates discriminative features more reasonably.

4.3. BiGRU with Attention Mechanism for Temporal Feature Extraction

The ECG signal is essentially a periodic signal with certain regularity. Therefore, the heart state
corresponding to the current sampling value is not only related to the previous time point, but also
related to the information of the subsequent time point. To efficiently learn the temporal correlation
of ECG signals in each lead, BiGRU with attention mechanism is accordingly employed to further
strengthen the performance of the general framework. BiGRU module is deployed in parallel with
CNN module, and they conduct training and parameters updating together. In detail, BiGRU module
consists of two parallel GRUs and an attention layer in the end, as shown in Figure 3c.
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4.3.1. BiGRU Neural Network

GRU is designed to improve the three-gate structure of LSTM by removing cell state and conflating
the forget gate and input gate to an update gate. Therefore, GRU has fewer parameters and performs
more efficiently. The calculation principle of GRU is defined in Equation (8).

zt = σ (Wxzxt + Whzht−1 + bz)

rt = σ (Wxrxt + Whrht−1 + br)

h̃t = tanh[Wxhxt + W(rt ∗ ht−1)]

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

(8)

where zt represents the update gate and ht−1 denotes the output of the previous neuron. h̃t is the
signal information learned at the present state after the reset gate rt. ht represents the hidden state of
the neuron. Wxz, Whz, Wxr, Whr, Wxh, and W are the corresponding weight matrices. bz and br are the
bias terms. Function σ(·) and tanh(·) represent the sigmoid function and hyperbolic tangent function.
The symbol ∗ denotes the element-wise multiplication.

To make full use of the past and future information, BiGRU is developed by containing a forward
GRU layer and a backward GRU layer. The input xt ∈ Rk holds the information of 12 leads at the
same time point t. During the training process, GRU cell iterates 651 times for each beat sample
to capture the temporal features. The hidden vectors

−→
ht and

←−
ht can be extracted as forward and

backward temporal features, which are calculated by Equation (9). Subsequently, hidden states from
two directions are concatenated to generate the overall temporal features H composed of Ht, as shown
in Equation (10).

~ht =
−−→
GRU (xt) , t ∈ [1, T]

←
h t =

←−−
GRU (xt) , t ∈ [T, 1]

(9)

Ht = con[
−→
ht ,
←−
ht ] (10)

4.3.2. Attention Layer for BiGRU

There are 651 total hidden states formed after BiGRU. Meanwhile, each hidden state provides
diverse information and exhibits different contribution for the final classification. Similar to the
attention layer in the CNN module, another attention layer is introduced after the BiGRU layer, as
illustrated in Equations (11) and (12). W3, b3, and w3 are trainable parameters. Correspondingly,
each temporal feature extracted by BiGRU is assigned with an appropriate weight and features are
integrated into the final temporal feature ft.

α3 = So f tmax
(

w3 tanh
(

W3HT + b3

))
(11)

ft =
T

∑
t=1

α3
t · Ht (12)

4.4. Merge and Classification

In the proposed framework, the last step concatenates the features extracted by the two modules
and co-trains them for classification. The training procedure is detailed in Algorithm 1. The proposed
CNN module and BiGRU module are employed as spatial and temporal feature learners, respectively.
The spatial feature fs and the temporal feature ft learned from the beat sample are concatenated into
a joint feature F, as shown in Equation (13). In this manner, the proposed hybrid framework provides
more diversity in the estimation of class probability. The joint feature is fed into the fully connected
layer for final classification.

F=con[ fs, ft] (13)
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Algorithm 1 Training process of the proposed framework.

Input: PTB Dataset D = {L, y}, Epoch E, Batch size B
Output: The well-trained hybrid neural network Model

1: Split D into training set DTr, validation set DVa and testing set DTe in the proportion of 3:1:1;
2: while (epoch ≤ E) do
3: for start in range (0, length(DTr), B) do
4: end = start + B;
5: batch = DTr[start : end];
6: for beat sample Li ∈ batch do
7: // Multi-lead Attention Module;
8: α1 = StepReLU (tanh (W1Li + b1)w1);
9: Xi = α1 ⊗ Li;

10: // CNN with Attention Mechanism;
11: C1 ← Conv2D(Xi, kernels); kernel size: (3, 3), (5, 1), and (7, 1); each size has 20 kernels with one stride;
12: C1 ← activation (C1, ReLU);
13: C1 ← BatchNormalization(C1);
14: C1 ←MaxPooling(C1, window); the size of window is (2, 2) with one stride;
15: C1 ← Dropout(C1);
16: C2 ← Conv2D(C1, kernels); kernel size: (3, 3), (5, 1), and (7, 1); each size has 20 kernels with one stride;
17: C2 ← activation (C2, ReLU);
18: C2 ← BatchNormalization(C2);
19: C2 ←MaxPooling(C2, window); the size of window is (2, 2) with one stride;
20: C2 ← Dropout(C2);
21: C2 ← Reshape(C2);
22: Spatial features fs ← Attention(C2);
23: // BiGRU with Attention Mechanism;
24:

−→
ht ← forward GRU(Xi);

25:
←−
ht ← backward GRU(Xi);

26: Ht ← concatenate(
−→
ht ,
←−
ht );

27: Ht ← BatchNormalization (Ht);
28: Ht ← Dropout (Ht);
29: Temporal features ft ← Attention(Ht);
30: // Merge and Classification;
31: Features F ← concatenate( fs, ft);
32: F ← BatchNormalization (F);
33: F ← Dropout (F);
34: ypre ← FullyConnected(F);
35: if MI detection then
36: cross_entropy = binary_crossentropy;
37: else if MI location then
38: cross_entropy = categorical_crossentropy;
39: end if
40: end for
41: loss = 1

B ∑batch cross−entropy (ytrue, ypre);
42: Training← use AdamOptimizer to minimize loss;
43: end for
44: epoch+=1;
45: end while
46: return well-trained Model;

Attentive CNN module focuses more on the distinguishable neighbor information among
different ECG leads, while BiGRU with attention mechanism is skilled at extracting essential temporal
characteristics inside each lead. Obviously, the two modules complement each other to make the
extracted features more comprehensive and efficient, thus achieving higher performance.

Compared with the hand-crafted features extracted by traditional classifiers, the end-to-end
framework integrates the lead selection, feature extraction, feature reduction and MI classification
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as a whole system. Moreover, the creative and efficient feature processing structure can generate
discriminative spatial and temporal features by co-training the two modules.

5. Results

5.1. Evaluation Metrics

The accuracy (Acc) of the classification is the proportion of correctly classified samples to the total
number of samples. The classification accuracy measures the universal classification results, which is
defined by true positive (TP), true negative (TN), false positive (FP), and false negative rates (FN) in
Equation (14).

Acc =
TP + TN

TP + FP + TN + FN
(14)

Sensitivity (Sen) measures the proportion of real MI patients who are correctly classified, and
defined as Equation (15). Instead, specificity (Spe), defined in Equation (16), measures the proportion
of real healthy people who are correctly predicted. High sensitivity indicates low rate of missed
diagnosis, i.e., few MI patients are classified as healthy individuals. High specificity indicates low rate
of misdiagnosis, i.e., few healthy individuals are deemed as MI patients.

Sen =
TP

TP + FN
(15)

Spe =
TN

FP + TN
(16)

5.2. Experimental Methodology

Based on the PTB dataset, MI detection and MI location under both intra-patient and inter-patient
schemes were implemented to verify the effectiveness of the proposed MLA-CNN-BiGRU framework.
All the experiments were based on the evaluation of Acc, Sen, and Spe and experimental results were
obtained by five-fold cross-validation. Under intra-patient scheme, the total beats were randomly
divided into five approximately equal parts. For each iteration, three parts were used to train the model.
One part was used as validation set to optimize the parameters of the framework. The remaining part
was used as testing set to evaluate the final performance. As for the inter-patient scheme, patients
were randomly separated in the proportion of 3:1:1 for training, validation, and testing, and the
corresponding beats formed the training set, validation set, and testing set. Grid-search method
was implemented to optimize parameters over a given parameter grid. By virtue of this technique,
an exhaustive search over the value of a specified parameter was performed. Parameters including
dropout rate, learning rate, batch size, and the number of epochs were selected by trial and error based
on the validation set. The search range of dropout rate was set to be 0.2, 0.3, and 0.4. The options of
learning rate were 0.0008 and 0.001. Batch size was set to be different in three cases, which equaled
16, 24, and 32. Additionally, the number of epochs was set to be 10, 20, and 30. The results of each
search are shown in Figure 4. Moreover, to explore the effect of component structures in the proposed
framework, ablation experiments were conducted based on MI detection. The proposed framework
was also compared with one of the most popular dimensionality reduction method, i.e., PCA [48],
combined with multi-layer perceptron (MLP) for classification (PCA-MLP). Then, MI location was
conducted as application and extension of our framework. All the experiments were implemented
with Windows 10 Operating System, NVIDIA GeForce GTX 1660 Ti GPU, Genuine Intel (R) Core (TM)
i7-9700K CPU @ 3.60 GHz and 32 GB RAM. The program was carried out by TensorFlow-gpu 1.9.0
and Keras 2.2.4 with Python 3.6.5.
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Figure 4. The adjustment and evaluation of the parameters.

5.3. MI Detection

MI detection is a binary classification task to distinguish MI patients from HCs. The experiments
were conducted on 80 12-lead ECG records from HCs and 368 records from MI patients with a total of
760,128 beats. Moreover, ablation experiments based on component structures were conducted with
the same parameters as the MLA-CNN-BiGRU framework. In detail, the ablation structures were
MLA-BiGRU module without feature attention mechanism (MLA-BiGRUw/o), MLA-CNN module
without feature attention mechanism (MLA-CNNw/o), MLA-BiGRU module with feature attention
mechanism (MLA-BiGRU), MLA-CNN module with feature attention mechanism (MLA-CNN),
and CNN-BiGRU without MLA mechanism but with feature attention mechanism (CNN-BiGRU).
Additionally, PCA-MLP was tested as a comparative framework that integrated the most popular
dimensionality reduction method with a basic neural network.

5.3.1. Intra-Patient Scheme

In MI detection under intra-patient scheme, the results of ablation experiments are demonstrated
in Table 2, and those of the comparative experiment are shown in Table 3. The average values of the
lead weights obtained by five-fold cross-validation are presented in Figure 5a. Experimental results
indicate that, among all the component structures, the proposed MLA-CNN-BiGRU achieved the
highest average Acc of 99.93%, Sen of 99.99%, and Spe of 99.63%. Simultaneously, the proposed
framework also obtained the lowest standard deviation (std) of the three metrics, i.e., 0.05%, 0.004%,
and 0.31%, respectively. The results of MLA-BiGRUw/o were comparable to MLA-CNNw/o but worse
than MLA-BiGRU. MLA-CNN achieved better performance than CNN-BiGRU and MLA-BiGRU, but
was still inferior to MLA-CNN-BiGRU. When comparing with PCA-MLP, the proposed framework
maintained the highest overall performance as well. According to Figure 5a, the highly recommended
leads are I, II, V5, and V6, all of which have weights in excess of 0.8. Lead aVF is entirely excluded
because its weight is zero.
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Table 2. Ablation experiments of MI detection by five-fold cross-validation under intra-patient scheme.

MLA-BiGRUw/o Acc (%) Sen (%) Spe (%) MLA-CNNw/o Acc (%) Sen (%) Spe (%)

Fold 1 86.90 96.06 41.32 Fold 1 91.81 97.28 64.62

Fold 2 91.58 96.19 68.56 Fold 2 92.16 98.80 59.05

Fold 3 93.46 97.97 70.75 Fold 3 93.41 96.31 78.77

Fold 4 87.84 96.62 45.30 Fold 4 92.94 99.29 62.18

Fold 5 96.24 97.37 90.71 Fold 5 87.51 99.34 29.37

Mean 91.20 96.84 63.33 Mean 91.57 98.20 58.80

Std 3.89 0.81 20.26 Std 2.35 1.35 18.10

MLA-BiGRU Acc (%) Sen (%) Spe (%) MLA-CNN Acc (%) Sen (%) Spe (%)

Fold 1 96.43 98.29 87.17 Fold 1 93.91 100.00 63.63

Fold 2 83.31 100.00 0.00 Fold 2 91.69 99.75 51.44

Fold 3 95.50 99.13 77.19 Fold 3 99.61 99.80 98.66

Fold 4 99.62 99.61 99.68 Fold 4 99.73 99.99 98.48

Fold 5 91.94 91.91 92.11 Fold 5 99.84 99.88 99.67

Mean 93.36 97.79 71.23 Mean 96.96 99.88 82.38

Std 6.25 3.35 40.65 Std 3.88 0.11 23.09

CNN-BiGRU Acc (%) Sen (%) Spe (%) MLA-CNN-BiGRU Acc (%) Sen (%) Spe (%)

Fold 1 97.64 99.31 89.34 Fold 1 99.93 99.99 99.62

Fold 2 98.27 99.46 92.34 Fold 2 99.85 100.00 99.10

Fold 3 98.31 99.70 91.32 Fold 3 99.95 99.99 99.76

Fold 4 91.06 99.26 51.34 Fold 4 99.96 99.99 99.82

Fold 5 93.54 98.92 67.09 Fold 5 99.97 99.99 99.86

Mean 95.76 99.33 78.29 Mean 99.93 99.99 99.63

Std 3.29 0.29 18.31 Std 0.05 0.004 0.31

Best performance is highlighted in bold.

Table 3. Comparative experiments of MI detection by five-fold cross-validation.

Framework
Intra-Patient Scheme Inter-Patient Scheme

Folds Acc (%) Sen (%) Spe (%) Folds Acc (%) Sen (%) Spe (%)

PCA-MLP Fold 1 72.45 85.70 6.56 Fold 1 79.38 91.43 25.16

Fold 2 76.61 89.85 10.54 Fold 2 54.11 76.32 12.13

Fold 3 74.69 86.90 13.07 Fold 3 68.72 81.25 0.76

Fold 4 89.72 97.16 53.69 Fold 4 78.70 84.79 0.00

Fold 5 91.48 96.96 64.52 Fold 5 77.20 91.47 0.00

Mean 80.99 91.31 29.68 Mean 71.62 85.05 7.61

Std 8.92 5.46 27.24 Std 10.68 6.57 11.08

MLA-CNN-BiGRU Mean 99.93 99.99 99.63 Mean 96.50 97.10 93.34

Std 0.05 0.004 0.31 Std 2.25 2.60 4.84

Best performance is highlighted in bold.
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Figure 5. Lead weights obtained by five-fold cross-validation: (a) lead weights in MI detection under
intra-scheme; (b) lead weights in MI detection under inter-scheme; (c) lead weights in MI location
under intra-scheme; and (d) lead weights in MI location under inter-scheme.

5.3.2. Inter-Patient Scheme

As for MI detection under inter-patient scheme, the results of ablation experiments are
summarized in Table 4, and the results of the comparison experiment are given in Table 3. The average
lead weights are illustrated in Figure 5b. According to the experimental results, the proposed
framework achieved highest average Acc of 96.50%, Sen of 97.10%, and Spe of 93.34% among all
the methods. The proposed framework also obtained the lowest std in Acc and Spe, i.e., 2.25%
and 4.84%, respectively. Consistent with the intra-patient scheme, MLA-CNN achieved superior
performance to MLA-BiGRUw/o, MLA-CNNw/o, MLA-BiGRU, and CNN-BiGRU, but was still worse
than the complete hybrid framework MLA-CNN-BiGRU. Compared with PCA-MLP in Table 3, the Acc
of the proposed framework was improved by 24.88%, and its std was low. As indicated in Figure 5b,
the leads with large weights are II, aVL, V5, and V6, all with weights above 0.7. Leads aVF and V2 are
virtually redundant and ineffective.
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Table 4. Ablation experiments of MI detection by five-fold cross-validation under inter-patient scheme.

MLA-BiGRUw/o Acc (%) Sen (%) Spe (%) MLA-CNNw/o Acc (%) Sen (%) Spe (%)

Fold 1 80.98 92.15 30.71 Fold 1 87.04 94.23 54.73

Fold 2 87.11 83.95 93.10 Fold 2 85.99 86.68 84.70

Fold 3 85.56 92.62 47.25 Fold 3 85.74 99.88 9.02

Fold 4 92.52 95.86 49.41 Fold 4 91.31 92.09 81.24

Fold 5 84.40 100.00 0.00 Fold 5 90.70 97.21 55.47

Mean 86.11 92.92 44.09 Mean 88.16 94.02 57.03

Std 4.23 5.91 33.78 Std 2.65 5.05 30.27

MLA-BiGRU Acc (%) Sen (%) Spe (%) MLA-CNN Acc (%) Sen (%) Spe (%)

Fold 1 84.83 94.54 41.11 Fold 1 90.47 99.97 47.72

Fold 2 89.59 84.24 99.69 Fold 2 93.83 94.34 92.85

Fold 3 84.44 100.00 0.00 Fold 3 95.59 100.00 71.65

Fold 4 93.20 99.97 5.70 Fold 4 93.07 99.99 3.68

Fold 5 86.19 99.99 11.52 Fold 5 99.90 100.00 99.36

Mean 87.65 95.75 31.60 Mean 94.57 98.86 63.05

Std 3.71 6.85 41.23 Std 3.50 2.53 38.86

CNN-BiGRU Acc (%) Sen (%) Spe (%) MLA-CNN-BiGRU Acc (%) Sen (%) Spe (%)

Fold 1 93.69 95.71 84.58 Fold 1 92.93 93.70 89.48

Fold 2 97.29 98.59 94.84 Fold 2 95.59 95.20 96.33

Fold 3 88.97 99.97 29.25 Fold 3 97.93 98.92 92.55

Fold 4 96.18 96.61 90.62 Fold 4 97.87 97.70 100.00

Fold 5 86.07 99.97 10.89 Fold 5 98.17 99.98 88.36

Mean 92.44 98.17 62.04 Mean 96.50 97.10 93.34

Std 4.79 1.95 39.03 Std 2.25 2.60 4.84

Best performance is highlighted in bold.

5.4. MI Location

MI location is a multi-class classification task. In this study, the proposed MLA-CNN-BiGRU
framework was applied for MI location based on six classes of 12-lead ECG records, namely HC and
five types of MI. In detail, the six categories of data were comprised of 80 records from HCs, 47 records
from AMI, 43 records from ALMI, 79 records from ASMI, 89 records from IMI, and 56 records from
ILMI, with a total of 678,612 beats.

5.4.1. Intra-Patient Scheme

MI location under intra-patient scheme was performed. The results of five-fold cross-validation
are presented in Table 5, including the metrics calculated for each category. The average values
of the lead weights obtained by cross validation are shown in Figure 5c. As presented in Table 5,
MLA-CNN-BiGRU achieved the average Acc of 99.11%, Sen of 99.02%, and Spe of 99.10%. According
to Figure 5c, the recommended leads for MI location are II, III, V5, and V6, all with weights over 0.6.
Leads I, aVF, V1, and V2 are precluded for their few contributions to the subsequent processing.
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Table 5. Results on MI location by five-fold cross-validation.

Folds Category
Intra-patient Scheme Inter-patient Scheme

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

Fold 1 AMI 98.13 99.70 97.93 62.06 78.51 59.31

ALMI 98.13 96.97 98.30 62.06 22.78 66.05

ASMI 98.13 93.64 99.29 62.06 58.90 63.02

IMI 98.13 99.80 97.65 62.06 41.64 66.28

ILMI 98.13 99.38 97.93 62.06 58.18 62.93

HC 98.13 99.86 97.74 62.06 97.24 54.51

Mean 98.13 98.22 98.14 62.06 59.54 62.02

Fold 2 AMI 98.07 93.74 98.64 58.61 39.87 61.20

ALMI 98.07 95.81 98.38 58.61 54.53 58.86

ASMI 98.07 97.05 98.34 58.61 35.45 65.90

IMI 98.07 99.76 97.58 58.61 82.28 52.59

ILMI 98.07 99.82 97.78 58.61 67.09 56.43

HC 98.07 99.95 97.64 58.61 67.19 56.79

Mean 98.07 97.69 98.06 58.61 57.74 58.63

Fold 3 AMI 99.73 99.78 99.72 46.19 89.88 39.87

ALMI 99.73 98.59 99.88 46.19 99.68 44.66

ASMI 99.73 99.96 99.67 46.19 12.77 65.39

IMI 99.73 99.88 99.68 46.19 72.31 42.72

ILMI 99.73 99.75 99.72 46.19 34.19 48.60

HC 99.73 99.95 99.67 46.19 67.29 41.04

Mean 99.73 99.65 99.72 46.19 62.69 47.05

Fold 4 AMI 99.85 99.78 99.86 72.68 72.64 72.69

ALMI 99.85 99.79 99.86 72.68 65.10 74.03

ASMI 99.85 99.96 99.82 72.68 46.56 75.98

IMI 99.85 99.80 99.86 72.68 81.03 69.84

ILMI 99.85 99.75 99.87 72.68 95.48 70.34

HC 99.85 99.95 99.82 72.68 71.59 72.85

Mean 99.85 99.84 99.85 72.68 72.07 72.62

Fold 5 AMI 99.75 99.78 99.75 75.18 57.96 78.53

ALMI 99.75 99.54 99.78 75.18 100.00 74.13

ASMI 99.75 100.00 99.69 75.18 69.05 75.91

IMI 99.75 99.96 99.69 75.18 93.48 66.01

ILMI 99.75 99.15 99.86 75.18 2.28 81.78

HC 99.75 99.81 99.74 75.18 83.99 71.86

Mean 99.75 99.71 99.75 75.18 67.79 74.70

five-fold Mean \ 99.11 99.02 99.10 62.94 63.97 63.00

Average values are highlighted in bold.

5.4.2. Inter-Patient Scheme

For inter-patient scheme, Table 5 demonstrates the results of five-fold cross-validation.
The average lead weights are illustrated in Figure 5d. As can be observed in Table 5, the experimental
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results in this case are much lower than those in the other three cases. In addition, lead weights were
relatively small, with V6 having a maximum lead weight of 0.44. Only lead aVL was eliminated during
the training process of the model. Due to the uneven distribution of beats numbers, the category with
the highest performance in different folds varied considerably.

6. Discussion

This paper presents a novel and reliable MLA-CNN-BiGRU framework for MI detection and
location under both intra-patient scheme and inter-patient scheme. Meanwhile, elaborate ablation
experiments based on MLA mechanism, CNN module, BiGRU module, and feature integration
attention mechanism were carried out. The ablation experiments aimed to explore the role of
the component structure in improving the performance of MI diagnosis. Moreover, the proposed
framework was compared with another widely adopted feature extraction method. Standard metrics,
i.e., Acc, Sen, and Spe, were employed to verify the effectiveness of the proposed framework. Among
all the experiments presented in Section 5, MLA-CNN-BiGRU performed best by comparing different
components and another feature extraction method in MI diagnosis under both intra-patient and
inter-patient schemes.

As shown in Figure 4, the accuracy is almost identical when the batch size equals 24 and 32, and
slightly lower when the batch size equals 16. The performance with a learning rate of 0.001 was slightly
better than that with a learning rate of 0.0008. It was most suitable to set the number of epochs to 20.
Insufficient number of epochs led to the under-fitting of the neural network. On the contrary, excessive
training rounds gave rise to the problem of over-fitting. The dropout rate also exerted influence on
the accuracy and therefore it could not be set too high or too low. A dropout rate of 0.3 was more
appropriate.

In this study, the rank (from high to low) of the lead contribution of MI detection is: I, V5, V6, II,
V1, aVL, aVR, V3, V4, V2, III, and aVF under intra-patient scheme; and V5, II, V6, aVL, V4, I, III, V3, V1,
aVR, V2, and aVF under inter-patient scheme. The rank (from high to low) of the lead contribution of
MI location is: V6, III, V5, II, V3, aVR, V4, aVL, I, aVF, V1, and V2 under intra-patient scheme; and V6,
V5, I, III, V3, V4, V2, aVR, II, aVF, V1, and aVL under inter-patient scheme. In theory, each lead reflects
a different perspective of the heart activity. More precisely, leads V3 and V4 correspond to the anterior
aspect of the heart. Leads V1 and V2 reflect both septal and posterior aspects of the heart. Inferior part
is related to leads II, III, and aVF. Lateral part is associated with leads I, aVL, V5, and V6. Lead aVR
is related to the endocardial part [49]. From the experimental results, leads I, II, III, V3, V5, and V6
were of more importance, which may be caused by data distribution. Since most of the MIs in the PTB
dataset were related to anterior, inferior, and lateral parts, the weights were primarily assigned to the
leads that could assist in the diagnosis of these three main parts. In the literature, lead V5 achieved the
highest sensitivity in detecting myocardial ischemia [50] and presented the best performance among
all the 12 leads of ECG signals [51]. In addition, lead II is a commonly used lead for basic cardiac
monitoring [19]. As shown in Table 6, leads I, III, and V3 were also selected and achieved good results.
The previous research is consistent with our experimental results that leads V5 and II made a greater
contribution. In fact, the lead contribution is not only related to the model architecture, but also to the
sample distribution. It should be mentioned that this study did not focus on which leads were closely
related to MI diagnosis from pathology. Specifically, this study contributes to optimizing the number
of leads by selecting the most essential ones, which can assist the proposed framework to obtain the
most effective diagnosis.

Neural networks are good at processing high-dimensional nonlinear data by virtue of automatic
feature extraction. Compared with PCA presented in Table 3, the neural network frameworks have
superior performance because the feature extraction and classification processes of neural networks
are end-to-end systems. CNN and GRU are capable of extracting various features directly from
original data through convolutional abstraction and gate-based memory cells. CNNs are popular
models for image data processing, while GRUs are familiar with processing temporal sequence
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data. Compared with BiGRU module, CNN module has better performance, as shown in both
Tables 2 and 4. It indicates that spatial features contained more useful information for the diagnosis of
MI. Additionally, the component structure with attention layer was better than that without attention
mechanism. It indicates that there remained redundant information after the feature extraction, which
required the attention layer for effective integration. After eliminating the MLA layer, as shown in
Tables 2 and 4, the performance of CNN-BiGRU is lower than that of the complete framework, which
can verify the effectiveness of the proposed MLA mechanism. Furthermore, the hybrid framework
had superior performance and stability to the component structures. Despite involving additional
training process, the combination of spatial and temporal features with attention mechanism exhibited
more robust performance in comparison with other methods. The combined features were deemed to
be discriminative in the diagnosis of MI. It was essential to consider relationships between different
leads and the temporal characteristics of ECG signals.

MI diagnosis is composed of detection and location in this study. MI detection is a binary
classification problem, while MI location is a six-class multi-classification task. The results indicate
that MI detection obtained better performance than MI location and intra-patient scheme achieved
better performance than inter-patient scheme. Since the inter-patient scheme could prevent training
and testing the model using the beats from the same patients, it exerted more difficulties on the model
to overcome the individual difference. Furthermore, the inter-patient scheme caused the unbalanced
distribution of data and greatly affected the performance of the model. Notably, the performance of
MI location under inter-patient scheme remains to be improved.

The proposed framework was compared with previous studies on the same PTB dataset, as
shown in Table 6. Among all the methods, the proposed framework achieved highest accuracy in MI
detection under both the intra-patient scheme and inter-patient scheme. Compared with the method
of Han and Shi [24], the accuracy, sensitivity, and specificity of our framework were improved by
7.20%, 16.39%, and 7.63%, respectively in MI location under inter-patient scheme. Moreover, this
study has several merits, such as the utilization of 12-lead ECG signals, the effective end-to-end
system, the selection of leads based on model-driven approach, elaborate feature extraction from both
spatial and temporal perspectives of the signals, and exhaustive experiments among MI detection
and location under two schemes. Furthermore, our study designed ablation experiments to examine
the effectiveness of component structures, which more comprehensively verified the reliability of the
proposed framework.

The proposed framework achieved the optimal results; however, there are three limitations
that need to be improved in our future work. Firstly, although it is worthwhile to make sacrifices
on training time and memory storage to achieve higher diagnostic accuracy, the proposed hybrid
framework has complicated structure and extensive parameters. It exerts challenge on embedding
the network into mobile portable devices. The architecture of the network therefore remains to be
explored and further optimized. For instance, it is very effective to optimize the BiGRU module that
has a slow operating speed. Additionally, the parameters of attention mechanism should be reduced
appropriately. In essence, these changes are the trade-offs between the complexity and accuracy of
the framework, which deserve elaboration in the future study. Secondly, to achieve expert diagnosis,
the process of lead selection should be explained more precisely by comparative experiments and
pathological analysis. Thirdly, the framework should be evaluated on more datasets with diversity to
confirm the robustness in practical applications.
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Table 6. Comparison of frameworks for MI detection and location by ECG signals on the PTB dataset.

Year Lead* Records
or Beats Dataset Framework Detection Location

Performance

Intra-Patient Inter-Patient

2016 [51] Lead 11 for detection (V5)
Lead 9 for location (V3) Beats 485,753 MI

125,652 HC DWT + KNN ! !

Detection:
Acc = 98.80%
Sen = 99.45%
Spe = 96.27%
Location:
Acc = 98.74%
Sen = 99.55%
Spe = 99.16%

No

2017 [12] Lead 2 (II) Beats 40,182 MI
10,546 HC FAWT and SEnt + LS-SVM ! ×

Acc = 99.31%
Sen = 99.62%
Spe = 98.12%

No

2017 [19] Lead 2 (II) Beats 40,182 MI
10,546 HC CNN ! ×

Acc = 95.22%
Sen = 95.49%
Spe = 94.19%

No

2017 [20] Lead 5, 8, 9 and 11
(aVL, V2, V3 and V5) Beats 167 MI records

80 HC records ML-CNN ! ×
Acc = 96.00%
Sen = 95.40%
Spe = 97.37%

No

2018 [3] Lead 2,3 and 8
(II, III, and V2) Beats 15,000 MI

5000 HC Handcrafted features + LR ! ×
Acc = 95.60%
Sen = 96.50%
Spe = 92.70%

No

2018 [21] Lead 1 (I) Records

368 MI
80 HC

74 Other
278 Noisy

CNN-LSTM stacking decoding ! × No
Sen = 92.4%
Spe = 97.7%

2019 [22] 12 Leads Records 369 MI
79 HC BiLSTM Heartbeat-attention ! × No

Acc = 94.77%
Sen = 95.58%
Spe = 90.48%

2019 [25] 12 Leads Beats 28,213 MI
5373 HC

MODWPT + PCA + SVM (Intra)
MODWPT + PCA + Bagging (Inter) ! ×

Acc = 99.75%
Sen = 99.37%
Spe = 99.37%

Acc = 92.69%
Sen = 80.96%
Spe = 80.96%
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Table 6. Cont.

Year Lead* Records
or Beats Dataset Framework Detection Location

Performance

Intra-Patient Inter-Patient

2019 [23] 12 Leads Beats 53,712 MI
10,638 HC CNN + BiLSTM ! ×

Acc = 99.90%
Sen = 99.97%
Spe = 99.54%

Acc = 93.08%
Sen = 94.42%
Spe = 86.29%

2019 [24] 12 Leads Beats 28,213MI
5373 HC ML-ResNet ! !

Detection:
Acc = 99.92%
Sen = 99.98%
Spe = 99.77%
Location:
Acc = 99.72%
Sen = 99.63%
Spe = 99.72%

Detection:
Acc = 95.49%
Sen = 94.85%
Spe = 97.37%
Location:
Acc = 55.74%
Sen = 47.58%
Spe = 55.37%

Proposed 12 Leads Beats 632,940 MI
127,188 HC MLA-CNN-BiGRU ! !

Detection:
Acc = 99.93%
Sen = 99.99%
Spe = 99.63%
Location:
Acc = 99.11%
Sen = 99.02%
Spe = 99.10%

Detection:
Acc = 96.50%
Sen = 97.10%
Spe = 93.34%
Location:
Acc = 62.94%
Sen = 63.97%
Spe = 63.00%

Lead*: The leads that get the best results. Discrete wavelet transform (DWT); K-nearest neighbours (KNN); Flexible analytic wavelet transform and Sample entropy (FAWT and SEnt);
Least-squares support vector machine (LS-SVM); Logistic regression (LR); Maximal overlap discrete wavelet packet transform (MODWPT); Principal component analysis (PCA); Multi-lead
residual neural network (ML-ResNet); Multilead-CNN (ML-CNN); Bidirectional Long Short Term Memory (BiLSTM).
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7. Conclusions

In this paper, a novel MLA-CNN-BiGRU framework for automatic MI detection and location is
presented based on 12-lead ECG signals. To efficiently and effectively employ all 12 leads, the MLA
mechanism is developed to weight the contribution of each lead by the designed activation function,
and useful leads can be selected for the subsequent process. In the process of feature extraction, CNN
is introduced to extract spatial features from inter-correlated ECG signals among the different leads.
Meanwhile, BiGRU is applied to extract temporal features inside each lead. Both neural networks have
an attention layer in the end for feature integration. Then, the spatial and temporal features extracted
from two modules are combined as global spatial-temporal features for the final classification process.
Comparative and ablation experiments were conducted under inter-patient and intra-patient schemes
to confirm the effectiveness of the proposed framework in MI detection and location. The experimental
results indicate that the proposed framework demonstrated satisfactory performance on the PTB
dataset, but the location under inter-patient scheme needs further improvement. With the proposed
model-based approach, this study serves as a preliminary exploration on the importance evaluation of
each lead in the diagnosis of MI. Moreover, in the field of 12-lead ECG signal processing, this study
provides a new insight into the application of attention mechanism and parallel feature extraction
structure based on deep learning.
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