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Abstract: When an industrial wireless sensor network (WSN) is seriously disturbed and intentionally
attacked, sometimes it fails easily, even leading to the paralysis of the entire industrial wireless
network. In order to improve the invulnerability of networks, in this paper, the scale-free network in
complex networks is taken as the research object, and the industrial WSN with scale-free characteristics
is modeled. Based on the advantages of the fireworks algorithm, such as strong searching ability
and diversity of population, a so-called fireworks and particle swarm optimization (FW-PSO)
algorithm is proposed, which can improve the global search ability and convergence speed effectively.
The proposed FW-PSO algorithm is used to optimize the network topology and form a network with
the largest natural connectivity, which can effectively promote the ability of network to resist the
cascade failure problem. The dynamic invulnerability of the optimized network under highest-degree
(HD) attack and lowest-degree (LD) attack strategies, as well as the static invulnerability under random
attack, were evaluated respectively. Simulation experiments show that the industrial WSN optimized
by FW-PSO can significantly improve the performance of the dynamic and static invulnerabilities
compared with the initial network and the networks optimized by the other two existing algorithms.

Keywords: FW-PSO algorithm; industrial wireless sensor networks; invulnerability; scale-free;
topology optimization

1. Introduction

With the development of wireless communication, sensor integration, and MEMS (micro-
electro-mechanical systems), as well as progress in networking technology, wireless sensor network
(WSN) technology and its industrial applications have been greatly improved and expanded, and
the industrial WSN is attracting increasing attention [1,2]. Industrial WSN is a kind of ad hoc and
cooperative network composed of a large number of industrial sensors and actuator nodes with
wireless communication functions in industrial monitoring and control sites [3]. Integrated with
various pressure, flow and temperature sensors and actuators, industrial WSNs are widely used
in industrial field information collection and the feedback control of actuators, such as monitoring
in petrochemical processes, offshore oil exploitation, long-distance transmission of oil and gas, and
hazardous chemical production areas. Compared with conventional WSN, industrial WSN has
higher requirements in system invulnerability, network connectivity and real-time performance [4,5].
However, the harsh industrial environment (e.g., high temperature and humidity, strong vibration,
strong electromagnetic interference, etc.) often leads to wireless signal attenuation or interruption, and
causes various defects during transmission, such as dispersion, delay, interference, and safety-related
problems [6,7]. Accordingly, this will result in data error or packet loss, so that the on-site situation
cannot be reflected to the factory control room in time, resulting in serious production accidents.
In addition, these industrial sensor nodes are usually deployed remotely and are battery-driven in the
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unattended states, and nodes are vulnerable to malicious attacks or energy exhaustion [8,9], which
leads to network partitioning, or even paralyzes the entire network. Therefore, how to improve the
invulnerability of industrial WSNs is a research hotspot [10].

Real-world networks, such as the Internet, power grids, biological networks, and ad hoc networks,
play an important role in modern society. All of these real networks in network science can be
represented by complex networks. Increasing attention has been paid to the robustness of complex
networks under connections or node failures. There are three well-known types of complex network
models: random network models, like the Erdös–Rényi (ER) network model [11], small-world network
models [12], and scale-free network models [13]. Albert proved that scale-free networks are highly
resistant to random attack on nodes or edges, and vulnerable to deliberate attacks on nodes with
a large number of connections [14]. The degree distribution of a scale-free network approximately
follows the “power-law distribution”, therefore, the nodes with small node degree account for the
majority in the network, and the nodes with large node degree account for the minority. However,
the failure of nodes with low node degree has no obvious effect on the connectivity of the network.
Obviously, constructing a scale-free industrial WSN topology can make it more invulnerable [15].

In short, the invulnerability of the network refers to the ability of the network to keep working
after being subjected to deliberate or random attacks. Network invulnerability is divided into static
invulnerability and dynamic invulnerability, and dynamic invulnerability is also called cascade
invulnerability. The main difference between the two is that the failure of one node or link can lead
to the failure of other nodes or links in the case of dynamic invulnerability, while the failure of one
node or link will not affect the failure of other nodes or links in the case of static invulnerability. If a
sensor node fails in an industrial WSN and the load is redistributed to adjacent nodes, the increasing
load may cause cascading problems in the whole network, which will seriously affect the performance
of the network and even lead to the collapse of the whole network. Therefore, when designing
the topology of an industrial WSN, not only we should consider the network performance, but we
should also consider the cascade failure. At present, the research on invulnerability is mainly based
on cascade invulnerability. Motter et al. [16] proposed a simplified model of cascading failure and
analyzed the causes of cascading failure. Souza et al. [17] further found that the cascade failure of
a scale-free network has power-law characteristics. Dobson et al. [18] proposed a cascading failure
control optimization algorithm based on node importance. None of the above studies considered the
impact of weights of data traffic between two nodes, so Cui et al. [19] proposed an edge-weighting
model related to node degree and intermediate centrality in order to control the spread of cascade
failures in complex networks. In industrial WSNs, the topology change of the network will cause
the data flow in the network to be redistributed, which will cause dynamic change of the network
load. Therefore, a cascading failure model based on load redistribution is proposed in [20]. Since
the nodes and links of the real network have the function of processing and transmitting data, the
failure of one link or some of the nodes causes the load to be redistributed, which leads to the failure
of the other nodes, but further load redistribution will lead to cascading failure, so Wang et al. [21]
studied the impact of load redistribution on invulnerability. Ren et al. [22] proposed another cascade
failure model based on residual energy of nodes. The model takes into account the residual energy of
nodes during load redistribution, which makes full use of the network resources and improves the
invulnerability of the network. Yin et al. [23] proposed a cascade failure model based on variable load
and fixed storage capacity of the nodes, and solved the critical value of the load in the cascading failure.
Zheng et al. [24] proposed a network topology reconstruction method based on adding edges with
limited resources. Hu et al. [25] presented a regular hexagonal-based clustering scheme (RHCS) and a
scale-free topology evolution mechanism (SFTEM) for WSNs, which increased network invulnerability
as well as maintaining the energy balance. Qiu et al. [26] proposed a robustness optimization scheme
with multi-population co-evolution for scale-free wireless sensor networks (ROCKS) to improve the
robustness of the scale-free topology. Fu et al. [27] built a cascading model of clustering WSNs by
introducing the concept of sensing load and relay load, and discussed the impacts of model parameters
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on network invulnerability. However, the above research almost all relies on optimizing the nodes
performance to control cascading failures. Some of them only focus on the single node or edge which are
attacked and unable to communicate, and some of them only analyze the static connection performance
of the network, and do not consider how to construct the topology with strong connectivity and strong
invulnerability under the cascading failure of the network. Our aim is to take into account the dynamic
characteristics of the network, and construct a network topology with the strongest connectivity by an
intelligent optimization algorithm, then study the invulnerability of the optimized network under the
condition of cascade failures.

This paper builds an industrial WSN with scale-free characteristics, and proposes a topology
optimization algorithm: fireworks and particle swarm optimization (FW-PSO). By making appropriate
changes to model variables and constraints, the FW-PSO algorithm was applied to this kind of network
to find the network topology with the maximum natural connectivity, and the dynamic and static
invulnerability of the optimized network were analyzed under different attack strategies. The structure
of the article is arranged as follows. The second part mainly introduces the construction of a scale-free
network and cascade failure model. The third part mainly introduces the idea of the FW-PSO algorithm
and the specific process of optimizing the scale-free WSN topology based on the FW-PSO algorithm.
The fourth part is the experimental simulation and invulnerability analysis before and after network
topology optimization. The last part concludes the research of this paper.

2. Scale-Free Network and the Cascading Failure Model

2.1. Scale-Free Network

In order to construct an industrial WSN model with scale-free characteristics, it is necessary to
investigate the scale-free network construction process [28]:

(1) Growing

Suppose a network starts with a small number of m0 nodes and l0 edges. In each iteration, if a
new node is added, m(m ≤ m0) edges will be generated to connect to the existing nodes in the network
at the same time.

(2) Preferential connection

When a new node joins the network, it will select the existing node to connect. Assuming that a
new node is connected to other node i with a probability of Π(ki), the probability of the connection
depends on the degree of node i, and its probability is expressed by:

Π(ki) =
ki∑
j

k j
(1)

Because the scale-free network is connected preferentially when it is formed, it exhibits the
characteristics of power-law distribution, which makes the scale-free networks more fault-tolerant,
but it shows strong vulnerability when it is deliberately attacked.

In order to better represent and understand the scale-free networks, many scholars have proposed
that the measurement method represents the structural characteristics of the scale-free network.
Here are some main feature metrics of scale-free networks:

(1) Degree of network nodes

In a network, the degree of a node refers to the number of nodes adjacent to the node, that is,
the number of edges connecting the nodes. The degree of the network (K) refers to the average value
of the degree of all the nodes in the network. The degree distribution P(k) refers to the probability of
selecting any node in the network, whose degree is exactly k.
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(2) Network aggregation coefficient

If there are ki nodes around node i, the number of interconnections between the nodes is Ei,
and the ratio of the number of these edges to the number of edges that may exist in this ki node is
called the aggregation coefficient, which is represented by Ci as Formula (2).

Ci =
2Ei

ki(ki − 1)
(2)

The aggregation coefficient indicates the degree of connectivity between the nodes, which is the
manifestation of network localization characteristics. The average aggregation coefficient refers to the
average aggregation coefficient of all the nodes.

(3) Network average shortest path length

The shortest path li j from node i to node j refers to the path with the least number of nodes in all
the connected paths from node i to node j. The average shortest path L is an average for all li j. It is
defined as Formula (3).

L =
1

N(N − 1)

∑
i, j

li j (3)

Obviously, the above formula measures the connectivity and efficiency of the network, but it is no
longer applicable when the network is disconnected, because L = ∞ exists while it is disconnected.
In order to better describe the connectivity of the network, the concept of overall network efficiency is
proposed, which is defined as Formula (4).

E =
1

N(N − 1)

∑
i, j

1
li j

(4)

The above formula can measure the connectivity of the network under any circumstances.
This index is used to measure the overall connectivity of the optimized network while it is attacked.

2.2. Establishment of Cascading Failure Model

In a scale-free network, when a node fails, the unprocessed data will be reassigned to its neighbors.
In order to maintain network traffic and avoid network congestion, high-capacity neighbor nodes will
be reallocated more unprocessed data [29]. Therefore, in this paper, the cascaded failure model based
on the load priority redistribution principle is proposed, in which the initial load of nodes is set as a
function of node degree.

(1) The relationship of the initial load L j of each node j in the network and its degree k j is defined
as Formula (5).

L j = βkαj (5)

where, α and β control the strength of the initial load of the node, which are all adjustable parameters.
Similar load assignment methods are used in many cascade failure models, such as WSNs, industrial
Internet, power communication networks and so on [30].

(2) The load of node i is reassigned to neighbor node j according to the priority principle.
The principle of node load redistribution is described as:

Π
j
=

βkαj∑
n<Γi

βkαn
(6)

where, Γi is the set of all neighbor nodes on node i.
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According to the principle of load redistribution, the additional load ∆Li j received by node j from
node i after node i fails is as follows

∆Li j = Li j

kαj∑
n∈Γi

kαn
(7)

It can be seen from the above equation that the additional load ∆Li j received by node j is
independent of the selection of the parameters β, so the setting of β does not play a role in this
additional load.

(3) Node capacity reflects the load-carrying capacity and is constrained by network cost. Assuming
that the capacity Ca j of node j is proportional to its initial load, then Ca j is described as:

Ca j = TL j, j = 1, 2, 3, . . . , N (8)

where, the value of T is greater than or equal to 1. If node j receives an extra load that exceeds its
capacity, that is, L j + ∆L ji > C j, node j will fail. The failure of node j leads to further load redistribution,
which may trigger the failure of other nodes and cause the cascading failures. The following Figure 1
shows the process of re-localizing preferential allocation after a node fails. As shown by the black line
arrow, the red node i in the center fails, which causes its load to be distributed to the neighbors: the
black nodes and j-node. However, the j-node receives the extra load beyond its capacity, which leads
to its own failure, so the j-node begins to distribute the load to its neighbor nodes, as shown by the
light blue line arrow in the figure, resulting in cascading failure of the network.
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In this paper, CFi is used to indicate the number of failed nodes caused by node i [31]. Obviously,
it holds 0 ≤ CFi ≤ N − 1. In order to quantify the global cascade features of the whole network caused
by attacks on some nodes, the normalization index of some nodes after being attacked is introduced,
that is:

CFattack =

∑
i∈A CFi

NA(N − 1)
(9)

where, A represents the set of attacked nodes and NA represents the number of attacked nodes.
Through the analysis of the above cascaded fault model, we can see that the size of the node

fault tolerance parameter T directly affects whether the network is faulty or not. When T is large,
the failure of any node cannot cause cascading failure. When T is very small, the failure of any node
will lead to network paralysis. Therefore, the network has a phase transition from the free phase to the
congestion phase, which is the critical threshold Tc. When T ≥ Tc, each node in the network can handle
the additional load from other nodes without cascading failure, and the network can run normally.
However, when T < Tc, because each node has a limited ability to deal with failures, CFattack suddenly
grows rapidly from 0, causing the entire network or part of the network to fail.

It is obvious that Tc is the minimum value of the fault-tolerance ability of nodes used to avoid
cascading faults. The smaller the value of Tc is, the stronger the invulnerability of the network in
the case of cascading failure will be, so the critical threshold Tc can well reflect the invulnerability of
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the network. In this paper, the size of Tc is used to measure the invulnerability to resist attacks after
network optimization.

3. The Process of Optimizing the Scale-Free Network Based on the Fireworks and Particle Swarm
Optimization (FW-PSO) Algorithm

3.1. Overview of PSO and Fireworks Algorithms

(1) PSO Algorithm

In the PSO algorithm, if the total number of particle swarms is n, the search space is D dimension,
the position of the i-th particle is represented as xi = (xi1, xi2, xi3, . . . , xiD), and the optimal position of
the i-th particle currently searched is pbesti = (Pi1, Pi2, . . . , PiD), and the current optimal position of
the entire particle swarm searched is gbest = (g1, g2, g3, . . . , gD), the velocity change rate of the i-th
particle is vi = (vi1, vi2, . . . , viD), and the velocity and position of each iteration of a single particle are
expressed as follows [32]:

vid(t + 1) = w · vid(t) + c1 · r1 · (pid(t) − xid(t)) + c2 · r2 ·
(
pgd(t) − xid(t)

)
(10)

xid(t + 1) = xid(t) + vid(t + 1),
1 ≤ i ≤ n, 1 ≤ d ≤ D

(11)

where, c1 and c2 are the acceleration factors, and are all the constant. r1 and r2 are the random numbers
between [0, 1]. w is the inertia weight, and w plays the role of balancing the global search and the local
search. When the inertia weight w is large, the global search ability is strong and the local search ability
is weak [33]. Instead, when the inertia weight w is small, the local search ability is enhanced, and the
global search ability is weakened. A large number of experimental results show that the convergence
rate of particle swarm is faster when the inertia weight is between [0.8, 1.2]. Most of the adjustment of
w is adopted as the linear decreasing weight strategy (LDW) [34], which is defined as:

w = wmax − (wmax −wmin) ·
iter

itermax
(12)

where, wmin is the minimum inertia weight, wmax is the maximum inertia weight, iter is the current
iteration number, and itermax is the total number of iterations of the algorithm.

(2) Fireworks Algorithm

The fireworks algorithm obtains the optimal solution through continuous iteration, which mainly
consists of three parts: the explosion operator, the Gaussian mutation operator and the selection
strategy. In the fireworks algorithm, the fireworks represent the potential feasible solution of the
optimization problem, and the process of fireworks generating sparks represents the search in the
feasible solution space. In each iteration, sparks are generated in two ways: explosion and Gaussian
variation. The explosion of fireworks is mainly controlled by the explosion radius and the number
of explosion sparks [35]. Assuming that the number of fireworks is Num, the explosion radius Ai
of the i-th fireworks xi (i = 1, 2, . . . , Num) and the number of explosion sparks Si are calculated by
Formulas (13) and (14):

Ai = A×
f (xi) − ymin + ε∑N

i=1 ( f (xi) − ymin) + ε
(13)

Si = M×
ymax − f (xi) + ε∑N

i=1 (ymax − f (xi)) + ε
(14)

where, A and M are the constants, which are used to adjust the explosion radius of fireworks
and the number of explosion sparks generated. f (xi) represents the fitness value of fireworks xi,
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ymin = min( f (xi)), ymax = max( f (xi)). ε is the machine precision, which is used to avoid dividing by
zero. The boundary of Si is defined as:

Si =


round(a ∗M), Si < a ∗M
round(b ∗M), Si > b ∗M
round(Si), othersize

(15)

where, a and b are the limiting factors of explosion number, both of which are the constants.
In order to increase the diversity of explosion fireworks, the Gaussian variation operation is

introduced. The way fireworks xi performs Gaussian mutation operation on dimension k is:

x̂ik = xik × e (16)

where e is a Gaussian distribution with the mean and variance of 1.
In order to transmit the information to the next generation, a new fireworks population will be

selected for iteration. After the explosion spark and Gaussian variation spark are generated through
the above steps, a certain number of individuals from all fireworks, explosion spark and Gaussian
variation spark will be selected as the next generation of fireworks for iteration. Among them, the
one with the best fitness is selected into the next generation with certainly, and the remaining Num-1
fireworks are selected by roulette. The selection operation is as follows:

P(Xi) =
R(Xi)∑

k∈K R(Xk)
(17)

R(Xi) =
∑
j∈K

d
(
Xi, X j

)
=

∑
j∈K

‖Xi −X j‖ (18)

where, K represents the set of all fireworks and the two sparks, R(Xi) represents the sum of the distances
between the current individual and the remaining other individuals. P(Xi) indicates the probability
that the current fireworks are selected.

(3) FW-PSO Algorithm

For the PSO algorithm, the particle can quickly find a better solution under the guidance of its
historical optimal solution and the current global optimal solution, and the convergence speed is
fast. However, since the update of the particle position in the particle swarm is mainly evolved by
comparing its own position, the surrounding position and the current optimal position in particle
swarm, it lacks global comparison measures. Therefore, the convergence speed is not high in the later
calculations, and it is easy to fall into the local optimum. In the fireworks algorithm, fireworks can
find global optimal solutions in the entire search space through explosion and mutation operations.
In order to take advantage of the two algorithms, this paper proposes a FW-PSO algorithm.

After the FW-PSO algorithm first evolves a certain number of iterations by PSO algorithm, it selects
n particles with the best fitness and keeps them, and deletes popsize-n particles with poor fitness at
the same time, where popsize is the population size. Then, the remaining n particles are subjected
to explosion, mutation and selection operations to obtain popsize-n particles. Finally, the n particles
retained by PSO and the popsize-n particles obtained by fireworks algorithm are combined to form a
new particle swarm to continue the next iteration. The schematic diagram is shown as Figure 2.
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3.2. Scale-Free Topology Optimization Model of Industrial Wireless Sensor Network (WSN) and Optimization
Solution Process

(1) Scale-Free Topology Optimization Model of Industrial WSN

The invulnerability of the network refers to the ability of the network to continue to work after
being attacked. This ability to continue working is mainly reflected in the ability of the network to
maintain connectivity. It is shown by [36] that the natural connectivity is strictly monotonous, which
can reflect the invulnerability performance of the network well. Therefore, this paper takes natural
connectivity as the objective of invulnerability optimization to find the topology with the maximum
connectivity and analyzes the invulnerability of the optimized network in the case of failure.

Industrial WSN can be described by an unweighted and undirected graph G = (V, E), where
V =

{
v1, v2,...,vN

}
is a group of nodes and E =

{
e
(
vi, v j

)}
is a group of edges; where N = |V| is the total

number of nodes in the network and W = |E| is the number of edges. In order to model the networks,
the following definitions are given.

Definition 1. (Adjacency matrix): A(G) =
(
ai j

)
N×N

is defined as the adjacency matrix of a graph, then the

graph G can be represented by its adjacency matrix; where, the value set of ai j is
{
ai j = a ji = 1

∣∣∣∣e(vi, v j
)
∈ E(G)

}
or

{
ai j = a ji = 0

∣∣∣∣e(vi, v j
)
< E(G)

}
.

Definition 2. (Laplace matrix): If L(G) ∈ R×RN is a Laplacian matrix of graph G , then L(G) is defined as

L(G) =
∧

D(G) −A(G) , where
∧

D(G) = diag{di} is the diagonal matrix formed by the degrees of the nodes.
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According to graph theory, the Laplace matrix of graph G shows some remarkable properties in
its connectivity. This is assuming the eigenvalues of the Laplacian matrix L(G) are µi, i = 1, 2, . . . , N.
Sorting the eigenvalues from large to small gives: µN ≥ µN−1 ≥ . . . ≥ µ2 ≥ µ1 = 0.

Definition 3. (Algebraic connectivity): Define µ = µ2 , if and only if µ > 0 , the graph is connected. µ is the
algebraic connectivity of the graph.

It can be seen from [37] that the redundancy of the alternative path in a network is closely related
to the eigenvalue of its adjacency matrix. If there are multiple paths between two nodes vi and
v j, when one of the paths fails, the two nodes can still communicate through other paths. That is,
the more redundant paths between the nodes are, the more invulnerable the network is. Therefore,
the redundancy of alternative paths in the network can reflect the invulnerability of the network.
In order to measure the redundant paths in the network, it is generally necessary to count the number
nl

i j of the paths with the length l between any pair of nodes vi and vi, and then sum them as:

R =
N∑

i=1

N∑
j=1

∞∑
l=0

nl
i j (19)

However, nl
i j is difficult to calculate, and R would be a rather complex expression. Therefore, the

number of closed paths in the network is considered to measure the redundant paths in the network.
The above equation can be written as:

R =
N∑

i=1

∞∑
l=0

nl
i =

∞∑
l=0

N∑
i=1

nk
i =

∞∑
l=0

nl (20)

where, nl
i is the number of closed pathways where both the start and end points are vi and the length is

l. nl represents the number of closed paths of length l in the network. Since the paths in the network
allow nodes and edges to repeat, the length of the closed path can be arbitrarily long, namely R→∞ .
It is also considered that the shorter closed paths have a greater impact on the redundancy of alternative
paths, so we can divide R by the factorial of length l to measure the contribution of closed paths.
Then R can be revised and expressed as:

R =
∞∑

l=0

nl
l!

(21)

Corollary 1. If R is the sum of path number nl
i j with length l between any node pair vi and v j in the network, it

can be simplified as R =
N∑

i=1
eλi .

Proof. Referring to Formula (20), it holds that R =
∞∑

l=0

nl
l! . To simplify this formula, the following

lemma is given.

Lemma 1. nl represents the number of closed paths with length l in the network, then,

nl = trace
(
Al

)
=

N∑
i=1

λl
i (22)
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By using the expression of nl, R can be simplified as:

R =
∞∑

l=0

nl
l! =

∞∑
l=0

N∑
i=1

λl
i

l!

=
N∑

i=1

∞∑
l=0

λl
i

l! =
N∑

i=1
eλi

(23)

�

It can be seen from the above equation that the number of closed paths in the network can be
obtained according to the eigenvalues of its adjacency matrix. When N is very large, S is also very
large, so R can be transformed as:

λ == ln
( R

N

)
= ln

 1
N

N∑
i=1

eλi

 (24)

As seen from the expression above, λ corresponds to the ‘average eigenvalue’ of the graph
adjacency matrix.

Definition 4. (Natural connectivity): assuming the eigenvalue of the adjacency matrix A(G) is λi, then the
natural connectivity of graph G is:

λ = ln

 1
N

N∑
i=1

eλi

 (25)

According to the above analysis, natural connectivity describes the redundancy of alternative
paths in the network from the internal structure of the network. The larger the natural connectivity, the
better the invulnerability of the network will be. Therefore, finding the network topology with the
greatest natural connectivity is of great significance to the improvement of network invulnerability [38].
Based on the above analysis, it is feasible and reasonable to use the maximum natural connectivity
as the optimization goal. The natural connectivity is strictly and monotonically increasing for the
added edges, which means that the natural connectivity can accurately reflect the slight difference in
invulnerability. However, the network is limited by the cost, the number of network edges is bound

to be limited, so the constraint condition of edge is set as: W = |E| = 1
2

N∑
i=1

N∑
j=1

ai j. In the process of

topology optimization, the connectivity of the graph needs to be ensured. Considering the accuracy
problem in the calculation process, the algebraic connectivity is set to µ > 0.01. Otherwise, isolated
nodes will appear in the topology graph to make the network disconnect. According to the above
analysis, the topological structure of the network is optimized, and the optimization function is set as:

maxλ = ln

 1
N

N∑
i=1

eλi

 (26)

The constraints are as follows:
N∑

i=1

N∑
j=1

ai j = 2W

µ > 0.01
(27)
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(2) The Solution Process of FW-PSO Algorithm

Since FW-PSO algorithm is suitable for solving the continuous optimization problems, a variable
transformation is required for the topology optimization model. The specific operations are as follows:

(i) In the Formula (26), ai j represents the lower triangular matrix of the adjacency matrix A(G)

(excluding the diagonal elements), that is, i > j. Therefore, the N(N − 1)/2 elements are rearranged
and recorded into X =

(
x1,x2, . . . , xN(N−1)/2

)
.

(ii) Convert the variable to a continuous variable. In the X obtained in the previous step, xi is 0 or

1. If X′ = g(X) is ordered, the g(X) is the mapping from X to X′, and thus x′i =
{

0, xi < 0.5
1, xi ≥ 0.5

.

(iii) In order to ensure that the constraint
N(N−1)/2∑

i=1
x′i = W of the edge is still satisfied after the

mapping, that is, the number M of xi ≥ 0.5 is W in X. In the process of optimizing the particle swarm,
the number M of xi ≥ 0.5 may appear to be greater or less than W. In view of this, the variable is
adjusted as follows:

In the case M < W, we randomly extract W-M numbers of xi < 0.5 in X, and replace them with the
numbers greater than 0.5 randomly generated between (0, 1).

In the case of M > W, we randomly extract M-W numbers of xi ≥ 0.5 in X, and replace them with
the numbers less than 0.5 randomly generated between (0, 1).

According to the above analysis, the steps for optimizing the network topology based on FW-PSO
are as follows:

Step1: According to the construction algorithm of scale-free network, the industrial WSN with
scale-free characteristics is generated and its adjacency matrix A(G) is obtained.

Step2: The elements in the adjacency matrix A(G) are transformed according to (1), (2) and (3) above.
Step3: Initialize the parameters of FW-PSO, including the weight coefficient: wmin and wmax, the

population size: popsize, the acceleration factor: c1 and c2, the explosion radius adjustment factor A, and the
explosion number adjustment factor: M, a and b. The number of particles retained by PSO optimization: n,
the number of iterations of PSO: maxgen, and the number of iterations of FW-PSO: genmax.

Step4: The optimization function is solved according to the principle of FW-PSO algorithm in
Section 3.2.

Step5: Output the optimal fitness value and the corresponding position obtained by Step4.
The specific pseudo code for the optimization solution using the FW-PSO algorithm is as

Algorithm 1.



Sensors 2020, 20, 1114 12 of 21

Algorithm 1. The pseudo code of the solving process of the FW-PSO algorithm

1. – fpbest: The best fitness value of the individual
2. – fgbest: The best fitness value of the group
3. Input: Objective function f(x) and the constraint condition
4. Parameters initialization: including popsize, n, c1, c2, wmax, wmin Total iterations genmax, PSO iterations

maxgen, A, M, a and b
5. Group initialization: random initialization position xi and velocity vi of particles, calculate fitness fgbest

of particles using Equation (18)
6. Set f pbesti ← xi(xi ∈ [1, 2, 3, . . . , popsize]) , genmax ← 1
7. While gen < genmax

8. for pgen←1 to maxgen
9. for i←1 to popsize
10. Update vi and xi of particle by using (10) and (11)
11. Calculate f (xi)

12. if f (xi) > f pbest(xi)

13. then f pbest(xi)← f (xi)

14. end if
15. if f (xi) < f pbest(xi)

16. then f (xi)← f gbest(xi)

17. end if
18. end for
19. pgen← pgen + 1
20. end for
21. Sort the particle group in descending order and select the n particles with better fitness.
22. According to the position values of n particles, calculate the Ai and Si by using (13) and (14).
23. Generate mutation sparks by using (16).
24. Select the popsize-n individuals from the fireworks, explosion sparks and mutation sparks by using the

selection strategy (17).
25. Combine the n particles with popsize-n individuals to generate the new population.
26. Calculate fpbest and fgbest of the new group.
27. gen← gen + 1
28. end while
29. Output: fgbest

4. The Simulation Experiments and Analysis

4.1. Experimental Simulation of Optimizing Network Topology

In order to verify the effectiveness of the network topology optimization algorithm proposed
in Section 3, MATLAB R2016a was used as experimental simulation platform. Suppose the node
distribution area is 100 × 100 m2. The parameters setting are shown in Table 1.
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Table 1. Simulation parameters setting.

Items Value

Node distribution area 100 × 100 m2

Number of network nodes (popsize) 100
Number of network edges (W) 191

Acceleration factor (c1, c2) 1.49445
Minimum inertia weight (wmin) 0.4
Maximum inertia weight (wmax) 0.9

Explosion number adjustment factor A 5
Explosion number adjustment factor M 6

Explosion number limit factor a 0.3
Explosion number limit factor b 0.6

Total number of iterations genmax 100
PSO iterations maxgen 300

Based on the parameters setting in Table 1 and the scale-free network construction algorithm in
Section 2.1, the scale-free topology optimization model of industrial WSN and its degree of distribution
diagram before optimization are generated as Figures 3 and 4. According to the FW-PSO algorithm,
the optimized industrial WSN topology and its degree of distribution are shown as Figures 5 and 6.
The connection in the topology represents the communication link between two nodes, and the degree
of nodes represents the number of nodes’ connection links.Sensors 2020, 20, 1114 13 of 21 
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Figure 6. The nodes degree of distribution in the network after FW-PSO optimization.

From the topology and degree of distribution figures before and after the optimization, we can
see that FW-PSO algorithm optimizes the network topology by changing the degree of nodes, the node
position does not move, and the particles in the algorithm represent the position set of all the nodes.
Figure 7 shows the relationship between the natural connectivity and the number of iterations. It can
be seen from the figure that, with the increase of the number of iterations, the natural connectivity is
increasing, which indicates that the invulnerability of the network is increasing. The final optimized
natural connectivity of FW-PSO, the standard PSO and the differential evolution (DE) algorithms are
9.5526, 9.1523 and 8.7691, respectively. The natural connectivity of initial network topology (init) is
1.8322. The proposed FW-PSO has better optimizing results and faster convergence speed than PSO
and DE algorithms. Figure 8 shows the percentage improvements of the natural connectivity optimized
by FW-PSO, PSO and DE algorithms with respect to the initial natural connectivity. It can be seen from
the figure that the proposed algorithm has the best improvement compared with the others.
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4.2. Invulnerability Analysis

In order to study the invulnerability of network topology before and after optimization, this
section will analyze the dynamic and static invulnerability. Firstly, the attack strategies are selected as
HD (highest degree) and LD (lowest degree) to analyze the ability of the network to resist cascading
failure before and after optimization, that is, the investigation of dynamic invulnerability. HD means
attacking the nodes which have the high node degree in the network, and LD means attacking the
nodes which have the low node degree in the network. Then, we would like to analyze the static
invulnerability of the network under random attack.

(1) Dynamic Invulnerability

According to the cascading failure model mentioned in Section 2.2, we analyze the critical
thresholds Tc of the network topology before and after optimization by FW-PSO, standard PSO, and
DE algorithms under the two kinds of attack strategies of HD and LD. In order to avoid contingency,
10 repeated experiments were conducted, and the average value was taken. Referring to [29],
the invulnerability analysis was carried out while α is greater than, less than or equal to 1, and the
percentage reductions of critical threshold Tc after optimization of the three algorithms under two
attack strategies were compared accordingly. These results are shown as Figures 9–14, respectively.
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In Figure 9, the abscissa T represents the node fault tolerance parameter, and the ordinate CFattack
represents the normalization index to measure the global cascading fault features of the whole network
when some nodes are attacked.Sensors 2020, 20, 1114 16 of 21 
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Figure 10. Percentage reduction of critical threshold Tc after optimization of different algorithms under
two attack strategies at α < 1.
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Figure 11. Comparison of two attack strategies before and after network optimization at α = 1.
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Figure 13. Comparison of two attack strategies before and after network optimization at α > 1.
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Figure 14. Percentage reduction of critical threshold Tc after optimization of different algorithms under
two attack strategies at α > 1.

It can be seen from Figure 9 that, when α < 1, the critical threshold Tc of HD attack before
the optimization is 1.20, the critical threshold Tc after the optimization of DE, standard PSO and
FW-PSO algorithms are 1.14, 1.12 and 1.08, respectively. The critical threshold Tc of LD attacks before
the optimization is 1.38, and the critical threshold Tc after the optimization of DE, standard PSO,
and FW-PSO algorithms are 1.34, 1.31 and 1.28, respectively. Figure 11 shows that, when α = 1,
the critical threshold Tc of the HD attack before the optimization is 1.32, and the critical threshold Tc
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after the optimization of DE, standard PSO and FW-PSO algorithms are 1.15, 1.13 and 1.10, respectively.
The critical threshold Tc of the LD attack before optimization is 1.33, and the critical threshold Tc after
the optimization of DE, standard PSO and FW-PSO algorithms are 1.25, 1.22 and 1.20, respectively.
Figure 13 shows that, when α > 1, the critical threshold Tc of the HD attack before the optimization is
1.34, and the critical threshold Tc after the optimization of DE, standard PSO and FW-PSO algorithms
are 1.22, 1.18 and 1.10, respectively. The critical threshold Tc of the LD attack before the optimization is
1.28, and the critical threshold Tc after the optimization of DE, standard PSO and FW-PSO algorithms
are 1.18, 1.16 and 1.14, respectively. As can be seen from Figure 10, when α < 1, the percentage
reductions of the critical threshold Tc of the HD attack after the optimization of FW-PSO, standard
PSO and DE algorithms are 13.33%, 6.67% and 5.00%, respectively. The percentage reductions of
the critical threshold Tc of the LD attack after the optimization of FW-PSO, standard PSO and DE
algorithms are 7.24%, 5.07% and 2.90%, respectively. Figure 12 shows that, when α = 1, the percentage
reductions of the critical threshold Tc of the HD attack after the optimization of FW-PSO, standard
PSO and DE algorithms are 16.67%, 14.39% and 12.88%, respectively. The percentage reductions of
the critical threshold Tc of the LD attack after the optimization of FW-PSO, standard PSO and DE
algorithms are 9.77%, 8.27% and 6.02%, respectively. Figure 14 shows that, when α > 1, the percentage
reductions of the critical threshold Tc of the HD attack after the optimization of FW-PSO, standard PSO
and DE algorithms are 17.91%,11.94% and 8.96%, respectively. The percentage reductions of the critical
threshold Tc of the LD attack after the optimization of FW-PSO, standard PSO and DE algorithms are
10.94%, 9.38% and 7.81%, respectively. As a result, it can be seen from Figures 9–14 that the proposed
algorithm reduces the critical threshold Tc more than the other algorithms. Therefore, no matter what
value α is taken, the network optimized by the proposed FW-PSO is significantly improved in the cases
of HD or LD attacks, and the FW-PSO algorithm is better than DE and PSO algorithms in improving
the network’s invulnerability.

(2) Static Invulnerability

The above analysis shows that, after the optimizations of DE, standard PSO and FW-PSO
algorithms, the dynamic invulnerability of the network in the event of HD or LD attacks is improved
effectively. In order to better verify the performance of the optimized network, the static invulnerability
under random attacks also needs to be analyzed. The corresponding experimental results are shown
as Figures 15 and 16.
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As seen in Figure 15, the connectivity of the optimized network under random attack is greatly
improved compared with that before optimization, which shows that the invulnerability of the
optimized network is significantly enhanced. Figure 16 shows the percentage improvement of the
network connectivity with respect to the initial network connectivity after optimization by the FW-PSO,
PSO, and DE algorithms, and it can be seen from the figure that the proposed algorithm has the
best improvement effect. In addition, the network optimized by the FW-PSO algorithm has higher
connectivity and stronger invulnerability in the face of random failures than that optimized by standard
PSO and DE algorithms. Through the above analysis, it can be concluded that the network optimized by
FW-PSO can also significantly improve survivability when subjected to random attacks. This indicates
that the static invulnerability of the optimized network is also enhanced.

Due to the lack of effective oscillation and mutation measures, the PSO algorithm has a slow
convergence speed in the later stage, and even falls into a local optimum. The DE algorithm has
fixed crossover probability and crossover factor, which makes it easy to fall into premature problems.
The proposed FW-PSO algorithm combines the advantages of the PSO algorithm’s fast optimization
speed and the fireworks algorithm’s diversity of population, and it has obvious advantages in searching
results and convergence speed. The scheme proposed in this paper combines the construction method
of the scale-free network and the FW-PSO algorithm, so as to construct a scale-free industrial WSN
with maximum natural connectivity, and solves the problem of network topology construction with
strong invulnerability for industrial WSN. The proposed optimization method can effectively promote
the ability of the network to resist the cascade failure problem, and the cascade failure model was
explored to analyze the dynamic invulnerability in the case of some node failures, as well as the
static invulnerability under random attack, rather than only focus on the single node or edge which
are attacked and unable to communicate, or only analyze the static connection performance of the
network as in previous work. The analysis results show that the proposed scheme makes the network
have strong dynamic and static invulnerability, thus meeting the needs of industrial WSN for strong
connectivity and invulnerability.

5. Conclusions

This paper proposes a FW-PSO algorithm, which combines the advantages of the population
diversity of the firework algorithm and the strong ability of PSO searching, so the convergence speed
and search ability are enhanced. Then, by constructing an industrial WSN model with scale-free
characteristics, the FW-PSO algorithm is applied to the network topology optimization, and the dynamic
and static invulnerabilities of the optimized network are analyzed through simulation experiments.
The experimental results show that, no matter what the value of parameter α (the adjustable parameter
of initial load strength) is adjusted, the network optimized by the algorithm proposed in this paper not
only has the largest percentage reduction of the critical threshold Tc under two kinds of attack strategies
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(HD and LD), and shows strong invulnerability, but also has the largest percentage improvement of
the network connectivity under the random attack, and the connectivity is significantly enhanced.
So the optimized network by FW-PSO algorithm has significant improvement in dynamic and static
invulnerabilities than some other optimal algorithms, which indicates the feasibility and practicality of
FW-PSO algorithm to optimize the network topology of industrial WSN.

The purpose of this paper is to explore how to construct the network topology with strong
invulnerability, and it needs all the topological information of the network in the process. The influences
of MAC (Media Access Control) layer of the network (such as transmission delay and packet loss rate)
and energy factor on network performance are not considered too great. In addition, the topology
we constructed is undirected graph, which does not sufficiently consider the flow direction of data in
the network. In our next work, we would like to consider more practical factors to further improve
our model.
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