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Abstract: The vulnerability of the Global Navigation Satellite System (GNSS) open service signals to
spoofing and meaconing poses a risk to the users of safety-of-life applications. This risk consists of
using manipulated GNSS data for generating a position-velocity-timing solution without the user’s
system being aware, resulting in presented hazardous misleading information and signal integrity
deterioration without an alarm being triggered. Among the number of proposed spoofing detection
and mitigation techniques applied at different stages of the signal processing, we present a method
for the cross-correlation monitoring of multiple and statistically significant GNSS observables and
measurements that serve as an input for the supervised machine learning detection of potentially
spoofed or meaconed GNSS signals. The results of two experiments are presented, in which
laboratory-generated spoofing signals are used for training and verification within itself, while two
different real-world spoofing and meaconing datasets were used for the validation of the supervised
machine learning algorithms for the detection of the GNSS spoofing and meaconing.

Keywords: global navigation satellite system; spoofing; meaconing; support vector machines;
principal component analysis; safety-of-life; position-navigation-timing; GPS; classification

1. Introduction

The open service (OS) signals of any GNSS core constellation, such as GPS, GALILEO, GLONASS,
or BEIDOU, are neither encrypted nor authentication protected, and as such are vulnerable to
manipulation of the Coarse/Acquisition (C/A) Pseudo Random Noise (PRN) ranging codes and the
content of navigation messages. This vulnerability of the GNSS OS signals to data manipulation
is irrespective of the user’s system, be it stand-alone or, as in the aviation case, an augmentation
system (known as an aircraft, satellite, or ground-based augmentation system). This vulnerability of
the GNSS OS signals to data manipulation, whose impact on the users is widely recognized by the
industry, as shown in the literature [1,2], is prominent when used in Safety-of-Life (SoL) applications.
The vulnerability of the GNSS OS signals to data manipulation in SoL applications is expressed as a risk
of using manipulated data for generating Position-Velocity-Timing (PVT) solution without the system’s
awareness of using hazardous misleading information. Those SoL applications include among others:
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aircraft GNSS-based navigation, the use of GNSS-based Automatic Dependent Surveillance Broadcast
(ADS-B) for airborne traffic situation awareness, airborne spacing, separation, and self-separation
applications, and GNSS-based time synchronization in traffic control systems. In this paper, we have
considered two categories of data manipulation: those with data alteration, and without (genuine data
preserved), which are also known as spoofing and meaconing, respectively.

A number of different spoofing scenarios and attack modes have been thoroughly reviewed in the
literature [3,4]. With most of the spoofing methods, a spoofer needs to have control over a false signal’s
waveform, power levels, ranging code, and modulated data content, being consistent with the GNSS
OS signals. The ideal GNSS spoofing consists of the generation and transmission of manipulated, false
GNSS signals corrected for relative power levels at a given distance between the spoofer and target
receiver/s, synchronized with authentic GNSS signals’ code-phase and carrier-phase, and accounted
for the Doppler shift (relative motion between spoofer and target receiver) [1]. Although requiring
access to the victim’s GNSS receiver (i.e., stationary GNSS-based timing receivers used in traffic control
systems), a particularly subtle way to control the pseudorange measurements, and consequently
performance of victim’s receiver generated PVT solution, is through the control of the receiver’s clock
offset by manipulating the clock drift (time derivative of the clock offset) estimates. In most of the
other spoofing scenarios, the control of the spoofing signal’s power levels (visible as an increase of
C/N0) is required not only to overtake the authentic signal during the correlation process but also
to compensate for the distance between the spoofer’s and victim’s antenna locations (in static and
kinematic applications). In such cases, the pre-correlation techniques for the spoofing detection based
on the monitoring of the C/N0 are proven weak due to the function of the Automatic Gain Control
(AGC) that compensates for the fluctuation of the received signal’s power level. It was demonstrated
that only 1.1 dB difference in power level between spoofed and authentic signal is sufficient to effectuate
the receiver to lock onto the spoofed signal [1]. A spoofing attack can be realized either as targeting
the antenna location of a static or moving receiver or an area in which target receivers are expected
to operate. The meaconing consists of the recording and re-broadcasting of authentic signals with a
controlled delay.

The threat of GNSS signal spoofing proliferates with advances in the digital signal processing and
hardware implementations of the Software Defined Radio (SDR) type of GNSS-spoofing transceivers [5].
This poses a significant challenge to developers of spoofing detection. Those spoofing scenarios using
the open-source software-defined GPS simulator such as ‘gps-sdr-sim’ ((https://github.com/osqzss/gps-
sdr-sim): Software-Defined GPS Signal Simulator that generates GPS baseband signal data streams,
which can be converted to RF using SDR platforms, such as ADALM-pluto, bladeRF, HackRF, and
USRP), associated with hardware implementation, such as LimeSDR ((https://limemicro.com/products/
boards/limesdr): low cost, open source, apps-enabled SDR platform that can be used to support just
about any type of wireless communication standard) or HackRF ((https://github.com/mossmann/hackrf):
Open source hardware for (SDR)) transceivers, pose particularly serious threat to airspace users as
being demonstrated by [6,7], or to road vehicle users [8]. Even the post-capture control of a UAV
(Unmanned Aerial Vehicle) through the manipulation of the aircraft’s states data via a GPS spoofer has
been demonstrated [9].

While various spoofing and meaconing detection and mitigation methods exist [1], those that
have the potential of light implementation (especially in aviation sector) and the level of performance
required in SoL applications were considered for selection by the authors of this work. Of those possible
methods, the GNSS signal post-correlation method was chosen along with the premise of having the
number of exploitable observables and measurements that are possible to monitor and cross-correlate
by applying machine learning algorithms with purpose to detect the presence of the false signals.
Contrary to the monitoring of a single (or few) estimates within the GNSS receiver, the monitoring of the
cross-correlation among all available and statistically significant GNSS observables and measurements
is proposed in this paper as a method of detecting the presence of the spoofing signal.

https://github.com/osqzss/gps-sdr-sim
https://github.com/osqzss/gps-sdr-sim
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In the existing literature, only a limited number of previous researches [10–13] on use of the
Support Vector Machines (SVM) for detection of GNSS signal spoofing are known to the authors of this
paper. Panice et al. [10] focused on the detection of a spoofing attack on a UAV based on the analysis of
state estimation using the SVM as a tool for anomaly detection. They implement a simulation system
in order to test and study the behaviour of a UAV during an attack. Their simulator generates data
from a preconfigured mission that simulates false data injection from GPS. They test several scenarios,
reporting the highest success rate to be 95%. Sun et al. [11] implemented a simulation scenario and
computed the singular values of the wavelet transformation coefficients of the signal to form the
feature vectors. Following this, they implemented three classifiers (one of which was SVM) and fused
the results of all three classifiers with a K-out-of-N decision rule. The average success rate of their
SVM classification was 94%, while the average success rate of the fused results was 95%. Semanjski et
al. [12] applied an SVM-based approach on a simulated dataset (with matched power attack) generated
with a modified Spirent GNSS signal and constellation simulator. They achieved a success rate of 96%.
In the following publication [13], they implemented, for the first time, a non-simulated dataset. They
integrated the synthetically generated (simulated) dataset for the SVM-based approach (for training
and testing) and used data from a real-world spoofing event to validate their results. The reported
success rate is 97%.

In this paper, we depart from the existing research by applying, for the first time, the supervised
machine learning-based approach that is being validated on two real-world GNSS signal manipulation
events. In more detail, we present the results of the verification and validation of the supervised machine
learning-based detection of GNSS signal spoofing, particularly the SVM classification. The imposed
conditions for the verification were the success rate and repeatability of the classification among
three synthetically generated spoofing datasets, while the successful classification using two different
real-world (spoofing and meaconing) datasets were chosen for the successful outcome for the validation
of the SVM-based spoofing and meaconing detection, respectively.

The rest of the paper is organized as follows. The next section gives an overview of the datasets
used in this research, together with the description of two experiments and methods used in these
experiments. Section 3 gives insights into data exploratory analysis and the results of the correlation
analysis, factor analysis, and the supervised machine learning-based approach. This is followed by an
extensive discussion session, and the main conclusions are summarized in a separate, final section.

2. Data and Method

2.1. Data Collection

As briefly mentioned in the Introduction section, we have used three different datasets for the
development and validation of the SVM-based GNSS signal manipulation detection. Our approach
includes:

(i) three synthetically generated (simulated) datasets;
(ii) a dataset that resulted from a real-world meaconing event; and
(iii) a dataset that resulted from a real-world spoofing event.

We have used code, phase, Doppler, and signal strength measurements made by Septentrio
AsteRx-U, PolaRx5, and AsterRx-m2 GNSS receivers in the L1/E1/G1/B1, L2/G2/B2, L5/E5, E5a, E5b
frequency bands. The data acquired are sampled at 1 Hz and are recorded in a Septentrio Binary
Format (SBF), ‘Measurement Epoch’, ‘Measurement Extra’, and ‘PVT Geodetic’ measurements blocks
for both laboratory generated and real-world meaconing/spoofing datasets.

2.1.1. Training Datasets

The dataset used in the supervised machine learning approach for training purposes has been
completely generated in a laboratory environment. The laboratory set-up included a Spirent GNSS
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constellation simulator that generated signals with matching power levels, radiated over the air
and received by the antenna connected to the Septentrio AsteRx-U GNSS receiver. The radiation
and receiving elements of the set-up were placed inside the Wave Field Synthesis (WFS) anechoic
chamber at the Fraunhofer FORTE facility [14,15]. The spoofing scenario implemented, which was
previously being used by De Wilde et al. [16], was an intermediate timing attack. This timing attack has
been performed by monitoring the GNSS receiver’s Pulse-Per-Second (PPS) output and affecting the
receiver’s clock divergence through a programmed spoofing signal time transmission delay (emulating
satellite clock drift) at a fixed rate (of 5 ns/s, 1 ns/s and 0.3 ns/s in each of three tests, respectively),
with a corresponding increase in the Carrier-to-Noise Density ratio (C/N0) of 2 dB or more for each
tracked satellite. The spoofing got enabled 180 s into the test in order to allow acquisition of both
authentic and manipulated signals. In this scenario, the spoofing attack was based on manipulating the
transmission time offset, inducing the pseudorange measurements error in a target (victim) receiver.
The pseudorange, as determined by the target receiver, at a known physical position computed
by using the spoofing signal transmission time offset, spoofer, and target receiver locations, can be
mathematically described by adopting expressions and notations given by Tippenhauer et al. [4]:

RA
ij =

∣∣∣P j − PA
i

∣∣∣+ δA
i ·c (1)

where:
P j is target receiver physical location;
PA

i is spoofer physical location;
δA

i is spoofing signal transmission time offset; and
c is a signal propagation speed.
The timing schedule t ∈ {0, 780} and parameters of transmission time offset δA

i of the spoofing
attack performed can be described by:

δA
i (t) =

0, i f 0 s ≤ t < 180 s

δA
i (t− 1) + δ̃A

i , i f 180 s ≤ t ≤ 780 s
(2)

where: δ̃A
i is programmed spoofing signal time transmission delay (5 ns/s, 1 ns/s and 0.3 ns/s,

respectively) emulating satellite clock drift.
It should be noted that the transmission time offset δA

i in our spoofing generation procedure was
defined as a constant rate of change, as opposed to the fixed value of delay given in [4].

A total number of 12 GPS receiving channels were used, where on the six channels the authentic
(non-manipulated) GPS C/A code signal in L1 frequency band were received, while on the other six
channels the manipulated (spoofed) GPS C/A code signals were received. This resulted in having both,
authentic and false, GPS signals present in all three data subsets (with 948, 1493, and 4665 total epochs,
respectively) for each programmed clock divergence rate value. Hereafter, this dataset is termed as the
synthetically generated (simulated) training dataset.

2.1.2. Validation Datasets

For the validation of the SVM-based GNSS signal manipulation detection approach, we used two
different datasets of manipulated GNSS signals:

(i) the unintentional re-radiation of the authentic GNSS signal (also known as meaconing if
intentional), and

(ii) the intentional radiation of the GNSS spoofing signals.

Both datasets were used as independently created validation datasets (were not a part of the
model training).

The first dataset is a result of actual real-world meaconing event caused by the unintentional
re-radiation of the GNSS signal over-the-air. These GNSS signals were captured by the nearby GNSS
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receiver. This dataset contains the following mixed authentic and spoofed signals: GPS L1-C/A,
L2-P(Y), L2C, QZSS L1-C/A, L2C, GLONASS G1-C/A, G2-C/A, IRNSS L5, GALILEO E1BC, E5a, E5b,
MSS L band, SBAS L1, and BeiDou B1I, B2I. In addition, the dataset contains measurements (with 459
total epochs) in the field by a Septentrio AsteRx-m2 OEM GNSS receiver. Hereafter, this dataset is
termed as a meaconing validation dataset.

The second dataset is a result of an SDR-based spoofing attack dataset generated in a successful
noncovered-type of spoofing attack. This dataset was produced by using the LimeSDR ((https:
//limemicro.com/products/boards/limesdr): low cost, open source, apps-enabled SDR platform that
can be used to support just about any type of wireless communication standard) and HackRF ((https:
//github.com/mossmann/hackrf): Open source hardware for (SDR)) configuration with gps-sdr-sim
((https://github.com/osqzss/gps-sdr-sim): Software-Defined GPS Signal Simulator that generates
GPS baseband signal data streams, which can be converted to RF using SDR platforms, such as
ADALM-pluto, bladeRF, HackRF, and USRP): where live signals were combined and only became
present after a simulated outage. The live signal is combined with a combiner and the outage was
simulated by applying a very large attenuation to the antenna signal for a while (visible as the front-end
gain value increase). During signal reacquisition, the GNSS receiver disregarded most of these spoofing
signals (due to the mismatch of correlation peaks’ location), while the receiver lost its true correlation
peak on GPS PRN18 and acquired a spoofed version instead. From the pseudorange measurements
it is apparent that GPS satellite with GPS PRN18 got spoofed but was quickly removed by the
Receiver Autonomous Integrity Monitoring (RAIM) Fault Detection and Exclusion (FDE) algorithm.
The measurement of GPS L1-C/A, L1-P(Y), L2-P(Y), L2C, L5, GLONASS G1-C/A, G2-C/A, GALILEO
E1BC, E6BC, E5a, E5b, E5, BEIDOU B1I, B2I, B3I, SBAS L1, L5, QZSS L1-C/A, and IRNSS L5 signals
was made by a Septentrio PolaRx 5 GNSS receiver with total of 378 epochs at a 1 Hz sampling rate. In
this dataset, only eight GNSS records (8 s) represent a real spoofed signal (in particular GPS PRN18)
before it was removed by RAIM. Hereafter, this dataset is termed as the spoofing validation dataset.

Figure 1a shows the relative proportions among all three (simulated, meaconing, and spoofing)
datasets and (b) basic characteristics of each dataset (ratio between manipulated and non-manipulated
GNSS records).
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2.2. Methods

2.2.1. Experiments

As indicated above, two separate experiments were performed. Experiment I includes use of
intentionally spoofed (simulated) data as a training dataset for the supervised machine learning,
whereas the unintentional real-world meaconing dataset was used for the testing. The same training
dataset was used in the second experiment (Experiment II) as that used in Experiment I, but the
validation was performed on a real-world unintentional spoofing dataset. The process flows of
Experiments I and II conducted are shown in Figure 2
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On this simulated training dataset, we have performed the correlation analysis. The aim of
the correlation analysis was to see which variables have a statistically significant correlation with
the indication if the GNSS signal was manipulated or not. Only these variables (with statistically
significant correlations) were selected as predictor variables and were later used to train the supervised
machine learning-based approach. In more detail, we have applied a v-fold cross-validation to obtain
needed parameters for the model creation. To validate the results of the composed supervised machine
learning-based model, we have used the independent validation datasets. In Experiment I, this
validation dataset was the unintentional real-world meaconing dataset, while in Experiment II the
validation was performed on a real-world unintentional spoofing dataset. To gain a better insight into
the relations between the predictor variables and the indication if the GNSS signal was manipulated or
not and to contextualize our findings, we have also applied the factor analysis. More details on the
applied methods and the obtained results can be found in the following sections.
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2.2.2. Correlation Analysis

As the first step, we have examined the correlation among all the observables and the indication
of whether the GNSS signal is manipulated or not. For this, we have applied the well-known Pearson
correlation [17,18]:

rx,y =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(3)

where:
- n is the size of the sample;
- xi, yi are the individual sample points indexed with i; and
- x and y are the sample means.
Only those variables that had a statistically significant correlation with the indication whether

the GNSS signal was manipulated or not were considered for the following, supervised machine
learning-based approach, steps.

2.2.3. Support Vector Machines Classification

To recognize the GNSS signal manipulation attempts, we opted to explore the C-Support Vector
Machines (C-SVM)-based approach. The motivation for this was threefold. Firstly, C-SVM is a
discriminative classifier that seems to perform plausibly in a high number of real-life applications,
whether used for classification [19,20] or regression analysis [21,22]. Secondly, in the literature [12,13],
there is already a provisionally supported hypothesis that C-SVM can be implemented to support the
detection of GNSS signal spoofing attempts. And finally, as the detection of GNSS signal manipulation
in real-life SoL applications is particularly sensitive to runtime scalability, we wanted to attain a scalable
runtime in regard to the number of input samples. For this reason, we followed the findings from
literature [23] that advocate using the C-SVM in applications sensitive to runtime scalability over other
machine learning-based approaches, such as nu-SVM classification.

As an initial step in the supervised machine learning-based approach, we have firstly annotated
the two parts of the dataset for both experiments: the training (D1) and the test dataset (D2). For
Experiment I, this division was 83:17, and for Experiment II, 95:5 (Figure 3).
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Figure 3. (a) Training and test datasets for Experiment I and Experiment II, and (b) the relative ratios
of manipulated and non-manipulated GNSS records in datasets.

This means that, in Experiment I, 83% of the data (the three synthetically spoofed subsets) are
sorted into the training set and the remaining 17% (the meaconing validation data) into the test set. For
Experiment II, the training set looked the same, but due to the different sizes of the validation dataset,
the ratios were adjusted to 95% (the three synthetically spoofed subsets) for the training dataset, and
the remaining 5% (the spoofing validation data) were annotated as a test dataset. Overall, Experiment
I was performed over 49,860 and Experiment II over 44,651 data points.
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As C-SVM is originally designed for binary classification, to extend it to multi-class scenario (as in
the GNSS signal manipulation case), we applied the one-against-all strategy and the minimization
error function [20]:

1
2

wTw + C
N∑

i=1

ξi (4)

that is a subject to the constraints:

yi
(
wT Ψ(xi) + h

)
≥ 1− ξi (5)

ξi ≥ 0 (6)

where:
i is an index that labels N training cases;
w is the vector of coefficients;
C is the capacity constant;
h is constant;
ξi represents parameters for handling non-separable data (inputs);
yi (y ε± 1) represents the class labels;
xi represents the model’s independent variables; and
Ψ indicates the kernel function.
The kernel function represents a dot product of input data points mapped into the higher

dimensional feature space by transformation Ψ. For our approach, we have integrated the Radial Basis
Function (RBF) kernel [24–26] due to localized and finite responses across the entire range of the real
x-axis:

K
(
Xi, X j

)
= Ψ(Xi)·Ψ

(
X j

)
= exp

(
−ψ

∣∣∣Xi −X j
∣∣∣2) (7)

where ψ is an adjustable parameter of the kernel function.
When it comes to the C-SVM-based approach, the values of capacity constants C (4) and ψ (7) are

particularly important to keep the training error small and to generalize well [27]. Thus, they should
be chosen with care to avoid overfitting. Nonetheless, it is not possible to know upfront the best values
of either of them. To overcome this challenge, we opted for the incremental grid-search across the
predefined search space with a dedicated search step. For C, our search space for the incremental
grid-search was constrained with values 1 to 10, with the search step being equal to 1. For ψ, the search
space ranged from 0 to 1, with the smaller step that is equal to 10−3. The values obtained from the
incremental search, those with the best average 10-fold cross-validation accuracy for both C and ψ,
were chosen to be further used on the test data.

The general idea behind the v-fold cross-validation is to divide the overall dataset into a number
of v folds A1, A2, . . . , Av. Hence, the v folds are randomly drawn disjoint sub-samples of equal sizes
(N1, N2, . . . , Nv). The C-SVM analysis is then successively applied to the observations belonging to the
v-1 folds, which constitutes the cross-validation training sample. Hence, the v-fold cross-validation
estimate (8) can be expressed as a proportion of cases in subsample A that are being misclassified by
the classifier constructed from subsample A–Av:

R
(
c(v)

)
=

1
Nv

∑
(xn, jn)∈Av

H(d(v)(xn) , jn) (8)

where c(v)(x) is the classifier calculated from the subsample A–Av;
H is the indicator function for which the following is valid:

H =

 1, if the statement H
(
c(v)

)
, jn) is true

0, if the statement H
(
c(v)

)
, jn) is false.

(9)
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The results of the analyses are applied to subsample A (the fold that was not used to fit the C-SVM
model) to compute the error. This error quantifies how well the observations in subsample A can be
predicted by the C-SVM model. The results for the v replications are averaged to yield a single measure
model error, i.e., the validity of the model for predicting unseen data.

Hence, we consider the test sample estimate to be the majority of cases in the test dataset that are
misclassified by the classifier constructed from the learning dataset. This estimate is computed in the
following way:

E(c) =
1

N2

∑
(xn, jn)∈A2

H(c(xn) , jn) (10)

In our approach, we applied the 10 folds cross-validation. Hence, the v = 10. Following this, we
considered completely independent datasets, which were not used for training or for testing, where
unintended meaconing and spoofing occurred in an uncontrolled environment. We applied parameters
obtained from the training step in order to validate the C-SVM constructed approach.

2.2.4. Principal Component Analysis

We have also applied the factor analysis, or more precisely the Principal Component Analysis
(PCA), aiming to better understand the relations between the selected variables and the indication if
the GNSS signal was manipulated or not.

The PCA is a statistical procedure that uses an orthogonal transformation to convert a set
of observations of possibly correlated variables into a new set of values of linearly uncorrelated
variables, also called the principal components [28]. In other words, the PCA tries to explain the
variance–covariance structure of a dataset using a new set of coordinate systems. This new set of
coordinate systems is lesser in dimension than the number of original variables. Hence, given a set of
N variables, a principal component model transforms variables into a new set lesser in dimension:

PC < N (11)

Yet, this equation can capture most of the variability in the original dataset. This transformation
is conducted in such a way that the first principal component captures the largest possible variance,
and each succeeding component, in turn, has the highest variance possible under the constraint that
it is orthogonal to the preceding ones. Each coordinate, in the new transformed system, is called a
principal component.

3. Results

3.1. Correlation Analysis

The matrix of correlation coefficients in Figure 4 shows the partial correlations among the variables
given in Table 1. Hence, the numerical value indicating the rows and the columns of the matrix
corresponds to the numerical values of the “variable number” as presented in Table 1 and the value
presented the matrix represents the partial correlations for corresponding variables.
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Table 1. List of variables.

Variable number Variable name Unit

1 Lock time [s]
2 C/N0 [0.25 dB-Hz]
3 Pseudorange [m]
4 Carrier Doppler frequency [0.0001 Hz]
5 Full carrier phase [cycles]
6 Multipath correction [0.001 m]
7 Code variance [0.0001 m2]
8 Carrier variance [mcycle2]
9 Carrier multipath correction [1/512 cycle]
10 Receiver clock bias [ms]
11 Receiver clock drift [ppm]
12 Spoofing indication No unit

The p-value is the probability that one would have found the current result if the correlation
coefficient was in fact zero (null hypothesis). If this probability is lower than 5% (p < 0.05), the
correlation coefficient is called statistically significant. Among the correlation values given in Figure 4,
those that have statistically significant correlations (with p < 0.05) are marked with the red asterix.
This means that we have a sufficient amount of the data and a sufficiently small p-value to result in a
statistically relevant level of confidence in our inferences.

3.2. Data Exploratory Analysis

The training of the model has been performed with the use of all statistically significant variables
for each of three programmed receiver’s clock divergence values. In Figure 5, Figure 6, and Figure 7,
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the receiver clock drift is shown for each of clock divergence values (5 ns/s, 1 ns/s, and 0.3 ns/s,
respectively).
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Figure 7. Receiver clock drift from the training dataset with a programmed 0.3 ns/s of time pulling
(adapted from [13]).

In Figure 8, the receiver clock drift from real-world meaconing event is shown.
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In Figure 9, the C/N0 ratio of G20 satellite is shown superimposed for all three training datasets
(three clock divergence values). The start of the spoofing signal emission is visible on the graph as a
jump in dB-Hz value 120 s into the test.
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The C/N0 density ratio for a G20 satellite (SV 20) from a real-world meaconing dataset is shown in
Figure 10.
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In Figures 11 and 12, the respective C/N0 and pseudorange time plots from the real-word spoofing
dataset show spoofed GPS PRN18 that has been acquired for a short time after reacquisition (preceded
by the forced signal outage) and tracked for the short time (six seconds) before it has been removed by
the RAIM FDE algorithm.Sensors 2019, 19, x FOR PEER REVIEW 13 of 20 

 

 

Figure 11. C/N0 of the spoofed PRN18 tracked between Time-of-Week (TOW) 291,133 and 291,139. 

 

Figure 12. Pseudorange time plot of the spoofed GPS PRN18 (in blue) tracked between TOWs 291,133 

and TOWs 291,139 (compared to consistent pseudorange of true GPS PRN25 in red). 

3.3. Support Vector Machines 

Error! Reference source not found. and Error! Reference source not found. give a summary of 

Experiment I and Experiment II results. In total, Experiment I resulted in a success rate of 98.72% 

with 1693 supporting vectors. Experiment II resulted in slightly less supporting vectors (1450) and a 

success rate of 98.77%. The 10-fold cross-validation success rated was comparable in both 

experiments (98.43% in Experiment I and 98.55% in Experiment II). The best values for C and 𝜓, 

obtained after the grid search process, were C = 2 and 𝜓 = 0.75 for the Experiment I set-up and C = 3 

and 𝜓 = 0.8 for the Experiment II. 

Table 2. Experiment I model summary (𝝍 = 0.75, C = 2). 

Figure 11. C/N0 of the spoofed PRN18 tracked between Time-of-Week (TOW) 291133 and 291139.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 20 

 

 

Figure 11. C/N0 of the spoofed PRN18 tracked between Time-of-Week (TOW) 291,133 and 291,139. 

 

Figure 12. Pseudorange time plot of the spoofed GPS PRN18 (in blue) tracked between TOWs 291,133 

and TOWs 291,139 (compared to consistent pseudorange of true GPS PRN25 in red). 

3.3. Support Vector Machines 

Error! Reference source not found. and Error! Reference source not found. give a summary of 

Experiment I and Experiment II results. In total, Experiment I resulted in a success rate of 98.72% 

with 1693 supporting vectors. Experiment II resulted in slightly less supporting vectors (1450) and a 

success rate of 98.77%. The 10-fold cross-validation success rated was comparable in both 

experiments (98.43% in Experiment I and 98.55% in Experiment II). The best values for C and 𝜓, 

obtained after the grid search process, were C = 2 and 𝜓 = 0.75 for the Experiment I set-up and C = 3 

and 𝜓 = 0.8 for the Experiment II. 

Table 2. Experiment I model summary (𝝍 = 0.75, C = 2). 
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and TOWs 291139 (compared to consistent pseudorange of true GPS PRN25 in red).

3.3. Support Vector Machines

Tables 2 and 3 give a summary of Experiment I and Experiment II results. In total, Experiment I
resulted in a success rate of 98.72% with 1693 supporting vectors. Experiment II resulted in slightly
less supporting vectors (1450) and a success rate of 98.77%. The 10-fold cross-validation success rated
was comparable in both experiments (98.43% in Experiment I and 98.55% in Experiment II). The best
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values for C and ψ, obtained after the grid search process, were C = 2 and ψ = 0.75 for the Experiment I
set-up and C = 3 and ψ = 0.8 for the Experiment II.

Table 2. Experiment I model summary (ψ = 0.75, C = 2).

Experiment I Value

Number of independents 11
SVM type Classification type 1

Kernel type Radial Basis Function
Number of SVs 1693 (1662 bounded)

Number of SVs (0) 845
Number of SVs (1) 848

Cross -validation accuracy 98.43%
Class accuracy (training dataset) 98.70%

Class accuracy (independent test dataset) 98.83%
Class accuracy (overall) 98.72%

Table 3. Experiment II model summary (ψ = 0.8, C = 3).

Experiment II Value

Number of independents 11
SVM type Classification type 1

Kernel type Radial Basis Function
Number of SVs 1450 (1417 bounded)

Number of SVs (0) 726
Number of SVs (1) 724

Cross -validation accuracy 98.55%
Class accuracy (training dataset) 98.75%

Class accuracy (independent test dataset) 98.82%
Class accuracy (overall) 98.77%

Figures 13 and 14 show fluctuations between the overall success rate of the models, the success
rate of the successfully identified spoofed records (left x-axis), and the value of C (right x-axis) in
Experiment I and II in relation to the different values of ψ (y-axis). One can notice that the highest
success rates were mainly achieved for low values of C. However, the high success rates of the models
were not always equally translated into the high number of correctly recognized spoofed records.
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Tables 4 and 5 show the confusion matrix for both experiments, for the validation dataset. One
can notice that in the validation datasets that all the meaconing-affected data points were successfully
identified, while, in the Experiment II, one spoofed data point was misclassified as an “authentic GNSS
signal”.

Table 4. Confusion matrix for the independent meaconing validation dataset in Experiment I.

Authentic GNSS Signal Spoofed GNSS Signal

Authentic GNSS signal 2408 123
Spoofed GNSS signal 0 4408

Table 5. Confusion matrix for the independent spoofing validation dataset in Experiment II.

Authentic GNSS Signal Spoofed GNSS Signal

Authentic GNSS signal 1985 23
Spoofed GNSS signal 1 6

3.4. Principal Component Analysis

The results of the PCA analysis indicated 10 principal components that are shown, with the
successive eigenvalues on the x-axis, in Figure 15. The first component accounts for almost 37%
of the manipulated signal indication variations, the second for 21%, and the third for 11%. Lastly,
the tenth component captures only 1.7% of the variations. Considering this, we wanted to explore
which observables contributed to these factors. In the factor coordinates matrix, one can see the
relation between the components (columns) and observables used to build the model (rows). This
overview indicates that the first component is built mainly based on the C/N0, pseudorange, full carrier
phase, and code variance variables (the respective eigenvalue is most correlated with these variables).
Furthermore, all of the above-mentioned observables have high (and negative) correlations, with the
exception of C/N0.
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0.48 −0.44 −0.10 0.03 0.21 −0.19 −0.69 0.12 −0.05 0.01
−0.73 0.56 0.22 −0.03 0.06 −0.16 −0.22 −0.09 0.06 −0.01
−0.24 −0.24 −0.42 −0.80 0.06 0.03 −0.02 −0.06 0.24 −0.06
−0.73 −0.53 −0.07 0.22 −0.04 −0.02 0.02 0.12 −0.09 −0.33
−0.49 −0.60 0.32 0.11 0.08 −0.07 0.09 0.36 0.33 0.15
−0.44 −0.51 −0.25 0.35 −0.09 0.31 −0.14 −0.45 0.13 0.10
−0.08 0.19 −0.26 0.17 0.91 0.11 0.15 0.01 −0.01 0.00
0.01 −0.26 0.70 −0.31 0.19 0.53 −0.10 −0.06 −0.14 −0.03


Figure 16 illustrates the component coordinates, in the unit circle, for the first two principal

components. Considering that the analysis is based on correlations, it is evident that the largest
component coordinate (variable-component correlation) that can occur is equal to 1 and that the sum
of all squared principal component coordinates for a variable (i.e., squared correlations between the
variable and all components) cannot exceed one. Consequently, all component coordinates must fall
within the unit circle that is indicated in the graph. The closer a variable in this graph falls to the unit
circle, the better its representation is by the current coordinate system. Hence, the circle provides a
visual indication of how well each observable is represented by the current set of principal components.
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4. Discussion

As a part of the data pre-processing step, we have performed the correlation analysis across
the three synthetic spoofing datasets. The aim of this process was to reduce the dimensionality of
the input dataset (if possible, by excluding variables which turn out not to be correlated with the
indication as to whether the signal is manipulated or not) and, on the other hand, to ensure that
all the relevant variables are included in the next, C-SVM training, step. The correlation analysis
indicated a statistically relevant (p < 0.05) correlation among the eleven variables and the indication as
to whether the observed GNSS signal is manipulated or not. These eleven variables were then used as
an input for the C-SVM-based training approach in both experiments (Experiment I and Experiment
II). Furthermore, the principal component analysis resulted in ten principal components out of 11
variables. This indicates the high value of the selected variables as the dimensionality of the model
would not significantly change if one would apply the orthogonal transformation to convert a set
of observations into a set of values of linearly uncorrelated variables (components). When having a
look at the principal component’s eigenvalues, it is indicative that for the first three components the
percentage of the manipulated signal indication variations falls rapidly. This slope becomes less steep
afterwards. Hence, one could argue that the first three components capture most of the variability and
that the contribution of consecutive ones is less and less relevant.

When having a look at the C-SVM-based approach results, one can notice a relatively high
number of supporting vectors involved in the separation between the authentic and manipulated
GNSS observables in both experiments. This reflects the large complexity of the existing models, but
can also indicate a potential overfitting. Having in mind that the approach was validated on the two
independent datasets (one in each of the two experiments) being representative of the different spoofing
scenarios with a high success rate achieved, the overfitting seems not to be the case. However, the high
complexity still remains a challenge that needs to be tackled in future research. This is particularly
relevant as it can result in a long computing time and consequently hinder the applicability of the
proposed approach for the real time sensitive applications, among which any Safety-of-Life navigation
application can be accounted for.
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Furthermore, the validation results for the spoofing validation dataset have a slightly higher
success rate (98.77%) than is the case for the meaconing validation dataset (98.72%). In Experiment I,
meaconing data points were always detected, whereas in Experiment II this was not the case (one data
point was not detected). Authors hypothesize that a potential reason for this could be the fact that
the meaconing case is specific in two aspects: (i) the GNSS signal manipulation period is very short
and partially already handled by the RAIM FDE algorithm; (ii) potentially, the meaconing is specific
enough that the simulated training dataset does not provide good learning examples to successfully
recognize it. In order to understand the better reasons behind these results, in Part II of this publication,
we will compose new experiments and present a deeper analysis of the specifics of each dataset in
order to contextualize the results. Additionally, taking into account the small number of the actually
spoofed signals in this dataset (only 7 records), it is relevant to mention that the higher overall success
rates were achieved during the experiment phase for values of C and ψ other than those used in the
model, e.g., for ψ = 0 and C = 2. However, in such cases, the number of detected spoofing signals has
been zero. For this reason, in the reported results we prioritized the correct detection of the spoofing
as this is critical for the SoL applications. An alternative scenario could involve prioritizing the high
success rate. In the second (spoofing) validation dataset, this could be reflected in a success rate as high
as 99.99%, where all except the seven actually spoofed records would be correctly classified. Hence, the
reported success rate would be very high, but the actual value of such a model in practical applications
would be extremely low.

Taking into the account these considerations, we find that it is highly relevant for the SoL
applications to prioritize, for practical applications, the correct detection of the spoofed signal over the
numerical value of the overall success rates.

Compared to the existing literature on the use of SVM-based approaches to detect GNSS signal
manipulation attempts [10–13], our research presents one of a kind in the field of cyber threat analytics
as it, for the first time, provides supervised machine learning-based approach insights that have been
validated on the real-world spoofing and meaconing events. Next to this, we have also proposed a new
approach to evaluate the success rates of the machine learning-based analytics for the SoL applications
that are based on the correct detection of the manipulated signal over the numerical value of the overall
success rates.

5. Conclusions

In this paper, we have proposed a supervised machine learning-based approach for GNSS signal
manipulation detection. The proposed approach has been validated on real-world meaconing and
spoofing data. The analysis of the obtained results leads to several conclusions. For one, correlation
analysis seems to be a good approach for the selection of the input variables for the supervised machine
learning-based approach. In our study, the PCA did not result in a major reduction in the model
dimensionality when applied but has still provided beneficial insights to better understand relations
among the selected input variables. Hence, it complemented the results of the correlation analysis.
Next to this, the C-SVM seems to be a promising approach to detect potential GNSS signal manipulation
attempts. In our two experiments, the C-SVM resulted in a quite extensive number of the supporting
vectors. This indicates that the separation among manipulated and authentic signals is altogether a
complex task. Furthermore, while analyzing the results of the proposed approach, we found it highly
relevant for the SoL applications to prioritize, for practical applications, the correct detection of the
manipulated signal over the numerical value of the overall success rates. Overall, the validation results
on the meaconing and spoofing datasets seem to speak on behalf of the proposed approach as a robust
one for future applications.
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