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Abstract: Deformable image registration is still a challenge when the considered images have strong
variations in appearance and large initial misalignment. A huge performance gap currently remains
for fast-moving regions in videos or strong deformations of natural objects. We present a new
semantically guided and two-step deep deformation network that is particularly well suited for
the estimation of large deformations. We combine a U-Net architecture that is weakly supervised
with segmentation information to extract semantically meaningful features with multiple stages of
nonrigid spatial transformer networks parameterized with low-dimensional B-spline deformations.
Combining alignment loss and semantic loss functions together with a regularization penalty to
obtain smooth and plausible deformations, we achieve superior results in terms of alignment quality
compared to previous approaches that have only considered a label-driven alignment loss. Our
network model advances the state of the art for inter-subject face part alignment and motion tracking
in medical cardiac magnetic resonance imaging (MRI) sequences in comparison to the FlowNet and
Label-Reg, two recent deep-learning registration frameworks. The models are compact, very fast in
inference, and demonstrate clear potential for a variety of challenging tracking and/or alignment
tasks in computer vision and medical image analysis.

Keywords: image registration; large deformation; weakly supervised

1. Introduction

Estimation of motion and deformation between images continues to play an important role for
multiple vision tasks. While the computation of optical flow for 3D scene motion of smaller magnitude
can be performed very effectively and accurately using a range of variational (coarse-to-fine) as well
as deep-learning models (e.g., FlowNet [1]), larger deformations still pose a significant challenge.
We hypothesize that the large performance gap is due to two reasons. First, current approaches have
a limited capture range, in particular for low-textured regions and remain prone to local optima
despite extensive multi-scale processing. Second, even supervised approaches that are trained on
huge datasets with ground truth flow fields fail to learn sufficient scene understanding and tend to
rely on low-level visual clues that become ambiguous for large deformations. Furthermore, learning
primarily from synthetically generated ground truth flow fields limits the practical application of
deep-learning optical flow models, because adaptation to a new unseen domain is usually not possible
and supervised dense correspondences hard to define for real world images.

Weakly supervised approaches [2,3], in contrast, only require semantic segmentation labels to
define a loss directly based on the warped segmentation masks for the training of a convolutional
neural network (CNN)-based registration model. Yet, these previous works have not addressed large
deformation problems and the learned features may again be prone to ambiguous matches (even
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in combination with smoothness regularization). We therefore propose to use semantic guidance
information directly into the feature learning of a two-step deep spatial transformer network for face
alignment. Our model comprises a U-Net part that extracts semantic object information for both
considered images. This information is fed into flow predictors that rely on a B-spline parameterization
for smooth deformable transformations. By employing more than one spatial transformer module
within a multi-iteration warping framework [1], we can also avoid the use of memory-intensive cost
volume approaches [4] that are hard to extend to high-resolution images or 3D problems.

1.1. Contributions

Our work is most closely related to the work of Qin et al. [2] that also proposed to learn
segmentation and registration jointly, but was limited to a single (recurrent) transformation network
and uses shared weights for both segmentation and registration networks. In contrast to the
FlowNet [1,5] or the SVF-Net [6] no (pseudo) ground truth deformation fields are required for training
our network, but a loss based on the alignment of labels is used instead. Hu et al. [3] also considered
this weakly supervised learning based on segmentation information, but did not include this guidance
in the feature extraction U-Net, which is crucial for large deformations as our experiments show.
(Example code available at: https://github.com/multimodallearning/semantically-guided).

1.2. Related Works

Dataset with ground truth deformation fields are difficult to find. Most supervised methods
use automatically generated ground truth deformation fields or estimate parameters for deformable
transformations [6–8] to train the network. They optimize the mean residual distance between ground
truth and estimated deformation fields. In the method of Krebs et al. [7], U-Net-like architecture is used
to estimate a dense deformation field from the concatenated fixed and moving images, while Sokooti
et al. [8] gave image patches as inputs to a Siamese network to estimate a patchwise 3D deformation
field. The obvious drawbacks of these methods are that the estimated deformation fields can only be as
good as the automatically generated deformation fields and that the trustworthiness of the generated
ground truth field cannot be guaranteed.

Some methods deal with this problem by training the network indirectly using available
annotation data, such as segmentation or in an unsupervised manner (only based on a predefined
similarity metric) using a spatial transformer network to warp the segmentation of the input
image [3,9–12]. De Vos et al. [9] compare the difference between warped moving image and fixed
image directly as loss, where a spatial transformer was employed for image warping. In addition to
the image intensity difference, the Label-Reg approach of [3] warps the segmentation using spatial
transformer and minimizes the difference between the warped moving and fixed segmentation. Various
segmentations or labels are given as input to the network and the soft probabilistic Dice is computed
as loss at different image scales. In VoxelMorph [12], in addition to unsupervised losses segmentation
can also be used as an auxiliary information to improve the accuracy. The use of segmentation for the
estimation of the deformation field can be beneficial especially to counter ambiguous correspondences
of object parts with locally similar appearance.

Within computer vision, there are several methods which jointly estimate semantic segmentation
and optical flow for videos [13–16]. Recent works integrate learning into optical flow frameworks to
improve the flow estimation using semantic segmentation. Sevilla et al. [13] use localized layers to
deal with the movement of different objects in videos. Cheng et al. [15] combine two existing network
architectures with a small modification into a network with two branches. Feature maps generated
by each branch (one for segmentation, the other for optical flow) are propagated to the other branch
to fuse the information for a final output. Hur et al. [14] employ superpixels to connect optical flow
and semantic segmentation. Tsai et al. [16] use an iterative scheme to jointly optimize optical flow and
segmentation to obtain video segmentation with improved object boundaries. In the medical image
domain, Qin et al. [2] have adopted the joint estimation of segmentation and motion for cardiac MR
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image sequences. For both segmentation and motion estimation, the same network, i.e., with shared
weights, is used for feature extraction.

2. Materials and Methods

A general overview of our proposed method is shown in Figure 1. Our deep network architecture
consists of three parts. The first part aims to extract semantically meaningful information using a U-Net
structured network [17] and is supervised using a soft constraint on pixel-wise class probabilities using
multi-label segmentation. The estimation of the deformation field is carried out in two consecutive
convolutional networks with nonlinear spatial transformer modules. Similar to the method of Hu
et al. [3], the transformation is only weakly supervised based on the alignment of the warped
moving segmentation in comparison with the fixed segmentation. To reduce the number of predicted
parameters and ensure a spatially smooth transformation, we use a coarse cubic B-spline transformation
model [18] with an additional regularization term.

Figure 1. Overview of our framework. From input images I f , Im the semantic features f f , fm are
extracted by U-Net and passed on to the registration networks (RegNet) after the concatenation.
Deformation field V1, V2 are then estimated by the first and the second RegNet, respectively. As input
of the second RegNet, the semantic features of the moving image are transformed using the output of
the first RegNet. Finally, two deformation fields are combined to obtain the final deformation field V.

2.1. Semantic Feature Extraction

To cope with large deformation, we strongly believe that semantic scene information is of great
importance. While previous methods [3,6] have implicitly used segmentation information to derive
a loss with respect to the estimated transform, we make additional explicit use of semantic clues
within the feature extraction for each image individually. Figure 2 shows the U-Net architecture of
the feature extraction part of our method, which contains 11 convolution filters with 3× 3 kernels,
two skip connections and roughly 200k trainable parameters. Given a greyscale image I ∈ RH×W ,
the network produces a SoftMax prediction f ∈ [0, 1]N for each pixel and each label l ∈ 1, . . . L. The
semantic loss is computed using weighted cross-entropy:

Lsemantic = −
N

∑
j

wf̂(xj) log f(xj), (1)

where f̂ is the ground truth segmentation with N sample points and xj is the j-th sample point. The
label weights vector w ∈ RL is determined by computing the square root of the inverse class frequency
for each label. For our task of registering two input images I f and Im, the network weights are shared.
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Figure 2. U-Net architecture to extract semantic image features for the subsequent spatial transformer
registration network.

2.2. Registration Network

Estimation of the deformation field is performed in two steps, given the network outputs f f and
fm of the feature extraction network. The extracted features contain semantic information of the input
images, which is the class probability of each pixel. These are passed on to the registration network
after concatenation, which is trained to learn a low-parametric deformation field representation Ṽ

in a smaller dimension. Deformation field V ∈ R2×H×W in the original image size can be retrieved
by upsampling using a cubic B-spline function. The evaluation of a dense displacement field using
B-splines (also called free form deformations [18]) can be efficiently calculated using three consecutive
average pooling layers without stride, following the theory of recursive cardinal splines.

In our two-step setting, we obtain two different deformation fields V1 and V2 from the first
and second registration network, respectively. Both networks have the same architecture; however,
the first network is trained with the immediate output of the feature extraction network f f and fm,
while the second network is trained with the warped moving features V1 ◦ fm instead of fm. The final
deformation field V is generated by combining the two fields. In this paper, we combine the fields in
two different ways; addition and transformation.

Finally, with the resulting dense displacement field V, the ground truth segmentation of the
moving image Sm is warped and the deformation loss is computed as follows:

Lde f orm =
1
L

L

∑
l=1

wl | S f (l) − T (V,Sm(l)) |, (2)

where wl denote the label weights and T is the spatial transformer for the B-spline transformation.
An additional loss term Lregular for regularization loss is computed for the estimated deformation field,
which penalizes deviations between the final estimation of deformation field V and a locally smoothed
version of the same displacements field Vsmooth:

Lregular = ||V− Vsmooth||2 . (3)

Finally, overall loss for semantically guided deformation estimation is computed as follows:

L = λs Lsemantic + Lde f orm + λr Lregular , (4)

where λs and λr are the weight parameters.
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2.3. Experiments

We have performed ablation studies for our framework and potential variants using the Helen
dataset [19]. Our method is also tested on a publicly available medical cardiac dataset (ACDC [20]).
The Helen dataset consists of 2330 face RGB images in different image sizes as well as ten segmentation
labels for face, eyes, eyebrows, nose, mouth and hair provided by Smith et al. [21]. The ACDC dataset
consists of 100 images of 4D MRI for training, for which three segmentation labels of right and left
ventricle and myocardium are given.

2.3.1. Data Preprocessing

For the face dataset, we cropped the images to have the same image size of 320× 260 using an
enlarged face bounding box and converted them into the greyscale images. For training, 2000 images
were used as in the work of Le et al. [19] and for the test, the remaining 330 images are used. For our
experiment only 7 labels are used, which excludes the hair label, due to their obscure appearance and
the mouth structures (upper lip, lower lip and inner mouth) are combined as one single mouth label,
since the inner mouth is not given in many samples.

The medical cardiac MRI dataset consists of 100 training image pairs (end-diastolic and
end-systolic) with the ground truth segmentation, which we divide into two subsets with 70 and 30
image pairs for training and testing respectively. The original images have a pixel spacing of 1.56 mm
for in-plain slice and 5–10 mm of slice thickness. We resampled and cropped all images to have the
same voxel dimension 128× 128× 64 with the slice thickness of ≈1.56 mm.

2.3.2. Implementation Details

The U-Net architecture used to extract semantic features is outlined in Section 2.1 and visualized
in Figure 2. To account for small structures in the images, a weighted cross-entropy loss was used.
Eleven 3 × 3 convolutional layers and two skip connections with a relatively small total number of
200’000 network parameters were used to avoid overfitting. Downsampling of the input is done using
a stride size of 2 in three convolutional layers and two upsampling layers are used to obtain output.
The output has half the input size. The network receives an image as input and returns SoftMax
probabilities for each structure as a channel.

For the registration part, a convolutional network was implemented as shown in Figure 3.
As described in Section 2.2, the same architecture is used twice to build a two-step framework with
substantially more channels to accommodate the challenging matching problem and optimize both
spatial transformations simultaneously during training. The output of registration network has a
smaller parametrization than the image. Therefore, we upsample the control-point displacement and
apply three cardinal B-spline smoothing steps before warping using average pooling layers. The kernel
size of the average pooling layers and thus the scale of the B-spline transformation for the output
is chosen to be 19 for the first network part (to capture large and coarse deformations) and 11 for
output of the second network (for a refinement of small structure alignment). For the medical dataset,
the scales of 5 and 3 are used, because the motion was smaller on average for this dataset. The scale
was chosen to be approximately 5% and 3% respectively (for first and second registration network
output) of the largest image dimension for the B-spline transformation, based on empirical tests. The
smoothing kernel size was also set relative to image size and object size (in particular the following
values were chosen: 5 and 3 for the face and the medical dataset respectively).

Throughout our experiment, we use Adam optimizer with the learning rate of 0.001 and the
momentum of 0.97. The weight of the regularization loss λr was chosen to be 0.001 and the weight of
semantic loss λs 1.0, which were determined empirically. For the regularization, the estimated dense
field is smoothed using two average pooling layers with the kernel size of 3 for the medical dataset
and 5 for the face dataset, also chosen empirically. The training batch size for the face dataset was 20
and for the medical dataset 5. The training was performed for 300 epochs for both datasets.
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Figure 3. Architecture of our registration network, which estimates displacements of a nonlinear
B-spline grid for spatial transformations.

2.3.3. Evaluation Metric

Given a deformation field for a pair of test images, we use the mean of the Dice coefficient
(equivalent to F1 score) across individual face parts as well as the contour distance of each structure to
evaluate the alignment (or registration) quality. Dice score for a label is computed as:

Dice =
2 ∑i |aibi|

∑i |ai|+ ∑i |bi|
(5)

where ai, bi are the labels in pixel i of reference image and target image, respectively. Contour distance
of each structure is computed as:

Dcontour =
∑sa∈S(A) d(sa, S(B)) + ∑sb∈S(B) d(sb, S(A))

|S(A)|+ |S(B)| (6)

where S(A) and S(B) are the total contour pixels of the reference and target images, respectively. The
mean Dice values are computed between the ground truth segmentation of fixed images and warped
ground truth segmentation of moving images. Please note that the segmentation labels for guidance
are only available for training images and new test pairs are registered without any manual labels. The
labels are only used to evaluate the registration accuracy. In addition to the alignment accuracy, we
have evaluated the quality of the estimated transformations, which is crucial for subsequent vision
applications such as style transfer. We calculate the Jacobian determinant (also Jacobian) to provide a
quantitative evaluation on the topology of the deformation field.

For each pixel (x, y), D(x, y) is the estimated displacement vector.

Jacobian = det

I +

 δDx(x,y)
δx

δDx(x,y)
δy

δDy(x,y)
δx

δDy(x,y)
δy

 (7)

where I is the identity matrix, Dx(x, y) and Dy(x, y) are the x and y component of D(x, y) respectively.
A Jacobian in each pixel provides the characteristic of the deformation, i.e., a Jacobian of 1 for no
change, >1 indicate expansion, 0–1 shrinkage and a Jacobian ≤0 indicates singularity. We report
standard deviation of the Jacobian, where smaller values indicate smoother transforms. The number
of negative Jacobian determinants indicates the number of singularity points, i.e., with smaller mean
number of pixels with a negative Jacobian, the deformation is more plausible.

In the following, different settings are compared to analyze the effect and importance of
each setting.
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3. Results and Discussion

3.1. Ablation Study

In this section, different parts of our framework are evaluated and compared to determine the
importance of each part. Our experiments compare minor modifications to the training scheme of our
proposed method: with or without guidance, with or without shared weights in the feature extraction,
and diffeomorphic transformation models.

3.1.1. Single vs. Two-Step Registration

In many cases, the estimation of deformation field is performed in a single step. We believe
that dividing the registration process into smaller steps by using two networks with the same total
number of parameters is more beneficial than estimating deformation in a single step. In the two-step
registration, one of the input features is transformed with the output deformation field from the
first registration network before being forwarded to the second one. We compare the performance
of the two-step network with the performance of the single network, where both networks have a
total of approximately 2.3 million network parameters. As shown in Figure 4, the two-step network
(pre-trained unet, two-step) outperforms the single network (pre-trained unet, single).

Figure 4. Sorted Dice scores (averaged across face structures) for all test images for various network
configurations (lower line is better). Details in Section 3.1.

3.1.2. Regularization

As described in Equation (3), our regularization term penalizes the difference between
non-smoothed and smoothed output fields and is scaled by λr. Without the regularization loss
the networks could not learn to estimate any plausible deformation field. We use average pooling
layers for computation of smoothed deformation fields, where the kernel sizes of the pooling layers are
chosen to reduce the standard deviation of the Jacobian of deformation fields. Using a too large kernel
size might deteriorate the accuracy of the deformation fields with respect to smaller structures. Dice
values for each structure are shown in Figure 5 for the empirically chosen kernel size of 5. Although
we found this size to be usually most appropriate, for small structures such as eyebrows and eyes
approximately 10% are not registered at all. However, this might also have been influenced by the
occlusion due to hair, especially when the forehead is covered.
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Figure 5. Sorted Dice scores for different face structures. The alignment of eyes and eyebrows is
challenging due to occlusions caused by hair in many images.

3.1.3. Semantically Guided Deformation Estimation

Instead of using a pre-trained segmentation network to start the deformation estimation, we
jointly train the semantic feature extraction U-Net with the two-step networks using semantic loss (see
Figure 4: end-to-end, guided and Table 1: ours) and compare with the same configuration without
semantic loss using only the deformation and regularization loss (see Figure 4: end-to-end, not-guided
and Table 1: ours (without guidance)). This has the advantage that only a soft constraint is used for
the semantic guidance loss and the deformation network can use clues based on more generic image
features (e.g., edges). However, this only led to a small quantitative improvement of the alignment in
terms of Dice score (0.5%), the warped images appear to be more realistically transformed. Example
results of our method is shown in Figure 6 and the training curves are shown in Figure 7.

Figure 6. Example results of our approach. (Top) fixed image with the ground truth fixed labels,
(middle) target image with warped ground truth fixed labels, (bottom) warped fixed images.
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Figure 7. Training loss and accuracy curves of the guided network (two-step, end-to-end). The training
loss and accuracy graph of other variations of our experiment show similar curves and therefore
left out.

3.1.4. Diffeomorphic Transformation

The final deformation fields from our method are smooth and the percentage of pixels with
negative Jacobian is relatively small (≈0.1%), albeit the fields are not diffeomorphic. We have compared
two cases where diffeomorphic deformation fields are computed. First, we estimate stationary velocity
fields instead of deformation fields and compute the final field using scaling and squaring to obtain
diffeomorphic transformation (see Table 1: ours (diffeomorphic)). Second, we apply a poly-affine
transformation as post-processing step to reduce the singularities in the resulting field (see Table 1:
ours (poly-affine)). The result shows that with the decreased singularity in the resulting field, the
accuracy of the transformation is also reduced. The singularity present in the final fields could be
necessary, e.g., to compensate for occlusion in the images.

Table 1. Dice scores, contour distances in pixel and the standard deviation of Jacobian determinant of
estimated deformation fields using different methods (for the Helen dataset). The standard deviation
of Jacobian determinants of deformation fields show the smoothness of the deformation fields, where
small values indicate more plausible, regular results. The mean of Jacobian negatives is the number
of singular points in the estimated field divided by the total number of pixels. For B-Spline FlowNet,
ours (without guidance) and ours (shared RegNet weights), we have implemented our own version of
the method from the each reference (details in Section 3.2). Explicit shape regression (ESR) requires in
addition corresponding manual landmarks for training. The experiment using pre-trained FlowNet
was performed without fine-tuning and using downsampled images, which we first affine transformed
based on the face landmarks. Approximated inference time is also given in seconds per image.

Method Dice (%) Contour Jacobian Jacobian Inference
Distance (px) Std. Negatives Time (s/img)

no registration 23.0 15.55 - - -
ESR ([22]) + CPD ([23]) 65.6 1.96 0.154 - -
B-Spline FlowNet 49.4 5.96 0.579 0.03124 ≈0.007
FlowNet w/ smaller images ([1]) 30.6 12.83 - - -
ours (without guidance, ∼[3]) 55.5 5.41 0.257 0.00062 ≈0.007
ours (shared RegNet weights, ∼[2]) 60.4 5.02 0.269 0.00061 ≈0.007
ours (diffeomorphic) 52.0 5.66 0.240 0.00062 ≈0.007
ours (poly-affine) 65.8 3.95 0.281 0.00093 ≈0.024
ours 66.0 4.01 0.285 0.00106 ≈0.007
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3.2. Comparison with Other Methods

The registration results with different quantitative evaluation measures are shown in Table 1.
As long as it was possible, we have evaluated the methods using Dice score, contour distance, standard
deviation of Jacobian and the mean number of pixels with negative Jacobian.

We compare our method with various methods; however for this experiment we have
implemented our own version of the networks, where we use same loss function as in the original
methods except for FlowNet. We use the original FlowNet version and used the pre-trained model.
Solely for this case, we have downsampled the input images and performed an affine transformation
beforehand (which constitutes an easier registration task). For the reproduction of Qin et al.’s
method [2], we used shared weights for registration networks, which are however, not shared with the
segmentation network. The reason for this was to compare the effect of using a two-step registration
network against recursive training of registration networks.

A new variant that combines the correlation layer of the FlowNet with our proposed B-spline
parameterization was implemented. This B-Spline FlowNet (Table 1: B-Spline FlowNet) yields
significant improvements compared to the original FlowNet (Table 1: FlowNet w/ smaller images)
but less accurate alignment (more than 10% points gap) than our proposed method. This clearly
demonstrates that large deformations are very hard to estimate without meaningful semantic guidance
during the training process.

We also compare our networks that are learned with segmentation information with strongly
supervised landmark models. As an example approach of this category, we used explicit face
regression of Cao et al. [22] to predict landmarks for all test images. Subsequently, we calculated
a dense warp field using the coherent point drift algorithm [23] (Table 1: ESR + CPD). Please note
that corresponding landmarks are much harder to annotate than segmentation labels and in many
applications, in particular 3D medical images, no meaningful points can be selected at all. This means
that landmark-model-based registration is somewhat out of competition and could be seen as an
upper bound to employing supervision with segmentations only. Nevertheless, our approach achieves
comparably high Dice overlap scores to the method of Cao et al. [22] with only slightly more complex
transformations (reflected by higher Jacobi determinants).

3.3. Medical Cardiac Image Registration

We evaluate our semantically guided registration network for the preprocessed MRI images from
the ACDC challenge [20]. The difficulty here lies in the large motion and strong imaging artefacts.
In addition, the substantial differences in appearance and contrast across subjects make learning a
model that generalizes well for a population difficult. Therefore, many previous approaches have
employed unsupervised learning strategies [24,25] or classical optimization-based methods [26], which
can rely on comparable intensity levels within one patient. We compare the results of these three
methods (Dice scores of compared methods are reported by Krebs et al. [25]) with our semantically
guided framework. As shown in Table 2, our method outperforms all these state-of-the-art methods
for the alignment of all structure. The resulting deformations are also plausible with a standard
deviation of Jacobian determinant of 0.3. Example results of intra-patient image registration are shown
in Figure 8.

Table 2. Mean Dice scores (%) of different methods for medical cardiac dataset averaged across 30 test
subjects by labelled structures (R.V.: right ventricle, L.V.: left ventricle).

Unregistered LCC-Demons [26] Voxel-Morph [24] Krebs et al. [25] Ours

R.V. 65.1 70.6 68.1 68.4 77.4
L.V. 66.0 77.6 74.3 75.6 82.5
Myocard 52.5 73.0 69.7 70.4 73.4

Mean 61.2 73.7 70.7 71.5 77.8
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Figure 8. Example results (example slices) of our approach for intra-patient registration. (Top)
end-systolic slices with the corresponding ground truth labels, (middle) end-diastolic slices with
warped ground truth labels of end-systolic slices, (bottom) warped end-systolic slices.

4. Conclusions

We have presented a new semantically guided and two-stage deep deformation network that
can be trained end-to-end and excels at registering image pairs with large initial misalignments. Our
extensive experimental validation shows that employing semantic labels available only during training
for both an alignment loss and a soft constraint on correct segmentation prediction yields superior
results compared to previous approaches that have only considered the former one. Moreover, the
use of two-stage networks improves the accuracy compared to a single network or two networks
with shared weights. This guidance can also be used beneficially in a series of multiple spatial
transformers to improve the alignment of particularly challenging image pairs. Our results on both the
Helen face dataset and the medical cardiac ACDC data improve upon the state of the art including
FlowNet [1] and Label-Reg [3]—two very recent deep-learning registration frameworks—as well
as several unsupervised approaches. Our resulting models are compact and very fast in inference
(≈0.009 s per image pair) and can be employed for a variety of challenging tracking and/or alignment
tasks in computer vision and medical image analysis.
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