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Abstract: Cyber-physical systems (CPS) are composed of software and hardware components.
Many such systems (e.g., IoT based systems) are created by composing existing systems together.
Some of these systems are of critical nature, e.g., emergency or disaster management systems.
In general, component-based development (CBD) is a useful approach for constructing systems by
composing pre-built and tested components. However, for critical systems, a development method
must provide ways to verify the partial system at different stages of the construction process. In this
paper, for system architectures, we propose two styles: rigid architecture and flexible architecture.
A system architecture composed of independent components by coordinating exogenous connectors
is in flexible architecture style category. For CBD of critical systems, we select EX-MAN from flexible
architecture style category. Moreover, we define incremental composition mechanism for this model
to construct critical systems from a set of system requirements. Incremental composition is defined to
offer preservation of system behaviour and correctness of partial architecture at each incremental step.
To evaluate our proposed approach, a case study of weather monitoring system (part of a disaster
management) system was built using our EX-MAN tool.

Keywords: critical system; Component Based Development (CBD); composition verification;
EX-MAN component model; sensors composition; incremental composition

1. Introduction

Technological advancements have made it possible to create bigger and more complex systems
from the existing systems of software components and physical devices (e.g., sensors) or equipment.
To keep up with the pace of this advancement and the demand for rapid application development
(RAD) from the evolving market and clients, we need quicker and more economical methods
for system construction. In addition, for the construction of critical system (e.g., emergency or
disaster management system) [1,2], we need a safe and verifiable method. Using Internet of
things (IoT)-based approaches [3,4], there are many companies (e.g., http:/ /www.mcomo.com and
https://www.inmtn.com/) offering services of critical disaster management system (DMS). In the
category of natural disasters, many of the damages to human life and the physical infrastructure
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are caused by disasters occurring due to the changes in the weather conditions. Hardware devices
to read changes in weather situations are readily available by multiple vendors. Hence, a disaster
management system based on weather changes is a typical cyber-physical system (CPS) for which
a safe and verifiable construction method is needed. A well-defined mechanism for the composition of
existing systems into a predictable/verifiable system is the core of such a method. The essence of this
composition is to provide a way to reuse existing work.

In general, the trend toward reuse in software engineering has increased the importance of
composition mechanisms. Program or code reuse is one of the simplest and oldest techniques to reduce
the cost by composing existing program units into larger units. The concept of ‘software reuse” was
first used in 1968 [5]. Software reuse appears at many different levels of solution development, such as
code level by reusing programming language constructs (e.g., selection, sequence and looping) [6],
functions/services level and data structure level. The next level is the solution domain specific and
application domain specific components [7]. Software reuse, being a simple but effective technique
for reducing the software development cost, appears in many forms from ad-hoc or white-box to
systematic or black-box approaches [8].

In the context of the aforesaid, component-based development (CBD) can be used for the
construction of management systems in a shorter time. In CBD, software components provide
large-scale reuse of their intellectual property, offering reduced development and maintenance cost.
Composition must be systematic or hierarchical with fixed semantics from the simplest level of
program statements to the highest level of abstraction as software system, where the output of this
highest level may be composed as a component to form another system. There is a close relationship
between system decomposition and composition phases. The product of decomposition phase is the
system architecture and the product of composition phase is the system solution. Designing a large
system requires many related subsystem architectures to be composed together for system level design.
Correctness of each composed subsystem architecture by a well defined composition mechanism will
ensure the correctness of the composite architecture [9].

In CBD, by using a component model-based approach, solutions for a management system
can be constructed from requirements directly. Each requirement builds a partial architecture;
this partial architecture must be verified. With these goals in mind, first of all, we intend to find
an approach providing a systemic and flexible way of composing existing components and furthermore
a mechanism that allows verifying partial architecture while constructing a system. Motivated by
this, from the existing approaches in CBD, we find EX-MAN component model [10] as an appropriate
choice for our target goals. In this paper, we define incremental composition to construct flexible
system from a set of system requirements.

In the scope of defining a safe and verifiable method for the construction of critical systems,
in EX-MAN, the defined method of incremental composition has the properties of behaviour
preservation and correctness-by-composition. This method can be used to construct any management
system in general. However, this method with its above-mentioned properties is needed to construct
critical systems. For the demonstration of the use of this method and to verify its claimed properties,
we selected the DMS of wilderness weather system from Sommerville [11] with further extensions
taken from Khaliq et al. [12].

The rest of the paper is organised into sux sections. To achieve our aforementioned goals, we start
by investigating the architecture styles in different CBD approaches in Section 2. We select a style
from this study as the best for constructing a DMS. For the selected style, we select and further extend
EX-MAN component model in Section 3. Next, We define an incremental composition process for
constructing flexible solutions in Section 4. For the evaluation of our approach, the details of a DMS
are given in Section 5 and the implementation of this system is presented in Section 6. In Section 7,
we discuss our approach and set the directions for the future work.
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2. Flexible Software Architecture

Keeping in view the set goals in Section 1 for defining a verifiable construction method for critical
systems, we study the architecture styles in different component models with respect to the units of
architecture and the mechanism to compose the units. Based on our initial study, we identify two styles
of architecture and find one style to be favourable for constructing systems that can also allow verifying
the partial architecture during the construction process.

In general, units of architecture can be categorised into two major categories [13]: (i) components;
and (ii) connectors. Components are units of behaviours as computation while connectors are
descriptions of interactions between components. A component may be a physical composite or
a conceptual composite of many different sub-components using different composition mechanisms.
For CBD, a typical and effective composition mechanism is based on interactions between the composed
components [14].

We categorise components for system architecture into three types, as shown in Figure 1:
(i) components with unspecified (hidden) dependencies [15]; (ii) components with specified
dependencies; and (iii) components with no dependencies. A component is a unit of computation
offering one or more provided services. A required service interface is referred to as a dependency.
We categorise components from the first and second types as dependent components, and components
of the third type are categorised as independent components. Dependent components depend on other
components to provide their services, whereas independent components do not depend on any other
component to provide their services.

Dependent Independent
7
— o > o
o— —< o— —C

unspecified dependencies| specified dependencies| no dependencies

—O  provided service
— required service |:| component

Figure 1. Components for system architecture.

To describe interactions at the architecture level, connectors are used to compose or bind
components. In general, a connector can represent message passing or procedure call, event
broadcasting, database queries and pipes [13].

In our view, connectors in a system architecture can be one of three types, as shown in Figure 2:
(i) direct message passing; (ii) indirect message passing; and (iii) coordination. In direct message
passing, one component’s service code has service call/request of another specific component.
In indirect message passing, one component’s service code has service call/request of another
component connected via a required service. In coordination, a program unit makes the service
requests to the connected components without components knowing each other. We categorise the first
and second types of connectors as coupling connectors, and the third type as non-coupling connectors.
Coupling connectors couple two components for control flow, i.e., control initiates or flows from one
component to another. On the contrary, non-coupling exogenous connectors do not couple components
for control or data flows. Components are coupled with the connectors, or vice versa, for the control or
data flow. There can be many different types of exogenous connectors, where each type may define
a unique control and/or data flow for the composed components.
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Figure 2. Connectors for system architecture.

We propose two abstract architecture styles distinguishing rigid and flexible styles for software
systems, as shown in Figure 3. In the rigid style, because of a dependent component or a coupling
connector, it is not easy to make a change in the architecture. Contrary to the rigid style, with flexible
architecture style composition, removal, replacement and reconfiguration of components without
worrying about other parts of the architecture is possible [16]. In the rest of this section, we compare
and contrast these styles with architecture styles from Garlan and Shaw [13].

Arcgi;%ture Component | Connector
Coupling
D
Rigid ependent Non-coupling
Independent | Coupling
Flexible Independent | Non-coupling

Figure 3. Architecture styles.

Composition of dependent components with connectors for coupling or non-coupling defines
the rigid system architecture. Data abstraction and object-oriented organisation style from Garlan
and Shaw [13] corresponds to our category for dependent components and coupling connectors
for making direct coupling between components. Event-based implicit invocation and layered
systems from Garlan and Shaw [13] correspond to the same category for making indirect coupling
between independent components by assuming these have no unspecified dependency. Therefore,
data abstraction and object-oriented organisation, event-based implicit invocation and layered systems
styles are rigid architecture styles.

Composition of independent components with connectors for non-coupling defines the flexible
system architecture. Pipes and filters style corresponds to flexible style because filters components are
independent by assuming these components have no unspecified dependency, otherwise this style
corresponds to rigid style. Repositories style from Garlan and Shaw [13] corresponds to this category.
Therefore repositories style is a flexible architecture style.

For CPS systems, the key issues are distribution, heterogeneity, complexity and scalability of
computations devices or sensors and services. The rigid style of architecture may not be suitable as
construction of such a system by using dependent components and later the dynamic configuration
and maintenance of such a system would be a challenge. In contrast, the flexible style can be
an easier alternative for the construction as well as the post-development maintenance of such systems.
Moreover, this style can be supportive for the verification of critical systems as verifying a component’s
behaviour is independent of other components in the system. Verification of a critical system is
an important activity of CPS construction [17].

For an emergency and disaster management system, service-oriented architecture (SOA) is used in
many approaches [18,19]. As discussed above, there are no fixed mechanisms for composition of web
services. In contrast, from the same group of component models, X-MAN provides fixed connectors
for composition. In view of this discussion, contrary to web services, we select X-MAN for providing
a fixed set of pre-built exogenous connectors for system construction. As X-MAN has many limitations,
we prefer to use extended X-MAN (EX-MAN) from Rana [10] with further modifications for critical
system construction.
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3. EX-MAN Component Model

Using UML class diagram notation [20], we create the conceptual model for EX-MAN, as shown
in Figure 4. The purpose of this conceptual model is to show necessary features of EX-MAN model.
As shown in Figure 4, a system in EX-MAN is referred to as a deployment phase component for
deployment, which is a collection of (shown by UML composition symbol) one or more components
and zero or more connectors. This system can be one of four kinds, as shown in Figure 4. The system
can be a collection of components and connectors, as shown in Figure A4.

Connector | 0.*

Open Composition
Connector
A
[

1
Sequencer Selector
Connector Connector
N
pe

N
Infinite-loop| [Finiteloop| |, —— 11 0.4 0.
Adaptor Adaptor - Finiteloop || Guard Pipe Selector
Congtraint || Constraint || Constraint || Constraint
EX-MAN L
‘Component
N
Design-Phase
Component
A
I 1
Atomic Composite
‘Component Component

N

Adapted Repository|| Adapted
ul Computational Component Composite
Component Component

Unary
Connector
A
[ 1
Adaptor Invocation
Connector
A

Depl oyment-Phase
‘Component

I
Repository
Component

Composite

Figure 4. Conceptual model of EX-MAN.

EX-MAN provides a fixed set of three composition and two adaptor exogenous connectors
(Figure 5d). In EX-MAN, in the design phase, components for reuse are created and stored in the
repository. These components are referred to as design phase components. EX-MAN defines atomic
component (Figure 5a) and composition connectors (Figure 5c) to compose atomic components,
in design and deployment phases. Creating a component for reuse is stored in the component
repository and these components are used for system construction. An atomic component consists
of an invocation connector IC to invoke a behaviour and a computation unit U to invoke a set
of behaviours. An encapsulated atomic/composite component runs passively and it is a unit of
composition. Encapsulated components do not call computation units of other components and thus
have no dependencies on any other components.

Component Connector
Repository Repository
TC S @]

i o
(a) Atomic (b) Composite (c) Composition
component component connector
e | © Y

A A A A A A
Seqguencer Selector Pipe Loop  Guard
Composition connectors Adaptors

(d) Exogenous connectors

Figure 5. EX-MAN component model.

Composite components are created by composing atomic components with composition
connectors retrieved from respective repositories. The composite of design phase is saved into
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the repository of verified components for reuse, as shown in Figure 5b. The distinct feature of the
exogenous composition connectors is that they encapsulate control structure to initiate control on
an invocation request and coordinate the flow of data and control for composed components. Thus,
encapsulated components encapsulate control, data and computation at each level of composition.
In EX-MAN, the arity of exogenous composition connectors is open; this means more components
can be added into a composite in multiple steps of system construction in the deployment phase.
The composition connectors in EX-MAN are referred to as open connectors.

EX-MAN is a suitable candidate for flexible system architecture for three reasons: (i) decoupling
the communication features as connectors from the behavioral units; (ii) ecursive connectors have
a termination base case as a connector connecting only components; and (iii) all components and
connectors in the system architecture are composed by a connector with one root connector.

According to the first point, composition mechanisms must be defined as a semantically
independent program construct to compose software behavioural units. These independent program
constructs are responsible for communication for flow of data and/or control between composed
behavioural units and to the rest of the architecture. Components and connectors are reused in their
own rights without any inter-dependencies.

The second point enforces the hierarchical composition in the architecture. It is this condition
which makes the termination of recursive or vertical composition possible. Therefore, as per the third
point, flow of control and data both have the same path and originate from the root connector.

4. Incremental Composition

In general, software composition means constructing bigger program units by composing smaller
program units [21,22]. In this section, we define an incremental composition mechanism for EX-MAN
to construct systems from a complete set of requirement specifications.

We make a number of assumptions to define incremental composition. We assume a system’s
raw requirements are enumerated as a list of requirement specifications in sequence. This sequence
of requirements defines the flow of actions of the system. In this paper, for incremental design from
requirement, we assume any computation (e.g., start cooking, withdraw money, etc.) is a component
and associations between computations (e.g., turn on the electric stove before cooking, withdraw money
or inquire balance, etc.) is a connector from repository. We claim that our defined incremental
composition possesses two properties: (i) behaviour preservation; and (ii) correctness-by-composition.

4.1. The Composition Process

Incremental composition is defined to address a system with a complete set of requirement
specifications construction from pre-existing verified components. The composition mechanism is
defined as a process of five core activities, as shown in Figure 6. The process starts with no design
and the designer begins the system construction by selecting a component from a repository and the

process ends with a complete system.
5
Refine Verify
Architecture Architecture

2
Verify
Increment

1] . 3
Design Integrate
Increment Increment
(partial composite)
true
° Start of process Activity with a unique number
(®  Endof process - ST v

—» Flow transition [condition]qp  Decision with condition

Figure 6. Incremental composition process.
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The first activity of the process would be to select a component from the repository for a matching
computational behaviour from the requirements. This is the initial partial system to begin with. In each
step of the incremental composition process, more components/connectors would be identified to be
composed with the partial system. This composition will continue until the last behaviour is added
from the requirements.

A pass of incremental composition process (ICP) is: (i) build increment design for a requirement
as Activity 1; (ii) verify the increment design as Activity 2; (iii) integrate the increment as Activity 3
and a partial architecture from previous pass except for first requirement; (iv) in Activity 4, refine
the integrated partial architecture in zero or more steps by following the refinement rules if needed;
and (v) verify the integrated partial architecture in Activity 5. The composition process ends with
the last pass to compose the last increment for the last requirement. For verification, each increment
design is validated as per the defined component model in Section 3.

Design increment activity identify components and connectors needed from a system requirement.
Integrate increment activity produces a partial architecture for the system. Partial system architecture
(say X) and increment (say I) can be integrated in one of three ways:

1. Compose I with a composition connector of X.
2. Compose X with a composition connector of L.
3. Using a new composition connector, compose X and I.

A partial architecture can optionally be refined by following five rules in any order without
extension and modification to the architecture:

Split a connector into more than one connectors of the same type.

Join two or more connectors of same types into one connector of the same type.

Remove redundant component/connector by removing the replica component/connector.

A selector connector can be broken into one guard per option.

A number of guards on the same condition with different values can be joined into

SAEI I

a selector connector.

4.2. Properties of Composition

Using incremental composition, the partial system architecture preserves two properties of the
system at each level of composition.

4.2.1. Behaviour Preservation

We define behaviour preservation as “behavioural property of the composite architecture builds on
the behavioural properties from its composed parts”. Integration of an increment I of some requirement
with behavioural property P to a partial architecture X from previous pass with behavioural property
Px makes a composite architecture X’ with a behavioural property P; and Px. The first partial system
plays the role of the base architecture.

Each computational requirement adds some behaviour to the system architecture. In incremental
composition, requirements are designed and integrated into a partial system architecture. The system’s
behavioural property, after each increment, is a collection of behavioural properties of its composed
partial architecture from previous pass and architecture of current increment. Hence, the final system
is the collection of all the behaviours demanded in the system requirements, as shown in Figure 7.
In this figure, each row represents an iteration of incrementing the partial system. The first iteration
begins with no design; then, as shown by the first column, a system behaviour is identified from
a requirement and a component for this identified behaviour is selected to be added in the system.
The outcome of this activity is shown in the third column with the system possessing the identified
behaviour in the iteration.
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i i System
Requirement | Partial System (SiX(Sj 9
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RndemandsPn | SndeliversPn |Sdelivers{P1,P2,...,Pn}

Figure 7. Behaviour preservation.

4.2.2. Correctness-by-Composition

We adopt the definition of correctness-by-composition from Moriconi and Qian [9]: “correctness
of composite architecture follows from the correctness of its parts composed architectures”. In other
words, the component model of the composite is the component model of its composed parts.

The ICP verifies a requirement design as an increment [ in Activity 2. The second execution of
integration activity composes the current verified increment design of the second requirement with the
verified increment design of the previous pass in Activity 5. The composite is correct by composition
of two verified designs.

5. Disaster Management System

Disasters are either man-made (e.g., terrorist attack, cutting trees, rash or careless driving,
etc.) or occur naturally (e.g., heavy rain, earthquakes, lightning, etc.) [23]. To monitor using
devices/sensors [24,25], intimate to the right authorities and to take necessary actions to mitigate disasters,
a computer based management system is referred to as a disaster management system (DMS). In this
section, for a natural disaster management, we consider the case study of the weather station from
Section 3.3 of Chapter 1 of [11] and extend it further in light of the desired features for a DMS from the
works of Braune et al. [19] and Basha et al. [26].

Many natural disasters are caused by events and changes in weather situations. The damages
caused by these disasters can be avoided or at least reduced with the help of a better management
system. The purpose of this system is to collect data of changes in weather conditions and to raise
alert alarm to the authorities to take timely actions. Manufactured by multiple vendors, there are
many different kinds of devices readily available to read the changes in weather, including devices to
measure wind direction and speed, air temperature, humidity in air, barometric pressure, etc. In this
context, we consider a relevant case study of a wilderness weather station from Sommerville [11]
and extend it further with features from Braune et al. [19], Basha et al. [26]. In this case study of
a wilderness weather station (WWS), there is a weather information system (WIS) that interacts with
a number of weather stations (WS) via a satellite communication system (SCS). For the extended case
study of WWS, we consider a system with following requirements:

R1: WS collects minimum (min), maximum (max) and average (avg) ground and air temperatures.
R2: WS collects min, max and avg air pressure.

R3: WS collects min, max and avg wind speed.

R4: WS collects the total rain fall.

R5: WS collects the wind direction.

Ré6: Add a new sensor hygrometer to read min, max and avg humidity.

R7: Keep data stored in case the data are not requested on scheduled interval because of the
failure of the communication link.

o  R8: WIS collects weather data from many WS systems installed remotely on request via a satellite

communication link.

In this paper, from the extended requirements (R1-R8) for the weather station case study, initially,
we identify the atomic components to be created and stored in the EX-MAN components repository
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for reuse in the design phase. From R1, a ground temperature sensor is connected to component GT
for storing the temperature values. This component provides one service (<min,max,avg> getData())
to read the temperature data as a list of three values for maximum, minimum and average temperature
values. Once read, the data storage of GT is reset; this means that the next execution of getData service
provides the values computed based on data collected after previous service execution. Similarly,
more components to read values from sensors are identified and created for the repository. These
components are: AT (to read min, max and avg air temperature from R1), AP (to read min, max and
avg air pressure from R2), WiSp (to read min, max and avg wind speed from R3), RF (to read total rain
fall from R4), WD (to collect the wind direction from R5), HM (to read min, max and avg humidity
from R6), DS (to store data from R7) and SC (to establish satellite communication link from RS).

For the system to fulfil Requirements R1-R8, we need many weather stations located at different
areas. Hence, using the aforementioned identified atomic components from the EX-MAN repository, we
need a composite component WS (weather station from R8). In the design phase of system construction,
a composite component can be created by using repository components. For the construction of
a composite component in the design phase or a deployable system referred to as deployment-phase
component in Figure 4, our defined process of incremental composition defined in Section 4 is used.

Using ICP, we build a design phase composite component WS in seven steps, as shown in Figure 8.
For the construction of this design phase component, pre-built components from the shown repository
of components are selected and added into the composite in seven iterations. The connectors repository
is not shown here.

Component Repository | Design-Phase Component

O
Apply rule 3 to refine| @

A

O
&5 & & & & 5 B
‘GTl HATl H APL MNiSle RF1 HWDlHHMlH DS1 ‘

TRIGESIoRG)
R2 (pass 2 of IPC)
R3 (pass 3 of IPC)
R4 (pass4 of IPC)
R5 (pass5 of IPC)
R6 (pass 6 of IPC)
R7 (pass 7 of IPC)

E@E@EQEQEQ
g. 040 I
%,4)(,, zto| 8o

Figure 8. Incremental composition to compose WS.

In the first pass of ICP, two components, GT and AT, are identified for the construction of WS.
The system needs to read respective temperature values from these two components one by one; hence,
the use of a sequencer connector is identified. To design Requirement R1, Activity 1 of ICP creates
a composite (shown in Figure 8 of instances of the identified components GT1 and AT1 with an instance
of identified connector SEQ1). The increment is verified to produce a list of two temperature values
from GT and AT, respectively. In this pass, Requirement R1 is designed. In the second pass, to design
increment for R2, a component AP for air pressure is identified to be composed by a sequencer with
the partial system of previous pass. Hence, an instance of the identified component AP1 is composed
by SEQ1 from the partial system, as shown in Figure 8. As EX-MAN composition connectors are open
in arity and the newly identified component is to be read after reading the sensors identified from
R1, there is no need for any refinement in the partial architecture generated from Activity 3 of ICP.
Similarly, requirements R3-R6 are designed and composed with the partial architecture in the next four
passes of ICP, as shown in Figure 8. In Activity 5, for each pass after the first, the composite architecture
is verified for behaviour preservation and design correctness by the defined model from Section 3.

In the next pass, to design increment for Requirement R7, DS component is identified to store the
read data from different sensors designed for Requirements R1-R6. For passing data from existing
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composite to the DS, a PIPE connector is needed. Hence, in Activity 3 of the seventh pass of ICP,
an instance of the identified component DS1 is composed with the partial architecture of the previous
pass by composing through the instance of the identified connector PIPE1. In Activity 4 of this pass,
SEQ1 and PIPE1 can be refined by using Rule 3 of refinement defined in Section 4.1 to be as one PIPE1
connector; this is possible because the pipe connector is a sub-type of the sequencer connector in
EX-MAN, as shown in Figure 4. In Activity 5, the composite architecture is verified using the model
definition from Section 3. With this pass, the weather station composite is complete and is stored
in the component repository for later reuse, as shown in Figure 9. The purpose of this activity to
add the composite component to the repository is to use this composite for the bigger composite
construction later.

Component Repoory Design-Phase Component

5 Q
A ws

— —
| GT1 || AT1 || APL |Wisp1]| RF1 || wD1 |[HM1 || DSl |

Figure 9. A composite component to repository.

From Requirement R8, we identify SC and WS. The weather information system (WIS component)
fetches data from more than one weather stations (WS component) by a satellite communication
(SC component) link. To create a linked weather station, we create an other design phase composite
(LWS) to be stored in the component repository. To get data from a WS component, the communication
link must be established first. In other words, execution of the get data service from the a WS
component is constrained to the satellite communication link. To gain this, in the first pass of ICP,
two architecture elements a WS component WS1 and a guard connector G1 are composed to generate
a partial architecture, as shown in Figure 10. In the next pass of ICP, this partial architecture is composed
with SC component to create a satellite communication link by a PIPEl connector. Next the resultant
architecture is stored in the component repository as a composite component. In this composite,
if the connection is established by the guard connector G1, the respective service of WS1 to access
data is executed. The composite component LWS is added to the repository to be used later for bigger
composite construction.
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Figure 10. Another composite component to repository.
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To create the final deployable system for Requirements R1-R8, we follow ICP in the deployment
phase and build the system, as shown in Figure 11. From Requirement R8, we identify sub-system
weather information system (WIS) communicates with satellite linked weather stations (LWS components).
For simplicity, we assume two weather stations in our design, as shown in Figure 11. In this system,
the system user would request a service of the composite; this request via the sequencer connector
gets data from the first linked weather station LWS1 and then data from the second linked weather
station LWS2.

Component Repository | Deployment-Phase Component

?

(S2QD)
Q - 9

‘LWSl‘ ‘stz‘

=1
=0
| @]

>
o)
O

pass 1 of IPC

Figure 11. Incremental composition to construct a system.

In the first pass ICP, two instances of LWS components (LWS1 and LWS2) are composed by SEQ1.
In this design, we assume that once the system behaviour to get data from all weather stations is
executed, the data from all weather stations is accessed in sequence.

WIS is the user of the system shown in Figure 11. WIS can execute the service of the composite to
get data from all weather stations after some fixed time. In this architecture, EX-MAN model is used to
design the weather station and WIS is a sub-system program (not developed in EX-MAN).

6. Implementation of Weather Station

We implemented the EX-MAN component model (shown in Figure 4) in our prototype tool called
Exogenous Composition Framework (ECF). This tool is developed in Java programming language.
ECF provides the semantics of EX-MAN components and connectors defined in respective classes;
using these classes, a system developer can create atomic/composite encapsulated components for the
component repository. Moreover, an executable system can be modeled by using the components and
connectors from the respective repositories (as shown in Figure 5b).

In this section, we use ECF to construct the weather station system, as described in Section 5.
The purpose of using ECF was to evaluate our proposed approach of incremental composition and
the properties of composition during the process. Using ECF (in NetBeans IDE 8.0.2), initially we
created nine identified (from Requirements R1-R8) atomic components shown in the component
repository in Figure 8. Next, as shown in the same figure, we constructed the composite for weather
station in seven ICP steps. After performing a refinement step, the composite was stored in the
repository as component WS (as shown in Figure 9). Similarly, performing ICP, another composite
component LWS (linked weather station) was created and stored in the component repository, as
shown in Figure 10. Finally, to create the system of more than one weather stations, the composition of
the deployment-phase system component is shown in Figure 11. This system is to be used by weather
information sub-system.

During the process of incremental composition of composite components to be stored in the
repository and systems to be deployed, the intermediate composites were executed to verify the
properties of the composition proposed by ICP in Section 4.2. We show the code of atomic component
AP in Figure 12. The role of this component is to read air pressure values from the connected sensor
and to compute the minimum, maximum and average air pressure values from these sensor read
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values. In WIS package, the nine atomic components and two composite components can be seen in
the package in Figure 12 (left).

] DesktopApplication1 - NetBeans IDE 8.0.2
File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help

PGS DE [ VT W DB

Projects XI Files I Services i = | @ AP.java x]

E@ Implementation.component.Delta | source  History | -5 - | QS E
-EH Implementation. component.Delta.system

PeRlaed|a

= -..4 lines
E—JI:Q Implementation. component. WIS y
i 5 package Implementation.component.WIS;
@ AP java :
@ DS.java Y/Eackgeaiof (RCE mremacd Lo deflne Ao giomic =
@ GT.ava 8 import Implementation.common.akbCom;
@ HMIJ' g9 import Implementation.common.minn;
ava
J_ 10 import Implementation.common.rinn;
@ LWS java £ : :
i @ import java.util.Vector;
@ RF.java
> 12
@ SC.java
: 13 : i
@ WD.java -
@ WS iava 17 public class AP extends abCom{
_'J_ 13 public AP(}|({ 3 lines }
@ Wisp.java 21 e Mo e
f-EE Implementation. component. WIS, tem il et
l:@ o . & i 22 @mAnn (id="0", ata "
EJ---EH Implementation.component. cocome . e :
- Implementation. component.myATM =
E@ pl = Es X 24 @rAnn (desc={" :
-5 Implementation.component.revCocome
= ] 7] + ™ BAir Pre rev,
(-5 Implementation.component.revCocome_1 2 ;
- 3 @ public Vector<Cbject> getDa
EJ---E:] Implementation.component. test .
1.0 Tmnlamantatinn ramnnnent tectATM 3

Figure 12. Component repository and AP Component code.

In Figure 13, the code of a composite component LWS is shown. The necessary description of the
code is included as comments in the code file. In this figure, the output window shows the output
of the program. The purpose of this figure is to show how the functionality of the partial system is
carried out during the system construction process. With this output, the interface of the component
service and the results of this service execution are printed and verified with the generated data of
each component in the composite.

18 pubklic class LWS extends abComf{

18| [ public LWS(){

@ Vector<cType> v0=new Vector<cType>():

@ Vector<cType> v2Z=new Vector<cType>():

22 5C sc=new 5C{);//5C component is ad ector

23 v0.addElement (sc);

24

25 W5 ws=new WS ():;/ /W5 t is added to ther wvector
26 v2.addElement (wWs) ;

27

28 Guard gl=new Guard(v2);//WS5 component is guarded by gl
29 gl.setCond {"ip0::=1");

30 /fguard is cons

31
32
33 f/8C is
34
35 //fPipe COT ed
36 this.setTop (pi0);
37
S - }

39 public static void main(String[] args) throws Exceptio

() Implementation.component. WIS.LWS 3 ¢ LWS

-Output- | Application1 (run) xi

u> run:

1)120:0i [conn: connection with satellite,min: Minimum Ground Temperature,max: Maximum

b
8

@ o e

Figure 13. LWS composite code and component execution.
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To describe the flow of control and data in the complete system in Figure 11, we show the detailed
system in Figure 14. In this figure, the flow of request into a component and the flow of response
out of a component is shown with the help of numeric tagging with the flow arrows. With the help
of numeric tagging, we try to show the flow of requests control/data from WIS to WS, as shown in
Figure 14. The shown system’s service execution begins with a request labeled “1” and ends with the
response labeled “50”.

25 1€7 49
! 4
=l Qo
PIPET) LwsS1 A% PIPED) |\ @““’
B B
2 47 Gl
roo £3

(PIPED) \ys; WSl
+8 *10 *12 +14

3@ 7v 9v 11€7 13v 15v l7$ 19v 21€7 %7 33#7 3’3&+ 35 3; 35? 41€7+ 43€7 45*
Y QD D QO Y DI IY Y DY QP QD
‘ sc1 ‘ ‘GTl H AT1 H AP1 MNiSle RF1 HWDl HHMl H DS1L ‘ ‘ sc1 ‘ ‘ GT1 H AT1 H APL HNlSle RF1 HWDl HHMlH DS1 ‘

v Request A Response

Figure 14. The flow of control and data in WS.

Once a request is received by the root sequencer connector SEQ1, a service request will be
generated by the connector for each connected component from left to right. Hence, the next request is
forwarded to LWS1 component. The root connector of LWSI1 is a pipe connector. A pipe connector
is a special sequencer that allows the results of one component as input data to other component
in a sequence. PIPE1 of LWSI forwards the first request to SC1 component to establish a satellite
communication link with the first WS component. The result of service execution from SC1 is passed
as input data for the service execution from the guard connector G1 in LWS1. G1 passes the request
forward if the communication link is established. Once forwarded by G1, PIPE1 of WS initiates
a request to each composed component in sequence from left to right. PIPE1 passes results of each
component as input data to be stored in DS1 in WS1. In WS1, once the response is received from the
last component DS1, PIPE1 generates the response for the received request. In receipt of the response
from WS1, G1 generates a response, which then enables PIPE1 in LWS1 to generate a response.
After receiving the response from first LWS1, SEQ1 forwards a request to LWS2. After receiving
response from LWS2, SEQ1 generates response to the request generator.

7. Discussion and Future Work

For the development of critical system (e.g., emergency/disaster management system),
the verification of the intermediate partial system architecture is an important activity. In this paper,
for the unique features of EX-MAN, a process for the construction of emergency systems is proposed.
In this process, the system is built step-wise and the partial architecture of the system is carefully
verified during each step.

For the proposed approach, we considered an extended weather management system for its
construction by using the EX-MAN component model. During the system construction, we identified
a number of limitations of the proposed approach and the model used for system construction.
Nevertheless, the proposed approach and the emphasis on verification and to check on process
properties has introduced a new way of constructing critical systems by using EX-MAN.

The proposed process is primarily human driven; the identification of the components from the
requirements set and then the composition of these components for system construction is performed
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by developers. Because of the experience and intuition of a developer, the attempt for a system
construction by different developers would be different. However, this gives us a motivation to further
study and explore the methods to support a developer as much as possible by using automated ways.
In ICP, the testing of the partial architecture is also a manual process, which can also be automated to
some extent with the help of a tool.

The constraint of the selected model is the passiveness of the architecture elements components
and connectors. In EX-MAN system, for a component/connector to perform its tasks, the control
reaches with a service request. In a cyber-physical system, the system may be comprised of many
active components/sensors. For this purpose, the development approach proposed by EX-MAN
should provide a means to create active components. We would like to explore and extend the model
for this purpose in the future.

For demonstration and validation purposes, we use an example of a DMS; however, in general,
the proposed method can be used for the construction of software-based systems and the partial
systems can be verified during the construction process. For example, the CoCoMe system [27] is built
using EX-MAN in [10]. The proposed method can be used to build the system with the provision to
check and validate the partial systems for the behaviour preservation and correctness-by-composition.
This is intended for our future work.
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Appendix A. Examples of System Architectures for CBD

Components with unspecified dependencies are program units depending on other program
units to perform their tasks without specifying these dependencies. To use a component of this
category, the user has to first find in the documentation any unspecified dependencies and then fulfil
those. For example, consider a simple architecture of two components with unspecified dependencies,
a class (a program unit in object-oriented programming does not specify dependencies in its interface).
A calls by passing messages to class B’s functionality to perform its task. For direct message passing,
A explicitly calls B with B’s reference, as shown in Figure Al. Classes A and B are coupled, control
flows from A to B. Component B has an unspecified required service too, which must be fulfilled to
execute the system. In this form of composition, two components are coupled at the code level. This
composition is based on specific components.

public class A{

public class B{

publ i ¢ voi d T
o Ao TEYG O Rt ity

) ’

Figure A1. Components with unspecified dependencies.

Components with specified dependencies are program units with all their dependencies specified
as required services along with their provided services. For example, consider an architectural unit in
ADL [28] with in-ports representing required services and out-ports representing provided services.
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To use a component of this category, the user has to fulfil the specified dependencies. For example,
consider a simple architecture of two components with specified dependencies: an architectural
unit A in ArchJava [29] is connected to another architectural unit B where the connected ports must
be matched and of different types, e.g., in-ports can only be connected to the matching out-ports.
For indirect message passing, B calls A’s service implicitly via connected ports, as shown in Figure A2.
In the perspective of control flow, architectural units A and B are also coupled. Unconnected in-ports of
A and B, which are specified required services, must be fulfilled for the system to function. In this form
of composition, two components are coupled at the interface level. This composition is not based on
specific components but on interface. Any two components with matching interfaces can be composed.

n m n m
A B
X y X y
{

conponent class A
port x{ requires int readNum();}
port y{ provides int add();}

!/ conposi ng program

connect a.y,b.x;

conponent cl ass
port x{ requires int add();}
port y{ provides int sqr();}

port n{ requires char readTxt();}
port n{ provides void printChar();}
//inplementations of provided nethods

-

port n{ requires char readTxt();}
port n{ provides void printChar();}
//inplerentations of provided nethods

-

Figure A2. Components with specified dependencies.

Components with no dependencies are program units with only specified provided services.
Web services [30] and components in the X-MAN component model (X-MAN) [31-33] do not have
required interface; hence, the encapsulated component category includes X-MAN components and
web services [10].

Web services and X-MAN components do not have required interface. The provided interface of
X-MAN components and WSDL (web service description language [34]) of web services represent the
provided service of the component. WSDL of a web service is available from a UDDI (universal description,
discovery and integration) registry. Hence, in this paper, we include web services in the category of
encapsulated components rather than in the category of objects as proposed in [35].

Web services are composed by orchestration [36] to produce a workflow; orchestration is a form
of coordination [37,38] in which participating web services are separated from the coordination
mechanism. We consider a simple online booking system Plan-a-Tour (PaT) shown in Figure A3.
In this form of composition, two components are not coupled with each other. Any two components
can be composed by using an independent coordinating program unit.

WS1@S1

N T
N |
\2\\\ i
N G §
iy

WsA@SHA4

WS2@S2

[ web service (webservice@location)
O BPEL process
—> servicerequest

—> response

Figure A3. A composite of web services.

We assume three web services, namely WS1 to book an airline ticket, WS2 to book a hotel room
and WS3 to book a taxi for airport pickup, available online on web servers S1, S2 and S3, respectively.
To plan a tour (e.g., to attend a two-day international conference), a customer has to use these three
web services for desired bookings for the tour. For the PaT system, using BPEL language, a workflow
is created by orchestration of the three available services. The workflow is then converted into a web
service W54 by creating a WSDL for the workflow; WS4 is hosted on web server S4. A client program
can call WS4 to make the three bookings in sequence.
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In X-MAN, for system construction, components as well as primitive exogenous connectors
are pre-built elements stored in the respective repositories. To illustrate the roles of different
exogenous connectors, a simple bank system is shown in Figure A4. In this form of composition,
two components are not coupled with each other. Any two components can be composed by using

level3  — %Ll
O

PIPEL

an exogenous connector.

Computation Layer

‘ATM‘ ‘Bankl‘ ‘BankZ‘

Figure A4. A composite of X-MAN components.

The bank system in Figure A4 has one ATM (Automated Teller Machine) to serve two branches
of a specific bank. The architecture of a system is a collection of components and connectors in
two layers for computation and control. Due to the hierarchical nature of composition in X-MAN,
exogenous connectors in the control layer can be separated into many levels. In the bank example,
during the system execution, the ATM component reads an ATM card and gets the authentication
from the central bank. After authentication, a composition connector PIPE1 transfers control and data
to a guard connector G1. The guard connector lets the control and data flow pass thorough if the card
authentication was successful. Based on the bank details, a selector connector SEL1 passes the request
to one of the bank branches. After serving one customer, loop connector L1 repeats the execution to
serve the next customer.
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