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Abstract: Sleep quality has been directly linked to cognitive function, quality of life, and a variety
of serious diseases across many clinical domains. Standard methods for assessing sleep involve
overnight studies in hospital settings, which are uncomfortable, expensive, not representative of
real sleep, and difficult to conduct on a large scale. Recently, numerous commercial digital devices
have been developed that record physiological data, such as movement, heart rate, and respiratory
rate, which can act as a proxy for sleep quality in lieu of standard electroencephalogram recording
equipment. The sleep-related output metrics from these devices include sleep staging and total sleep
duration and are derived via proprietary algorithms that utilize a variety of these physiological
recordings. Each device company makes different claims of accuracy and measures different features
of sleep quality, and it is still unknown how well these devices correlate with one another and perform
in a research setting. In this pilot study of 21 participants, we investigated whether sleep metric
outputs from self-reported sleep metrics (SRSMs) and four sensors, specifically Fitbit Surge (a smart
watch), Withings Aura (a sensor pad that is placed under a mattress), Hexoskin (a smart shirt),
and Oura Ring (a smart ring), were related to known cognitive and psychological metrics, including
the n-back test and Pittsburgh Sleep Quality Index (PSQI). We analyzed correlation between multiple
device-related sleep metrics. Furthermore, we investigated relationships between these sleep metrics
and cognitive scores across different timepoints and SRSM through univariate linear regressions.
We found that correlations for sleep metrics between the devices across the sleep cycle were almost
uniformly low, but still significant (p < 0.05). For cognitive scores, we found the Withings latency
was statistically significant for afternoon and evening timepoints at p = 0.016 and p = 0.013. We did
not find any significant associations between SRSMs and PSQI or cognitive scores. Additionally,
Oura Ring’s total sleep duration and efficiency in relation to the PSQI measure was statistically
significant at p = 0.004 and p = 0.033, respectively. These findings can hopefully be used to guide
future sensor-based sleep research.
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1. Introduction

Between 50 and 70 million Americans currently suffer from poor sleep [1]. A 2014 study from
the Centers for Disease Control and Prevention found that over one third of Americans (34.8%)
regularly sleep less than the recommended 7 hours per night [2]. Although the body has remarkable
compensatory mechanisms for acute sleep deprivation, chronic poor sleep quality and suboptimal
sleep duration are linked to many adverse health outcomes, including increased risk of diabetes [3],
metabolic abnormalities [4], cardiovascular disease [5], hypertension [6], obesity [7], and anxiety and
depression [8]. Chronic sleep deprivation also poses economical burdens to society, contributing
to premature mortality, loss of working time, and suboptimal education outcomes that cost the US
$280.6-411 billion annually [9]. However, the underlying mechanisms mediating the adverse effects of
poor sleep remain unknown. Diverse factors and complex interactions govern the relationship between
health and sleep, and there is likely substantial inter-individual variability. Pronounced gender [10],
race [11], and ethnicity differences in sleep-related behaviors are well-established [2].

It is clear that broad, population-level studies of sleep are necessary to understand how lifestyle
and environmental factors contribute to poor sleep and to link sleep abnormalities to their attendant
negative health effects [12]. It is particularly important to capture individuals’ sleep patterns in
natural sleep settings (i.e., at home). However, traditional approaches to studying sleep do not permit
these types of studies. Polysomnography (PSG), where brain waves, oxygen levels, and eye and
leg movements are recorded, is the current “gold standard” approach to studying sleep. A PSG
study typically requires the participant to sleep in a hospital or clinic setting with uncomfortable
sensors placed on the scalp, face, and legs. These studies, which remove the participant from his/her
natural sleep environment, are not well suited to longitudinal assessments of sleep. They also create
issues such as the first night effect, which limit the translatability of laboratory sleep studies to
real-life environments [13]. The recent development of clinical grade, at-home PSG tools has enabled
quantification of the laboratory environment’s effect on sleep [14]. Such studies have generally
confirmed that participants sleep better at home than they do in a lab, although these findings are not
universal [15].

Even with the availability of the at-home PSG, however, it is unlikely that the use of expensive,
cumbersome, single-purpose equipment will promote the kinds of large-scale population studies
that can quantify the diverse factors affecting sleep and its relationship to health outcomes.
More user-friendly, lightweight, and unobtrusive sleep sensors are needed; ideally these would
be embedded in devices that study participants already own. Recently, several companies have
developed sub-clinical grade “wearable” technologies for the consumer market that passively collect
high frequency data on physiological, environmental, activity, and sleep variables [16]. The Food
and Drug Administration classifies these as general wellness products and they are not approved for
clinical sleep studies. Due to their passivity, low risk, and growing ubiquity amongst consumers, it is
clear that these devices present an intriguing new avenue for large-scale sleep data collection [17].
Combined with mobile application (app) software to monitor cognitive outcomes such as reaction
time, executive function, and working memory, these devices could feasibly be used for large-scale,
fully remote sleep studies.

This study aimed to determine the feasibility of monitoring sleep in a participant’s natural
environment with surveys completed electronically. Specifically, we performed a week-long pilot
comparative study of four commercially available wearable technologies that have sleep monitoring
capabilities. For the entire week, 21 participants were instrumented with all four devices, specifically
Fitbit Surge (a smart watch), Withings Aura (a sensor pad that is placed under a mattress), Hexoskin
(a smart shirt), and Oura Ring (a smart ring). To assess the feasibility of a fully remote study relating
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sleep features to cognition, we also assessed participants’ daily cognitive function via a series of
assessments on a custom-built mobile app. None of the four devices we compared in this study had
been previously compared head-to-head for sleep and cognition research. Our results highlight some of
the key difficulties involved in designing and executing large-scale sleep studies with consumer-grade
wearable devices.

The rest of the paper is organized as follows. In Section 2, we describe the literature of related
work including state-of-the-art research. In Section 3, we detail the materials and methods employed
in this work, including the participant recruitment process, all metrics collected (e.g., device output),
and the statistical tests performed. We detail the results from all assessments in Section 4. We discuss
the implications of our work as well as limitations in Section 5 and finally conclude the paper in
Section 6.

2. State-of-the-Art

This study built off of previous work that utilized comparisons of various devices and
polysomnography [18,19]. For instance, de Zambotti et al. [19] directly compared the Oura ring
with PSG. Correlation matrices from their study show poor agreement across different sleep stages,
showing that tracking sleep stages was a problem for the Oura. However, this study concluded that the
Oura’s tracking of total sleep duration (TSD), sleep onset latency, and wake after sleep onset were not
statistically different than that of PSG for these metrics. The Oura was found to track TSD in relative
accordance with PSG in this regard. This suggests that many devices have trouble tracking TSD or
participants had trouble wearing devices correctly outside of a monitored sleep lab.

The biggest question for these devices is, how well do they actually reflect sleep? The current
consensus is mixed. For instance, de Zambotti et al. [20] found good overall agreement between PSG
and Jawbone UP device, but there were over- and underestimations for certain sleep parameters such
as sleep onset latency. Another study compared PSG to the Oura ring and found no differences in
sleep onset latency, total sleep time, and wake after sleep onset, but the authors did find differences in
sleep stage characterization between the two recording methods [19]. Meltzer et al. [21] concluded
that the Fitbit Ultra did not produce clinically comparable results to PSG for certain sleep metrics.
Montgomery-Downs et al. [22] found that Fitbit and actigraph monitoring consistently misidentified
sleep and wake states compared to PSG, and they highlighted the challenge of using such devices for
sleep research in different age groups. While such wearables offer huge promise for sleep research,
there are a wide variety of additional challenges regarding their utility, including accuracy of sleep
automation functions, detection range, and tracking reliability, among others [23]. Furthermore,
comprehensive research including randomized control trials as well as interdisciplinary input from
physicians and computer, behavioral, and data scientists will be required before these wearables can
be ready for full clinical integration [24].

As there are many existing commercial devices, it is not only important to determine how accurate
they are in capturing certain physiological parameters, but also the extent to which they are calibrated
compared to one another. In this way, findings from studies that use different devices but measure
similar outcomes can be compared in context. Murakami et al. [25] evaluated 12 devices for their ability
to capture total energy expenditure against the gold standard and found that while most devices had
strong correlation (greater than 0.8) compared to the gold standard, they did vary in their accuracy,
with some significantly under- or overestimating energy expenditure. The authors suggested that most
wearable devices do not produce a valid quantification of energy expenditure. Xie et al. [26] compared
six devices and two smartphone apps regarding their ability to measure major health indicators (e.g.,
heart rate or number of steps) under various activity states (e.g., resting, running, and sleeping).
They found that the devices had high measurement accuracy for all health indicators except energy
consumption, but there was variation between devices, with certain ones performing better than others
for specific indicators in different activity states. In terms of sleep, they found the overall accuracy
for devices to be high in comparison to output from the Apple Watch 2, which was used as the gold
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standard. Lee et al. [27] performed a highly relevant study in which they examined the comparability
of five devices total and a research-grade accelerometer to self-reported sleep regarding their ability to
capture key sleep parameters such as total sleep time and time spent in bed, for one to three nights
of sleep.

3. Materials and Methods

3.1. Research Setting

Participants were enrolled individually at the Harris Center for Precision Wellness (HC) and
Institute for Next Generation Healthcare research offices within the Icahn School of Medicine at Mount
Sinai. Monetary compensation in the form of a $100 gift card was provided to study participants upon
device return. During the enrollment visit, participants met with an authorized study team member in
a private office to complete the consent process, onboarding, and baseline procedures. The remainder
of the study activities took place remotely with limited participant-team interaction. The study team
maintained remote contact with each research participant throughout his/her participation via phone
or email to answer any questions and provide technical support. The study was approved by the
Mount Sinai Program for the Protection of Human Subjects (IRB #15-01012).

3.2. Recruitment Methods

To ensure a diverse population, the participants were recruited using a variety of methods,
including flyers, institutional e-mails, social media, institution-affiliated websites, websites that help
match studies with participants, and referrals.

3.3. Inclusion and Exclusion Criteria

Participants were eligible for the study if they were over 18 years old, had access to an iPhone,
had basic knowledge of installing and using mobile applications and wearable devices, and were
willing and able to provide written informed consent and participate in study procedures. Participants
were ineligible for the study if they were colorblind, part of a vulnerable population, or unwilling to
consent and participate in study activities.

3.4. Onboarding Questionnaires

During the initial study visit, participants were prompted to complete four questionnaires (see
Supplemental S1–S4). All questionnaires were completed electronically via SurveyMonkey and the
results were subsequently stored in the study team’s encrypted and secured electronic database.

The Demographics Questionnaire (Supplemental S1) ascertained basic demographic information.
The 36-Item Short Form Health Survey (SF-36; Supplemental S2). The SF-36 evaluated eight

domains: physical functioning, role limitations due to physical health, role limitations due to emotional
problems, energy/fatigue, emotional well-being, social functioning, pain, and general health. The SF-36
takes roughly 5–10 min to complete.

The Morningness-Eveningness Questionnaire (MEQ; Supplemental S3) is a 19-question,
multiple-choice instrument designed to detect when a person’s circadian rhythm allows for peak
alertness. The MEQ takes roughly 5–10 min to complete.

The Pittsburgh Sleep Quality Instrument (PSQI; Supplemental S4) is a nine-item, self-rated
questionnaire that assesses sleep over the prior month. The PSQI has been shown to be sensitive
and specific in distinguishing between good and poor sleepers. The PSQI utilizes higher numbers to
indicate poorer sleep. The PSQI takes roughly 5–10 min to complete.

3.5. Technology Setup and Testing

After the initial screening visit, participants were asked to set up their devices and begin the
week-long study at their leisure (Figure 1). The study team chose technologies based on performance
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and usability data obtained from HS#: 15-00292, “Pilot Evaluation Study on Emerging Wearable
Technologies.” Each participant was assigned four sleep monitoring devices: a Fitbit Surge smart
watch (Fitbit; first edition), a Hexoskin smart shirt (Hexoskin; male and female shirts and Classic
device), a Withings Aura sleep pad/system (Withings; model number WAS01), and an Oura smart ring
(Oura; first edition). Note that the form factors for the four devices were different; this was important
to ensure that they could all be used at once and would not interfere with each other.

Setup for each device involved downloading the corresponding manufacturer’s mobile application
on the participant’s iPhone and downloading the study team’s custom HC App. Participants agreed to
each manufacturer’s software terms and conditions in the same manner as if they were to purchase
and install the technologies themselves. In doing so, and as noted in the participant-signed consent
document, participants acknowledged that the manufacturers would have access to identifiable
information such as their names, email addresses, and locations. The HC App functioned as a portal to
allow participants to authorize the sharing of data between the manufacturers’ applications and the
study team’s database. During the initial setup period, the study team worked with participants to
troubleshoot any issues and ensure proper data transmission to the database.

3.6. Sleep Monitoring and Device-Specific Parameters

Over a 7-day consecutive monitoring period of the participant’s choosing, participants used the
four different sleep monitoring technologies and completed daily assessments (Figure 1). The monitors
measured physiological parameters (e.g., heart rate, heart rate variability, respiratory rate, temperature,
and movement), activity parameters (e.g., number of steps per day), and sleep-related parameters,
specifically time in each sleep stage, time in bed to fall asleep (latency), TSD, number of wakeups per
night (wakeups), and standardized score of sleep quality (efficiency). The Withings and Oura both
stage sleep as: (1) awake, (2) light, (3) deep, and (4) rapid eye movement (REM; Figure 1). The Hexoskin
stages sleep as (1) awake, (2) non-REM (NREM), and (3) REM. The Fitbit stages sleep as (1) very awake,
(2) awake, and (3) asleep.

3.7. Daily Questionnaires and n-Back Tests

Using the HC App, participants completed questionnaires and cognitive assessments on each day
of the 7-day study. These included the n-back test and self-reported sleep metrics (SRSMs).

3.7.1. n-Back Tests

The n-back test [28] assesses working memory as well as higher cognitive functions/fluid
intelligence. Participants were prompted to take the n-back test three times per day (morning,
afternoon, and evening). In each test, participants were presented with a sequence of 20 trials,
each of which consisted of a picture of one of eight stimuli: eye, bug, tree, car, bell, star, bed, anchor.
The participant was asked whether the image was the same as the image n times back from the current
image, where n = 1 or 2. The stimuli were chosen so that in the course of 20 trials, 10 would be congruent
(the stimulus would match the n-back stimulus) and 10 would be incongruent. The participant had
500 milliseconds to enter a response. If no response was entered, the trial was counted as incorrect and
a new trial was presented. The n-back tests took roughly 3 min each, for a total of under 10 min/day.

3.7.2. SRSMs

The participant was asked for an estimate of TSD, latency (i.e., time to fall asleep), and start to end
sleep duration (i.e., TSD plus latency, referred to as Start-End). Participants self-reported these metrics
electronically through the HC App at wakeup (1–2 min completion time).
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Figure 1. Study structure and data collection for our pilot sleep study. (A) Illustration of sleep study
monitoring procedure and data collection strategies. (B) Example data showing a comparison of sleep
staging of a single night for one study participant for all four devices.

3.8. n-Back Test Scoring

For each trial (i.e., each morning, afternoon, evening per study day), the participants’ response
time and the correctness/incorrectness of responses were recorded. We calculated four different scores
for the n-back tests: median reaction time and percent correct, stratified by congruent vs. incongruent
items. We treated all reaction times the same and did not segment or weigh based on items that the
participants got correct vs. incorrect. Each participant was then given a cognitive score based on
a self-created scoring function (Equation (1)) of the reaction time, degree of difficulty of question,
and correctness. The metric accounts for variation across multiple elements of the n-back results
leading to a greater representation of performance. The formula for the metric is∑(

1− Reaction Time
Max Reaction Time

)
∗Answer Correct ∗ Steps Back

2

n
(1)

3.9. Inter-Device Comparisons for Sleep Staging and Metrics

We compared each pair of devices for overall correlation in sleep staging across all nights on
a per-epoch basis. While the other three devices were used in this analysis, Fitbit was not included
because it does not segment sleep by stages, rather measuring asleep vs. not asleep. Oura and Withings
track four stages of sleep while the Hexoskin tracks three (see Section 3.6). Accordingly, the NREM
sleep stages for Withings and Oura were combined into a single category (NREM) for this correlation
analysis. After this transformation, these three devices had three stages of sleep used for this correlation
analysis: (1) awake, (2) NREM, and (3) REM. We utilized Kendall’s rank correlation for this analysis
as sleep staging was ordinal. We performed Pearson correlation to compare the between-device
correlation for specific device-produced sleep metrics, specifically TSD (all four devices) and REM
(Oura, Hexoskin, and Withings), both in terms of total seconds. We also assessed the correlation of
SRSMs, specifically TSD, to device-produced TSD (all four devices) across all nights per participant.
We used Pearson’s correlation for this analysis as density plots of these data did not reveal any outliers
(Figure 2).

3.10. Statistical Models Linking Device Data to PSQI and n-Back Scores

We built a series of univariate linear models that regressed each individual sleep feature on either
PSQI score or n-back score. The PSQI tracks quality of sleep, with higher values indicating poorer
sleep. We performed a series of univariate linear regressions on the one-time reported PSQI against all
available device and SRSMs (TSD and latency), taking the mean of each metric across all nights of
sleep for each participant as a general representation of sleep quality. These device metrics include:
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latency, TSD (in hours), wakeups (in number of events), efficiency, and REM (in hours). For these
analyses, one participant was not included due to lack of data. Additionally, we used univariate linear
regressions to compare n-back score against device and SRSM data. For each analysis, we regressed
the n-back score of each timepoint (i.e., morning, afternoon, evening) against the mean of each device
metric or SRSM feature by participant. In all of the regression models for the n-back scores, we analyzed
only participants with two or more days of reported scores for each timepoint. This left us with 16, 19,
and 18 participants out of the original 21 for morning, afternoon, and evening n-back tests, respectively.

3.11. Analysis of Missing Data

We analyzed the degree of missingness of each device-reported or self-reported field as measures of
device reliability/quality or participant compliance, respectively. As the study progressed, some sleep
features were also updated due to new advances in hardware and software on the device side,
which resulted in missing data columns that were not included in the missing data plot.

4. Results

4.1. Summary of Study Population

Table 1 describes our study population, which consisted of 21 participants (11 female; 10 male).
The median age of the cohort was 29 years (range: 23–41). The median PSQI score was 4 (range: 1–12).
Sixteen of our participants were classified as normal sleepers, three were poor sleepers, and two were
very poor sleepers. Median MEQ score was 52 (range: 35–73). We provide score summaries for all
eight SF-36 subcategories at the bottom of Table 1. Additionally, the racial breakdown of the cohort
was as follows: 17 Caucasian (white) and 4 Asian participants.
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Table 1. Summary of the study population. The participant’s gender (M/F/O), baseline assessment of sleep quality according to the Pittsburgh Sleep Quality Index
(PSQI) (with higher values indicative of poorer sleep), age, SF-36 score (a measure of general health along eight axes), and MEQ time (optimal time of day) are included.

ID Gender Age PSQI MEQ SF-36 Scores

Physical
Functioning

Role Limitations
(Physical)

Role Limitations
(Emotional) Energy Emotional

Well-Being
Social

Functioning Pain General
Health

1 F 23 1 50 100 100 100.0 50 68 87.5 100.0 55
2 F 26 4 47 90 100 66.7 45 72 100.0 100.0 60
3 F 27 5 52 100 100 100.0 45 56 87.5 90.0 50
4 F 27 2 36 100 100 100.0 65 80 75.0 100.0 55
5 F 27 4 58 100 100 100.0 50 76 87.5 90.0 55
6 F 28 3 52 100 100 100.0 55 76 75.0 100.0 60
7 F 28 3 40 90 100 33.3 50 72 87.5 67.5 55
8 F 29 12 35 100 100 0 15 36 50.0 67.5 55
9 F 31 4 49 95 100 100.0 60 84 100.0 100.0 55

10 F 39 4 49 60 50 100.0 45 44 87.5 77.5 55
11 F 41 5 53 100 100 100.0 95 96 100.0 100.0 60
12 M 25 10 55 100 100 66.7 85 76 100.0 100.0 60
13 M 29 5 52 100 100 100.0 50 88 100.0 100.0 50
14 M 29 4 41 100 100 100.0 50 76 100.0 100.0 60
15 M 31 3 56 95 100 100.0 65 80 75.0 90.0 50
16 M 34 12 73 100 100 66.7 50 52 62.5 100.0 55
17 M 35 6 52 100 100 100.0 75 80 100.0 100.0 50
18 M 37 3 61 90 100 66.7 50 80 87.5 90.0 55
19 M 39 8 72 100 100 100.0 80 88 100.0 100.0 55
20 M 41 6 55 95 100 100.0 50 84 100.0 80.0 55
21 M 41 9 52 95 100 66.7 35 52 87.5 70.0 60

MIN 23 1 35 60 50 0 15 36 50 67.5 50
MEDIAN 29 4 52 100 100 100 50 76 87.5 100 55

MAX 41 12 73 100 100 100 95 96 100 100 60
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4.2. Inter-Device Comparisons for Sleep Stages and Metrics

Table 2 shows the summary statistics for all device-produced metrics and SRSMs. TSD was
reported by all devices and by the participants themselves (i.e., as part of SRSM). Figure 2A shows
a correlation matrix of TSD. The correlations were generally medium to weak (% < 0.7 for all pairwise
comparisons), although surprisingly the correlations of the SRSM with device estimates were on
par with correlations among the devices themselves. Figure 2B shows a REM sleep (in sec) cycle
correlations across the Oura, Hexoskin and Withings (Fitbit did not report an estimate of REM sleep).
The correlation between Oura and Withings was highest at % = 0.44, while Oura and Hexoskin had the
lowest correlation (% = 0.22). Figure 2C shows Kendall’s rank correlation across overall sleep stages for
Withings, Hexoskin, and Oura (see Section 3.9). All of these assessments were statistically significant
at the p < 0.05 threshold. We report the p values from these analyses in Supplemental S5.
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Figure 2. (A) A correlation matrix of total sleep duration (TSD) (in seconds) by device and self-reported
estimation (i.e., self-reported sleep metrics (SRSMs)) with p value significance indication (* p < 0.1;
** p < 0.05; *** p < 0.01). Each point represents data from each night for each participant. The plots in
the diagonals of A and B reflect the distribution of sleep metric of interest (TSD and REM, respectively).
(B) A REM sleep (in sec) correlation across the Oura, Hexoskin, and Withings devices with p value
significance indication (same as above). The Fitbit was excluded, as it does not track REM vs. NREM
sleep. for each individual device. The plots in the bottom left of A and B show the trend line with 95%
confidence intervals between devices. (C) A correlation matrix of overall sleep stages (awake, NREM,
and REM) between Oura, Hexoskin, and Withings devices (Fitbit does not differentiate between NREM
and REM) with p value significance indication (same as above).
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Table 2. Summary metrics of device data and SRSMs. All units are in hours except wakeups which is
in occurrences and efficiency (no units). Sleep efficiency is a metric to track percentage of time in bed
while asleep. TSD is total sleep duration which is similar to start-end duration and similar features
were utilized that included latency and other measures.

Device Metric n Mean St. Dev Min Pctl (25) Pctl (75) Max

Fitbit

Efficiency 129 94.70 15.70 31.00 94.00 97.00 193.00

TSD All 129 7.47 1.47 3.78 6.50 8.43 11.40

TSD 129 7.58 1.58 1.78 5.98 7.93 10.75

Start-End 129 7.58 1.73 3.78 6.50 8.48 15.87

Wakeups 129 1.60 1.20 0.00 1.00 2.00 8.00

Hexoskin

Efficiency 114 92.40 4.40 70.30 91.10 95.30 97.80

TSD 114 6.72 1.31 3.45 5.78 7.81 9.69

Start-End 135 7.57 1.42 3.93 6.57 8.58 11.43

REM 123 2.15 0.57 0.69 1.77 2.53 4.12

Latency 114 0.29 0.26 0.07 0.12 0.38 1.56

Oura

Efficiency 127 89.70 14.40 24.00 84.00 93.00 164.00

TSD 128 7.69 1.72 0.42 6.73 8.75 13.48

Start-End 130 10.67 11.63 4.62 6.97 9.55 117.60

REM 127 2.17 1.11 0.00 1.29 2.81 6.38

Deep 127 1.12 0.58 0.00 0.73 1.44 2.58

Wakeups 127 2.40 1.90 0.00 1.00 4.00 7.00

Latency 127 0.26 0.25 0.01 0.11 0.30 1.58

Withings

Efficiency 141 84.10 20.50 20.50 74.80 90.10 179.80

TSD All 141 8.99 2.89 0.53 7.45 10.12 27.03

TSD 141 6.97 1.75 0.33 5.95 8.15 10.97

Start-End 141 9.30 4.45 0.42 7.08 9.73 34.55

REM 141 1.40 0.46 0.00 1.15 1.67 2.63

Deep 141 1.74 0.58 0.00 1.42 2.15 3.67

Light 141 3.83 0.98 0.33 3.22 4.45 6.03

Wakeups 141 2.40 2.60 0.00 0.00 3.00 13.00

Latency 141 0.32 0.36 0.00 0.08 0.42 2.37

Wakeup
Duration 141 1.38 2.14 0.03 0.53 1.50 17.48

SRSMs Start-End 122 7.34 1.45 4.50 6.35 8.24 12.33
TSD 122 6.91 1.56 3.00 6.00 7.78 15.00

Latency 122 0.24 0.23 0.02 0.08 0.33 2.00

4.3. PSQI, Cognitive Scores, and SRSMs vs. Device Data

Table 3 shows the results of a series of univariate linear models, each of which included either
PSQI or cognitive score (morning, afternoon, and evening timepoints) as the dependent variable
and the mean of the device metric per participant as the independent variable. The only statistically
significant associations for PSQI at scale (i.e., significance threshold at alpha = 0.05) were for Oura’s
measurement of TSD and sleep efficiency (p< 0.05 for both). In both cases, an increase in TSD or sleep
efficiency was associated with a significant decrease in PSQI score; since PSQI increases with poor
sleep quality, these associations are in the expected direction (more sleep or more efficient sleep leads
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to better or lower PSQI). Withings latency was statistically significant for afternoon cognitive scores
and evening cognitive scores at p = 0.016 and p = 0.013, respectively. We did not find any significant
associations between SRSMs and cognitive scores or overall PSQI.

4.4. Cognitive Scores vs. Participant Summary Data

Table 4 shows the results of univariate linear models that regressed cognitive score on participant
summary features. With regards to the morning cognitive score, there was a significant association
with the SF-36 sub-category of physical functioning (p = 0.014); however, further analysis revealed
that this was due to the presence of an outlier with very low physical functioning as well as a low
cognitive score, and exclusion of this individual removed the significant association. The SF-36
sub-category of emotional well-being was trending towards significance (p = 0.078) with cognitive
score that appears robust to the removal of individual data points. None of the other summary features
were significantly associated with the morning cognitive score. Several other features were statistically
significant (p < 0.05) across two or more cognitive score timepoints, and also of note is the consensus
of significance of features across afternoon and evening cognitive score timepoints. (Table 4).

Table 3. Results of multiple univariate linear models for PSQI (left) and cognitive scores across
all timepoints (right). For the PSQI-related models, the independent variables were the means of
device data for each participant, and the dependent variable was PSQI. The higher the value is on the
PSQI, the worse the sleep quality; thus, positive correlations suggest relation to poorer sleep quality.
For the cognitive score-related models, the independent variables were the means of device data for
each participant, and the dependent variable were the cognitive scores. We show the p values of
each univariate regression for cognitive score by timepoint. Please see Supplemental S6–S8 for more
statistics related to these regressions. All units are in hours with the exception of wakeups (number of
occurrences) and efficiency (a standardized metric).

PSQI Cognitive scores (p Value)

Device Feature Coefficient Std. Error p-Value R2 Morning Afternoon Evening

Fitbit
TSD −0.273 0.544 0.622 0.014 0.825 0.511 0.610

Wakeups 1.570 1.005 0.136 0.119 0.329 0.672 0.857

Withings

TSD −0.125 0.498 0.804 0.004 0.110 0.497 0.409

Latency −2.080 2.83 0.472 0.0291 0.869 0.016 ** 0.013 **

Efficiency 0.010 0.060 0.869 0.002 0.315 0.148 0.194

Wakeups 0.352 0.427 0.421 0.036 0.888 0.361 0.378

REM 0.260 1.962 0.896 0.001 0.342 0.617 0.557

Oura

TSD −1.004 0.305 0.004 *** 0.376 0.265 0.197 0.221

Latency −7.311 4.445 0.117 0.131 0.366 0.499 0.563

Efficiency −0.092 0.040 0.033 ** 0.228 0.285 0.332 0.301

Wakeups 0.168 0.491 0.736 0.006 0.226 0.184 0.289

REM −0.526 0.715 0.471 0.029 0.656 0.732 0.713

Hexoskin

TSD 0.187 0.702 0.793 0.004 0.206 0.289 0.235

Latency 1.249 4.444 0.782 0.004 0.995 0.481 0.718

Efficiency −0.226 0.272 0.417 0.037 0.530 0.527 0.798

REM 0.397 1.833 0.831 0.003 0.128 0.186 0.180

SRSM
TSD −0.725 0.558 0.210 0.086 0.725 0.361 0.273

Latency 1.846 4.033 0.653 0.012 0.935 0.210 0.261

Observations 20 16 19 18

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 4. In this collection of univariate linear models, the participants’ summary data are the
independent variables, and cognitive score is the dependent variable. We present the p values of
each univariate regression for cognitive score by timepoint. Please see Supplemental S9–S11 for more
statistics related to these regressions. These metrics all represent standardized scores.

Cognitive Scores (p Value)

Feature Morning Afternoon Evening

PSQI 0.531 0.083 * 0.057 **

MEQ 0.529 0.057 0.120

Emotional Role Limitations 0.665 0.005 *** 0.003 ***

Energy 0.700 0.018 ** 0.010 ***

General Health 0.769 0.823 0.961

Physical 0.014 ** 0.745 0.597

Social 0.170 0.004 *** 0.002 ***

Well-being 0.078 * 0.005 *** 0.001 ***

Observations 16 19 18

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

4.5. Correlation between MEQ Preference and Cognitive Test Response Rates

We illustrate the rate of missingness for sleep-related metrics in Figure 3; in general, a large
proportion of relevant data were missing due to noncompliance by users or device malfunctioning.
We stratified response rate for morning, afternoon and evening test results, which are grouped by
participants’ MEQ segmentation into morning, intermediate, and night in Figure 4. We see that
morning-preferred participants had the lowest response rate across all times. Furthermore, we see that
afternoon response times were the highest for all MEQ groupings.
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5. Discussion

The results of our study reflect some general findings that are likely to impact most research
involving wearable devices and mobile apps. First, because of low enrollment, our ability to detect
effects was low; an effect would need to be highly pronounced to be detectable in a study population
of this size. The effort involved in publicizing the study, enrolling participants, and ensuring they were
able to complete the study (no device or app malfunctions, no devices running out of batteries, etc.)
was substantial. Simple study designs with perhaps one or two devices that participants already own
and are familiar with offer the greatest chance of success on a large scale. Second, there was substantial
variability among the devices we tested, making the choice of device for any sleep study a material
factor that can impact results. Even if it is impossible to assess which device is “preferred” for a given
study design, this variability impacts cross-interpretability of results across different studies and will
thwart attempts at meta-analyses. In this work, for TSD, we found that Oura, which has been shown
to correlate strongly with PSG in prior work [19], had moderate correlations to Fitbit (0.51), Hexoskin
(0.37), and Withings (0.50). Additionally, across the three devices that tracked REM, the maximum
correlation was only 0.44 between Oura and the Withings. Finally, missingness and the presence of
outliers were important considerations for all statistical analyses with this dataset. Although this was
a pilot study, all of these issues are likely to translate to larger wearable device studies as well.

5.1. Study Limitations

There were several limitations to this study. First, we did not include other cognitive assessment
tests such as the psychomotor vigilance test. Furthermore, while the n-back test is often used as
an assessment of working memory in sleep-related research, the particular composite metric we derived
to gauge performance has not been previously validated in this regard. A color-word association task
based off the Stroop test was given, but we were not able to analyze results due to poor response rate.
Additionally, as a result of using commercial sensors, we were unable to fully blind participants to the
output of their sleep devices. While the participants were instructed not to check the nightly device
sleep metric outputs when recording their estimated SRSMs, this could have led to biased responses
if they did so. The biggest limitation of the current study was the lack of a gold standard for sleep
metrics, namely PSG. It should be noted that sleep studies are extremely difficult to conduct with large
numbers of participants due to the prohibitive cost of PSG. In the future, however, this field can face
huge growth if some amalgamation of cheap, at home devices could reliably track various data and
cross confirm results amongst themselves. This would be extremely beneficial in creating a mapping
function of individual device metrics to PSG metrics, which in turn could allow these more simplistic
sensors to accurately recreate conditions of PSG’s at a low cost and in the comfort of participants’
homes. This mapping function could increase recruitment of participants while decreasing cost for
sleep studies.

5.2. Considerations Related to Cognitive Metrics and Self-Reported Sleep Quality Indices

PSQI has been shown to be a poor screening measure of PSG [29]. This may explain why
self-reported one-time PSQI sleep quality variation was not well explained by much of the device
data. However, the Oura ring’s measurements of efficiency and sleep duration did explain variation
in the one-time PSQI with statistical significance. These Oura tracking metrics may merit further
investigation. Also, it is important to note that poor tracking metrics and a low number of participants
could also be the reason more device data was not able to explain variation in PSQI. In terms of the
SRSMs, specifically TSD, we found significant (p < 0.05), albeit low (range: 0.31–0.58) correlations
between all devices.

Evidence of using the n-back test as a fluid intelligence metric is contentiously accepted, with some
critics citing low correlation between n-back and other fluid intelligence tests [30]. The cognition
metric, taken from the N-back results, and results from participant summary data had statistically
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significant associations. This provides a direction for further studies to investigate with larger samples.
Ultimately, higher statistical power is needed to help understand these relationships. A recent study
showed that poor sleep or deprivation may cause local deficits, specifically for tasks of an emotional
nature [31]. This may suggest implementing a metric for wellbeing in addition to fluid intelligence
tasks. Of particular note was Withings latency, which was statistically significant for the afternoon and
evening cognitive scores (p < 0.05). Due to the low sample size, the importance of this is uncertain,
but hopefully with subsequent studies could build on this work by further comparing latency with
cognitive scores.

Insight from response rate based on MEQ segmentation into three categories (early, intermediate,
and late preference) could help future study designs. Across all MEQ groups, n-back test response
rates were highest in the afternoon. This suggests that crucial surveys should be administered around
this time if possible. Another finding of note is that late-preferred participants had the highest
n-back test response rate on average in the morning and afternoon timepoints. This finding suggests
that participants who are not late-preferred may need extra motivating factors to increase their
response rates.

6. Conclusions

We reported correlations among important sleep metrics for four different sleep tracker devices
and correlated the results with self-reported questionnaires and cognitive metrics, specifically the
n-back. Difficulty in participant enrollment and engagement led to new ideas about recruitment design
and participant engagement design. Exploiting existing technology such as ReasearchKit or HealthKit
from Apple can have a twofold benefit for recruiting people remotely (with an e-consent feature
built into ResearchKit) and sharing electronic health records (EHR). By further combining this with
additional data stores present in the HealthApp, participant eligibility screening can be improved [32].
In consideration of the missing data in the questionnaires and active tasks prescribed, we promote
the use of as many passive collection procedures as possible. One such option is a smart mirror [33],
which can be more passive than using a smartphone for data (e.g., imaging) collection. Finally, the weak
correlation among devices opens new challenges for accurate interpretation and data portability for the
end user. How will device-specific findings from various studies be taken in context to one another?
The results from the current study can hopefully highlight the need for better standardization for
sleep-related metrics across devices in order to make any robust and accurate conclusions.
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