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Abstract: This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving
behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor
inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear
characteristic between loads and output was obtained from a load test to evaluate sensor output
characteristics. Moreover, the output values change linearly concomitantly with speed to attain the
sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous
behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring
system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting,
and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior
patterns. The experimentally obtained results revealed that the proposed sensor system improved
recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after
integration of learning datasets as a general discriminator.

Keywords: ambient sensors; home agent; life monitoring; machine learning; quality of life; random forest

1. Introduction

Aging in Japan has been progressing rapidly not only because of an increasing number of elderly
people and their longevity, but also a decreasing number of young people caused by a declining birthrate.
Although the demand for nursing-care services has been growing along with the continuously developing
aging society, the supply is insufficient because of changing demographics [1]. As an occupational
characteristic of caregivers, the occupation and turnover rates are both high compared to those of other
industries [2]. Caregivers must work not only to provide various care services physically and mentally,
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but also for shifting during nighttime for providing 24-hour nursing services and support. Especially for
nighttime, a severe caregiver shortage leads to insufficient nursing-care, which involves a risk of inducing
accidents related to the daily life for care recipients.

Mitadera et al. [3] reported that fall accidents of elderly people accounted for more than 50% of
all accidents at nursing-care facilities. Situational details reveal that most accidents occurred when
elderly people left their bed and its surroundings. Moreover, 85.5% of fall-related accidents occurred under
circumstances without assistance or supervision. Therefore, preventive measures using bed-leaving sensors
are indispensable for detecting bed-leaving behavior in an early stage because facility administrators are
charged with management responsibility if an accident occurs.

Recently, various bed-leaving sensors are commercially available from manufacturers. For example,
clip sensors, mat sensors, infrared (IR) sensors are widely used at hospitals and nursing-care facilities.
Although clip sensors are used easily because they are the most reasonable means available, care recipients
are restrained by sensor wires because they are attached directly to the patient’s nightwear. Moreover, a risk
exists that a sensor wire might wrap around the neck of a care recipient. Therefore, the use of clip sensors
has been discouraged recently. Mat sensors, which are inexpensive even compared with clip sensors, are
used widely at clinical sites because they entail no restraint. One shortcoming of mat sensors is their slow
detection and response from the position where a care recipient sits at the bed terminal while putting their
feet on it. Another shortcoming is the excessive reaction even when a caregiver or a family member passes
through while stepping on it. Furthermore, a care recipient might attempt to leave while consciously
avoiding stepping on a mat sensor because it is a visible sensor. IR sensors present similar shortcomings to
those of mat sensors. Moreover, caregivers must check the sensor installation status because care recipients
touch them occasionally.

To prevent fall accidents, sensor systems with bed-leaving behavior predictions at an early stage
have been studied. Asano et al. [4] proposed a detection system using a depth camera. They employed
support vector machines (SVMs) to recognize bed-leaving behavior patterns after optimizing parameters
and motion features combined with the body size, position, and orientation of respective subjects.
Their experimentally obtained result achieved 92.65% recall after 68 iterations. However, the precision
was insufficient for practical application because false detection occurred in within 24 iterations.
Moreover, they used a depth camera for capturing images. Although it is difficult to identify profiles
solely from depth images, a challenging task remains: eliminating unpleasantness felt by a patient who is
monitored by a camera.

Kawamura et al. [5] proposed a wearable sensor system using a three-axis accelerometer.
For their system, unrestrained measurements are actualized using a lightweight sensor module of 13
g. With consideration of clinical applications, they obtained not only metaparameters that contributed
to recognition, but also experimentally obtained results with bed-up and wheelchair locomotion.
No recognition accuracy was provided as detailed sensor characteristics. Moreover, they provided neither
recognition accuracy nor detailed sensor characteristics. Existing bed-leaving sensors entail persistent
difficulties related to quality of life (QoL), detection speed, convenience, and cost. No sensors that satisfy
these requirements have been put to practical use. In modern society, the declining birthrate and aging
population are progressing rapidly. We therefore regard development of sensor systems that overcome
these problems as an urgent task to.

This study was conducted to develop a bed-leaving recognition sensor system that is inexpensive,
convenient, and maintainable with advanced QoL for care recipients. For improving recognition accuracy
and reliability compared with our earlier bed-leaving sensor system [6], our novel sensor prototype
comprises pad sensors and a rail sensor installed respectively on a bed frame and a bed-side safety rail. For
evaluating our sensor system, we obtained original benchmark datasets of two types: continuous datasets
with behavior transitions from sleeping to bed leaving in a predefined interval and discontinuous datasets
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with free and random movements obtained from 10 subjects. We compared machine learning algorithms of
five types to recognize five behavior patterns. Our earlier study [6] provided respective classifiers because
bed-leaving behavior patterns have unique characteristics along with their subjects. Nevertheless, for this
learning strategy, the recognition accuracy was insufficient to ensure reliability for discontinuous datasets.
Therefore, we developed a single classifier using all continuous datasets. The experimentally obtained
results revealed that the proposed sensor system improved recognition accuracy for both datasets.

The rest of the paper is structured as follows. In Section 2, our originally developed sensors of two
types and their measurement system are presented. Sections 3 and 4 present our proposed method based on
machine learning algorithms of five types and our original datasets obtained from ten subjects, respectively.
Subsequently, Section 5 presents evaluation results with recognition accuracies and confusion matrixes in
respective datasets, respectively. Finally, Section 6 concludes and highlights future work. Herein, we had
proposed this basic method with originally developed sensors of two types in the proceeding [7]. Moreover,
we had presented basic characteristics of pad sensors in the proceeding [8]. For this paper, we have
described detail results and discussion in Section 5.

2. Sensor System

2.1. System Structure

Figure 1 depicts the whole system structure of our novel sensor prototype, which comprises pad
sensors, a rail sensor, sensor boards, a wireless router, and a monitoring computer. Output signals are
collected to the sensor boards with a wired connection. The sensor boards convert analog signals to digital
signals in real time. Digital signals are sent to a monitoring computer with wireless connection. We used
ZigBee, a short distance wireless communication protocol, to provide cost-effective implementation and
low power consumption. The transmitted measurement signals are displayed on the monitoring computer
in real time. Behavior recognition algorithms based on machine learning are incorporated in the monitoring
computer.

Figure 1. Whole system structure.

2.2. Pad Sensor

Figure 2 depicts our originally developed pad sensor prototype. The pad sensors are non-restrictive,
invisible, cost effective, and independent of sensor driven power. We used a piezoelectric film,
which generates a potential difference when distortion occurs in an arbitrary direction against external
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forces such as receiving vibration. A commercial piezoelectric film (DT2-028K/L; Tokyo Sensor Co., Ltd.)
is sandwiched by 1-mm-thick urethane sheets with 50 deg hardness. The durability and elasticity of the
piezoelectric film are improved using urethane sheets. Moreover, polyethylene terephthalate (PET) boards
with a larger size than the urethane sheets provide extended sensing ranges. The sensor core is protected
using PET plates that have 200 mm diameter and 0.5 mm thickness. We used ultraviolet stiffened resin to
adhere to the piezoelectric film and the urethane sheets.

Figure 2. Interior architecture and pad sensor appearance.

2.3. Rail Sensor

Care recipients whose legs and body are weak sometimes grip a safety rail beside a bed when they
try to stand up. Motegi et al. [9] reported that approximately 82% of care recipients gripped a safety rail
when they left from their bed. Therefore, we specifically examined a bed side safety rail for the prevention
of a fall. We consider that the recognition accuracy is improved if gripping of a safety rail is detected using
a dedicated sensor.

Figure 3 depicts our originally developed rail sensor prototype. We inserted a piezoelectric film,
DT2-028K/L, into a silicon tube with 50 mm length, 10 mm outer diameter, and 5 mm inner diameter.
As a stopper and a protector, a metal cap is stuffed to the sensor upside.

Figure 3. Interior architecture and appearance of the rail sensor.

2.4. Basic Characteristics

For evaluating characteristics of our developed film-load sensors, we conducted preliminary
experiments using the load test machine (Multi Force Analyzer FWT-1000; DigiTech Co. Ltd.), as depicted
in Figure 4a. The major specifications of the machine are: 1 kN rated weight; 100 mN resolution;
600 mm/min maximum test speed; and ±0.2% weight precision. The majority of loads are attained
from the vertical side as a surface load because of the installation of the sensors on the bed frames. For
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this load test, we developed a fixture made of A2017 duralumin, as depicted in Figure 4b. The major
specifications of the fixture are 100 × 100 mm with 15 mm basement thickness and 70 × 50 mm with 5 mm
top thickness.

Figure 4. Load test: (a) fixture, (b) schematic diagram, (c) load test, and (d) the load test machine (Multi
Force Analyzer FWT-1000; DigiTech Co. Ltd., Osaka city, Japan).

The load reaches the maximum for longitudinal sitting, which raises the upper body of a person to
start leaving the bed. From the report [10] of human sciences of nursing, the body weight to the hip at
longitudinal sitting is approximately equal to the total weight of the upper body. It is 87% of the total body
weight. According to the National Healthcare and Nutrition Report 2014 in Japan [11], the mean weights
of people older than 65 years old people are 61.9 kg for men and 50.8 kg for women. Based on both mean
weights, we set test loads from 340 N to 680 N for five sampling points.

We evaluated the output characteristics of our developed sensors of five sets with the default test
speed of 5 mm/min. Figure 4c depicts a schematic diagram of the sensor output that occurs from the
range except that of the rivet parts. For attaining a load, the sensor is fixed to the removal part of 10 mm
from the boundaries. We measured output voltages from respective sensors using a data logger (LR8431;
Hioki Corp.) concomitantly with the test load.

Figure 5 depicts the output characteristics of five sensors. The vertical and horizontal axes respectively
depict output voltage and test loads. The output voltage increases concomitantly with the load until the
peak for the maximum load. Subsequently, reverse voltage appears during a slight time as a steady state
for removing the load cell from the device. We calculated output characteristics of our prototype sensors
using this peak voltage obtained from this test. The results address the linear relation between the sensors
and the test load patterns, although the gradients differ among sensors. We consider that the output
voltage increases concomitantly with the weight of a person.

Figure 6 presents results of changing test speeds from 1 mm/min to 8 mm/min step by 1 mm/min.
The output voltage increases concomitantly with speed changes that are similar characteristics that
resemble the load-test results presented above. Figure 7 depicts characteristics of the side and orientation of
the sensors. We evaluated four patterns: a top/longitudinal side, a bottom/longitudinal side, a top/lateral
side, and a bottom/lateral side. The top and bottom sides are defined by rivets of the piezoelectric film.
The results are depicted in Figure 7. The output voltage of the longitudinal side is 3.12 times higher
than that of the lateral side. This directivity characteristic is reflected in the sensor installation to the
bed-leaving direction.
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Figure 5. Relation between output voltage and load of sensors.

Figure 6. Relation between output voltage and load speed.
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Figure 7. Relation between output voltage and load of side and orientation.

2.5. Sensor Installation

To sense the distributed weight of a sleeping body on a bed, pad pressure sensors are installed
to five areas between a mattress and a bed frame. Figure 8 depicts the sensor configuration on a bed.
The approximate measurement ranges of each sensor are the upper body for channels 1 and 2 (CH1 and
CH2), legs for the channels 3 and 4 (CH3 and CH4), and the hip for channel 5 (CH5). A rail sensor is
installed to a safety bed rail of one side. Figure 9 depicts photographs of installed sensors. Compared
with the pre-installed sensor bed [12], our sensors can be installed on various beds as a post-installation
system. Figure 10 depicts a sensor measurement board with a ZigBee module for wireless communication.
Sensor signals are transmitted to a monitoring computer via the board. Our system provides easy and
simple monitoring using only six sensors of two types and two measurement boards.

Figure 8. Sensor configuration.
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Figure 9. Sensor installation.

Figure 10. Sensor measurement board with ZigBee module.

3. Bed-Leaving Behavior Pattern Recognition Based on Machine-Learning Algorithms

3.1. Feature Calculation

Sensor signals are captured with 50 Hz as the default sampling rate for the measurement board,
as depicted in Figure 10. Using all features calculated from all obtained sensor signals gives rise to
a significant increase of calculation costs. For reducing the total data size, sensor signals are downsampled
to 10 Hz. Moreover, signal changes are calculated at 1 s intervals for enhancing features. Let D(t) be
the summation of signal changes at time t. The absolute difference ∆yt of momental output values is
calculated between t− 1 and t. For summarizing ∆y during 1 s as n = 10 in 10 Hz, D(t) are calculated as
shown below.

D(t) =
n

∑
k=1

∆yk. (1)

Figure 11 depicts the outline procedure of feature calculation. Herein, the reason that we used
the summation of signal changes for 1 s is because of the output property of piezoelectric elements.
Actually, piezoelectric elements have no output voltage with no input force. Output voltage occurs if a
dynamic load is attended. After bending, the output voltage returns to 0 V again as a stationary load. For
pattern recognition based on machine learning, the status duration with sufficient intervals is desirable
for suitable features as correct recognition. Therefore, we infer that false recognition is reduced by the
summation of signal changes.
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Figure 11. Calculation of signal features.

Subsequently, we normalized features for unifying the scale. Let Xi, X, and s respectively represent
input features, mean features, and standard deviation of features. As normalized Di, Zi is calculated as

Zi =
Xi − X

s
. (2)

3.2. Recognition Algorithms

The aim of this study is to provide a sensor system without setting body parameters as a subject’s
profile in advance. We use machine-learning algorithms as a robust approach to absorbing individual
differences. Actually, various machine-learning algorithms are present with the feature of easy
implementation. For our earlier study [6], we used counter propagation networks (CPNs) because
of the advantages of visualizing input feature topology on a category map. For this study, we compared
various machine-learning algorithms to recognize behavior patterns for developing a reliable sensor
system.

As a comparison target, we selected four machine-learning algorithms: a naive Bayes classifier
(NB) [13], k-nearest neighbor (kNN) [14], SVMs [15], and random forests (RF) [16]. These algorithms
achieve advanced precision recognition with a small data amount. For our earlier study [6],
we constructed recognizers for each subject to learn individual differences of bed-leaving behavior patterns.
Each recognizer is optimized in each with limited datasets. In contrast, an insufficient data amount against
diverse behavior patterns gives rise to dropped recognition accuracy. Therefore, we attempt to construct
a recognizer using datasets of all subjects. Herein, we used the scikit-learn machine-learning library [17]
for implementation. The following are outlines for the respective algorithms.

3.2.1. NB

Based on Bayesian theory [18], NB employs supervised learning with the assumption that each feature
vector is independent. Let y and xn respectively represent class labels and feature vectors. Based on
Bayesian theory [18], the following probability is derived.

P(y|xn) =
(P(y)P(xn|y))

P(xn)
(3)
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Herein, the joint probability of each feature vector, which is assumed independence, is expressed by the
product of the respective probabilities.

P(xn|y) =
n

∏
i=1

P(xi|y) (4)

Therefore, P(y|xn) is defined as shown below.

P(y|xn) =
P(y)∏n

i=1 P(xi|y)
P(xn)

∝ P(y)
n

∏
i=1

P(xi|y) (5)

Let ŷ be a final estimated class label. ŷ is derived from the maximum probability as

ŷ = argmax
y

= P(y)
n

∏
i=1

P(xi|y). (6)

3.2.2. kNN

As a simple supervised learning algorithm, kNN initially plots all features in learning signals on a
vector space. Subsequently, k sets of input signals are acquired along with the order of near distance from
unknown signal sets. Finally, class labels of unknown signal sets are estimated using a majority voting
strategy. Herein, Euclidean distance is used instead of Manhattan distance.

3.2.3. SVM

As a classifier based on supervised learning, SVMs extract a boundary where a margin between two
classes has the maximum distance from input signals. A set of distributed signals that is impossible for
linear separation is mapped to a high dimensional space using a kernel function for actualizing linear
separation. Multi-class features are classified using multiple SVMs with basic two-class classification.
For this study, we used two SVM kernel types: linear SVMs (LSVMs) and radial basis function SVMs
(RBF-SVMs).

3.2.4. RF

For improving generalization capability, RF comprises ensemble learning algorithms. Initially, weak
classifiers are generated from decision trees. Subsequently, decision trees estimate a class label through
tracing conditional branches in order from a parent node. Finally, class labels are decided with majority
voting from results estimated from respective decision trees.

3.2.5. CPN

CPNs are supervised neural networks that extend from self-organizing maps (SOMs) [19] as
unsupervised neural networks. Data topologies are preserved with the competition and neighborhood
learning strategy. The CPN network architecture comprises three layers: an input layer, a mapping layer,
and a Grossberg layer.

These weights are initialized randomly. Subsequently, a unit on the mapping layer that minimizes the
distance calculated from the Euclidean distance of input data xi and wi,p,q is sought. This unit is defined as
c. The weights wi,p,q of neighbor units inside of c are updated. Moreover, wp,q,j are updated using teaching
signals Tj at time t.

Let wr,s(t) and ws,k(t) respectively denote weights between input layer r (1 ≤ r ≤ R) and Kohonen
layer unit s (1 ≤ s ≤ S) and weights between Grossberg layer k (1 ≤ k ≤ K) to Kohonen layer unit s at
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time t. Before learning, wr,s(t) are initialized randomly. Using the Euclidean distance between yr(t) and
wr,s(t), a winner unit cs(t) is sought for the following.

cs(t) = argmin
1≤s≤S

√√√√ R

∑
r=1

(yr(t)− ur,s(t))2. (7)

A neighborhood region ψcpn(t) is set from the center of cs as the following.

ψcpn(t) = bψcpn(0) · S ·
(

1− t
Zcpn

)
+ 0.5c, (8)

where Zcpn stands for the maximum learning iteration. Subsequently, wr,s and ws,k in ψcpn(t) is updated as
shown below.

wr,s(t + 1) = wr,s(t) + β(t)(yr(t)− wn,m(t)), (9)

ws,k(t + 1) = ws,k(t) + γ(t)(zl(t)− wj
n,m(t)), (10)

where β(t) and γ(t) are learning coefficients that decrease along with learning progress.
This process is repeated until the maximum number of learning iterations is reached.

Finally, unit labels Lj are decided as a result of maximized ws,k against the unit k on Grossberg layer.
After learning, CPNs provide a recognition result based on winner-take-all competition for a set of input
signals.

4. Datasets

4.1. Target Behavior Patterns

Figure 12 depicts photographs in each pose for the target behavior patterns. The following are features
and estimated sensor responses for the respective patterns.

SLP Sleeping: a subject is sleeping on a bed normally.
LOS Longitudinal sitting: a subject is sitting longitudinally on a bed after rising.
LAS Lateral sitting: a subject is sitting laterally on a bed after turning the body from longitudinal sitting.
TES Terminal sitting: a subject is sitting in the terminal position on a bed trying to leave a bed. Rapid and

correct detection is necessary because of the terminal situation for leaving a bed.
LEB Left a bed: a subject has left the bed. Herein, sensor responses disappear in the status of losing

consciousness or a life crisis. For such circumstances, monitoring devices such as electrocardiographs
are used. Such circumstances are beyond our prediction targets.
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Figure 12. Target behavior patterns.

4.2. Datasets Obtained for Conditions

We obtained bed-leaving behavior pattern datasets at a simulated experimental room that resembled
a clinical site. We used an electro-actuation bed (KA-36121R; Paramount Bed Co., Ltd.) equipped with
three actuators for reclining the back and feet panels and for adjusting its height. We obtained datasets
without using the back plate reclining function for avoiding load pattern changes on the bed. The route for
a subject to leave from the bed is restricted to one side with two attached safety rails.

The subjects were 10 persons: nine men and one woman. Table 1 presents profiles of all subjects.
We set two protocols to obtain different characteristic datasets. The first protocol comprises the same
procedures as those of our earlier study [6]. Each subject switched their behavior patterns of five types
with 20 s intervals. For this study, we call them continuous datasets (CDS). We obtained 10 sets of CDS
from each subject. Herein, the data sampling rate was set to 50 Hz.

Table 1. Profile of subjects.

Subject A B C D E F G H I J

Height [cm] 161 169 177 168 170 167 177 178 170 165
Weight [kg] 51 66 91 51 60 61 84 80 78 70

Sex F M M M M M M M M M

The second protocol comprises behavior patterns as discontinuous datasets. The order and duration
of bed-leaving behavior patterns are various along with body parameters and health conditions in
each subject. For example, behavior patterns from LOS to SLP without changing to LAS occurred
frequently. We consider that the employment of our sensor system at a clinical site gives rise to dramatically
lower recognition accuracy. As a basic consideration for aiming a practical application, we obtained
datasets without fixed sequences or time intervals for subjects of their basic behavior pattern transitions.
We designate them as discontinuous datasets (DDS). The data acquisition period was set to 15 min per
person.

For calculating recognition accuracy, ground truth (GT) labels are indispensable to DDS.
However, the burden to allocate GT labels is excessively high because each subject moved freely for
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15 min. Therefore, we used a depth camera to record video images for annotation. We allocated GT labels
to DDS manually from video image observation.

4.3. Sensor Output Signals

Figure 13 depicts output signals from the pad sensors. The vertical and horizontal axes respectively
represent the output voltage and translation time in seconds. The voltage range is up to±1.2 V. Along with
time transitions, each subject changes their behavior patterns in the order as depicted in Figure 12. During
60 s from the initial point, a subject was sleeping on the bed with turning of the body. The output signals
in respective channels were changed slightly.

The output signals from CH5, which correspond to the bed center, have come to be high in LOS.
This tendency demonstrates that the upper body weight was concentrated to this channel. The output
signals from CH4 are salient in LAS because of turning the body to the lateral bed direction for the
transition to LEB. Salient output signals in TES are changed from CH4 to CH3. The output signals in LEB
are disappeared completely.

Figure 13. Output signals from pad sensors.

Figure 14 depicts output signals from the rail sensor. No salient signals are presented in SLP,
LOS, and LAS. The output signals are noticeable in TES. After the boundary between TES and LEB,
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no output signals are presented. The output signal tendency from the rail sensor indicates a selective
feature in TES compared with those of other behavior patterns.

Figure 14. Output signals from rail sensor.

5. Evaluation Experiment

5.1. Evaluation Criteria

Let Tnum and Gnum respectively be the total numbers of test signals and GT labels. For evaluation
criteria, the recognition accuracy R for a test dataset is defined as

R =
Tnum

Gnum
× 100 [%]. (11)

Herein, we define mean R as Rmean. Moreover, we define R of SLP, LOS, LAS, TES, and LEB as RSLP,
RLOS, RLAS, RTES, and RLEB.

We used K-Fold cross-validation for evaluating results along with machine-learning and
evolutional-learning approaches. Herein, we set K = 5 based on the results of earlier studies [20,21].

We conducted four evaluation experiments using behavior pattern datasets of two types. Table 2
summarizes experimental details.

Table 2. Experimental conditions.

Section Learning Dataset Test Dataset Discriminator

Section 5.2 CDS CDS Each Subject
Section 5.3 CDS CDS Each Subject
Section 5.4 CDS DDS Each Subject
Section 5.5 CDS DDS All Subject

5.2. Comparison Results of Learning Algorithms

We evaluated recognition accuracy of machine-learning algorithms using CDS. Table 3 depicts
comparison results. We used CPNs as a discriminator for our earlier study [6]. As a comparison result,
Rmean using CPNs was 75.4%, which is the second lowest of six algorithms. In contrast, Rmean using RF
was 91.1% that the highest. For all behavior patterns except of LEB, Rmean using RF were higher than those
of other algorithms. For LEB, LSVM provided the highest recognition accuracy.
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Table 3. Comparison results of learning algorithms [%].

Algorithm RSLP RLOS RLAS RTES RLEB Rmean

NB 98.7 32.2 27.4 25.8 0.9 53.2
kNN 98.5 85.0 79.5 80.8 86.1 89.0

LSVMs 96.2 63.8 64.4 51.1 89.4 78.2
RBF-SVMs 98.0 62.4 64.6 67.9 88.8 81.0

RF 98.8 88.6 81.8 84.5 88.5 91.1
CPNs 88.1 67.9 59.7 62.5 75.9 75.4

As a commonplace tendency for all algorithms, RSLP achieved the highest. In contrast, RLOS, RLAS,
and RTES are smaller than 90.0%. We consider that the recognition accuracies for these three behavior
patterns must be high because our system intends to predict bed-leaving behavior. Therefore, we examine
measures to improve recognition accuracies for these three behavior patterns from the viewpoint of
datasets and discriminators.

5.3. Experimental Results for CDS

Using CDS, we evaluated the capabilities of our originally developed sensors of two types. Figure 15
depicts comparison results of Rmean for the solely used pad sensors and the combined sensors with pad
sensors and a rail sensor. Comparison of the results shows that Rmean of the combined sensors is 4.0% higher
than that of the pad sensors. Recognition accuracies in respective behavior patterns are improved from
0.4% up to 12.3%. Particularly, RTES exhibits the maximum improvement. Moreover, the experiment result
demonstrates that the rail sensor, which detects the grasp of a safety rail in TES intensively, contributes to
the improvement of the overall recognition accuracy.

Figure 15. Comparison results of recognition accuracies.

As shown in Figure 14, the output voltage from the piezoelectric film in the rail sensor occasionally
exceeded 0.1 V when a subject was in TES. We infer that sufficient recognition accuracy is obtainable
using the rail sensor solely if we set the target-only TES. However, we consider that false recognition
occurred between TES and LEB, especially for the immediate transition from TES to LEB. Although
sensor signals should be approximately 0 V in LEB, sharp signals are outputted. This tendency occurs
when a subject tries to leave from the bed with holding or shaking of a safety rail, which enhances
vibration. Therefore, we infer that the combination between the rail sensor and the pad sensors is the
best for a practical use because of avoiding the problem that is occurred in the case of a solely used rail
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sensor. Moreover, false recognition to LEB is avoidable accurately because the recognition accuracy of the
combined sensors obtained relative superior improvement for LAS, TES, and LEB.

We examine detailed recognition results obtained using a confusion matrix. Tables 4 and 5 respectively
present confusion matrixes for the pad sensors and the combined sensors. Specifically examining TES with
the highest recognition accuracy, the number of false recognition instances was reduced in all behavior
patterns after appending the rail sensor. Particularly, the number of false recognitions to LEB was reduced
from 30 signals to 4 signals. We infer that the correct discrimination between TES and LEB engenders
improved recognition accuracy.

Table 4. Confusion matrixes for the results of pad sensors.

SLP LOS LAS TES LEB

SLP 1047 5 3 3 2
LOS 21 443 14 3 19
LAS 12 9 319 36 14
TES 3 8 18 321 30
LEB 2 6 12 18 292

Table 5. Confusion matrixes for the results of pad sensors and rail sensors.

SLP LOS LAS TES LEB

SLP 1052 3 3 0 2
LOS 19 449 14 1 17
LAS 13 3 354 10 10
TES 1 2 8 365 4
LEB 2 10 12 3 303

Although the use of the rail sensor was aimed at improved RTES, RLAS was improved from
81.8%–90.6% as a subsidiary contribution. The number of false recognition instances was reduced,
except for SLP. Particularly, the number of false recognition instances for TES was decreased to 26 times.
The improved RTES after appending the rail sensor produces decreased false recognition instances of LAS.
As a result, correct recognition instances, except for TES, produces an improved Rmean. We demonstrated
that the addition of a sensor that can reliably recognize a single posture engendering improvement of
Rmean. The combined sensors have clear benefits for bed-leaving behavior recognition when compared to
other configurations.

5.4. Experiment Results for DDS

Table 6 denotes Rmean for each subject for DDS. Compared with that of CDS as depicted in Figure 15,
recognition accuracies were lower in all five behavior patterns. Especially, RLAS was drastically lower.
This experimentally obtained result revealed that recognition accuracy, except for RSLP, which was the
highest accuracy among five behavior patterns, was strongly affected by randomness in DDS.
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Table 6. Recognition accuracies in each subject for DDS [%].

Subject RSLP RLOS RLAS RTES RLEB Rmean

A 67.1 65.8 65.6 69.4 84.5 68.9
B 97.8 51.4 22.8 79.6 78.8 82.4
C 95.2 66.0 8.8 10.9 1.1 43.3
D 98.9 84.8 42.2 89.6 94.3 84.6
E 93.9 78.1 60.3 88.1 82.9 83.7
F 99.8 89.2 95.1 90.3 95.2 95.3
G 51.3 43.9 47.0 89.1 15.0 51.6
H 98.1 64.0 51.1 78.3 79.7 73.5
I 95.0 71.0 57.7 61.7 88.9 86.5
J 95.9 55.7 64.6 74.0 30.3 82.1

Average 89.3 67.0 51.5 73.1 65.1 75.2

The disparity of detailed recognition accuracies in respective subjects was from 43.3% as the lowest to
95.3% as the highest. Compared with the mean accuracy of 75.2%, the recognition accuracies were above
for seven subjects and below for the remaining three subjects. Therefore, significant lower accuracy for
specific subjects decreased the overall recognition accuracy. We infer that this tendency is influenced by
individual differences in behavior patterns. Each subject played predetermined behavior patterns in CDS
and free behavior patterns in DDS. We consider that the recognition accuracy was significantly lower
because behavior patterns were various among the subjects in DDS.

Table 7 depicts the confusion matrix for all subjects. Table 8 presents the confusion matrix for
Subject C, with the lowest recognition accuracy. Numerous signals were falsely recognized to SLP.
Particularly, correct recognition in LEB was merely 2 of 179 signals. Other signals were falsely recognized
to SLP. This trend demonstrated that false recognition occurred in the state that SLP and other behavior
patterns were not distinguished. In DDS, Rmean was dramatically lower in particular subjects. We consider
that this is attributable to behavior variations of subjects between learning datasets and test datasets.
Therefore, we consider that Rmean improves if learning datasets contain diversity.

Table 7. Confusion matrix of all subjects.

SLP LOS LAS TES LEB

SLB 4097 356 142 5 26
LOS 312 1283 162 11 96
LAS 179 201 795 116 164
TES 295 21 72 974 135
LEB 183 55 26 58 641

Table 8. Confusion matrix of Subject C.

SLP LOS LAS TES LEB

SLP 335 17 0 0 0
LOS 52 171 1 1 34
LAS 141 4 16 9 11
TES 286 0 0 35 0
LEB 177 0 0 0 2
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5.5. Integration of Learning Datasets

For applying our system at a clinical site, learning dataset preparation for each subject might be
troublesome and time-consuming. In addition, preserving accuracy has come to be a problem of system
reliability because generalization was dropped in DDS. Therefore, we attempt to construct a generic
classifier combined with learning datasets for all subjects as depicted in Table 1. For this experiment,
we used CDS for learning and DDS for validation.

Table 9 depicts recognition accuracies obtained before and after the integration of learning datasets.
Recognition accuracies in six of ten subjects were improved. Particularly, recognition accuracies of Subjects
C and G were improved notably. Although recognition accuracies of four subjects dropped, three of
them remained dropped percentages up to 2.0%. However, with regard to Subject E, Rmean decreased
5.6 percentage points, especially for steep drops in RLOS and RLAS.

Table 9. Recognition accuracies before and after integration of learning datasets [%].

Subject Before After Difference

A 68.9 67.1 −1.8
B 82.4 86.9 4.5
C 43.3 77.9 34.6
D 84.6 84.7 0.1
E 83.7 78.1 −5.6
F 95.3 93.5 −1.8
G 51.6 66.4 14.8
H 73.5 77.4 3.9
I 86.5 87.0 0.5
J 82.1 80.8 −1.3

Average 75.2 80.0 4.8

Figure 16 depicts the comparison result of recognition accuracy for each behavior pattern.
All recognition accuracies were improved in the integrated datasets. Particularly, RLEB improved
15.8 percentage points. Table 10 denotes the confusion matrix for all subjects after the integration of
validation datasets. Compared with the results depicted in Table 7, the numbers of false recognition
instances were lower in all behavior patterns. Although the false recognition instances for SLP were
numerous in Table 7, these results were improved in Table 10. Moreover, false recognition instances
appeared frequently in behavior patterns that were close to GT labels except of LAS. We consider that it
is a challenging task to recognize intermediate states of two neighbor behavior patterns which change
their body among respective behavior patterns. To reduce false recognition instances, we infer that it
is necessary to use a method to maintain the previous status until the recognition becomes stable if a
present recognition result differs from the previous one. In contrast, false recognition instances of LAS
were divided to the other four behavior patterns evenly. We infer that this tendency makes it difficult to
distinguish LAS from other behavior patterns.
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Figure 16. Comparison result of recognition accuracy in each behavior pattern.

Table 10. Confusion matrix.

SLP LOS LAS TES LEB

SLP 4190 310 53 6 67
LOS 315 1284 162 13 90
LAS 150 131 909 117 148
TES 48 45 141 1166 97
LEB 21 30 37 74 801

For the integration of learning datasets among subjects, we achieved not only maintenance
of generalization performance for DDS, but also prevention of false recognition extremely.
Although recognition accuracy was improved overall, several subjects showed low recognition accuracy.
We conclude that this learning strategy does not ensure whole improve recognition accuracy. For
improving this system, we consider that important prerequisites remain as the following: to improve
generalization capability for collecting numerous datasets from numerous subjects, to change learning
datasets along with subject profiles in terms of height or weight, to perform incremental learning without
stopping the system until sufficient accuracy is obtained, and to construct learning datasets specialized to
each subject temporally.

5.6. Discussion

For this study, we developed the sensor system that is inexpensive, convenient, and maintainable
with advanced QoL for care recipients. Actually, as described in the introduction, using a camera as a bed
monitoring sensor can provide a low-cost system that can obtain much information from subjects. However,
it is still a challenging task to predict behavior patterns obtained from images, even when state-of-the-art
computer vision technologies are used. For example, as a deep-learning-based approach, OpenPose [22]
does not handle sleeping or laying positions. Therefore, medical staff members must observe images
directly. Moreover, we have to consider aspects of human rights and QOL, especially, it is impossible not
only to monitor numerous subjects simultaneously with a few operators but also to recognize behavior
patterns related to bed-leaving using only sensor responses, even when detailed analyses are conducted,
because behavior patterns differ among people. Furthermore, monitoring using a camera imposes a
mental load on patients because they feel as though they are under surveillance all daytime and nighttime.
However, we have not evaluated this sensor system at hospitals or care facilities. We would like to
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subjective and objective evaluation to validate our sensor system in a clinical environment without the use
of cameras.

6. Conclusions

This paper presented the bed-leaving behavior recognition system that comprises pad sensors installed
on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning
algorithms. We obtained benchmark datasets of continuous and discontinuous behavior patterns from
10 subjects. The experimentally obtained results revealed that RF obtained the highest recognition accuracy
in our benchmark datasets. Compared with our earlier study, results obtained using CPNs, the recognition
accuracies were improved by 20.7% for LOS and 21.9% for TES. After appending the rail sensor to the
pad sensors, the mean recognition accuracy improved 4.0 percentage points, including a 12.3 percentage
point improvement for TES. Regarding the difference in behavior pattern transitions, the mean recognition
accuracy decreased 22.9 percentage points in discontinuous datasets. For improving the generalization of
our system, datasets of all subjects were combined for learning. The mean recognition accuracy improved
4.8 percentage points, especially improved considerably for two subjects.

For our future work, we aim to apply our proposed sensor system to a clinical site such as care
facilities or single senior’s homes for security and safety observation that simultaneously maintains QOL
and privacy. We will achieve steady detection to expand the application range of our method and thereby
increase the number of subjects. Additionally, we must demonstrate the system reliability for conducting
long-term monitoring.
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Abbreviations

The following abbreviations are used in this manuscript:

CDS Continuous DataSets
CPNs Counter Propagation Networks
DDS Discontinuous DataSets
GT Ground Truth
IR InfRared
kNN k-Nearest Neighbor
LAS LAteral Sitting
LEB LEft a Bed
LOS LOngitudinal Sitting
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LSVMs Linear Support Vector Machines
NB Naive Bayes
PET Polyethylene Terephthalate
QoL Quality of Life
RBF-SVMs Radial Basis Function Support Vector Machines
SOMs Self-Organizing Maps
SLP SLeePing
SVMs Support Vector Machines
TES TErminal Sitting
RF Random Forests

References

1. Takahashi, Y. Research on the Human Resources Problems due to Occupational Characteristics of the Nursing
Profession. Ph.D. Thesis, Shobi Journal of Policy Studies, Shobi University, Kawagoe city, Japan, June 2016.

2. Matsumoto, K. A Study on Working Environment and Job Satisfaction of Professional Caregivers and Their Turnover;
Bulletin of Kumamoto University: Kumamoto city, Japan, 2011.

3. Mitadera, Y.; Akazawa, K. Analysis of Incidents Occurring in Long-Term Care Insurance Facilities. Bull. Soc. Med.
2013, 30, 123–134.

4. Asano, H.; Suzuki, T.; Okamoto, J.; Muragaki, Y.; Iseki, H. Bed Exit Detection Using Depth Image Sensor.
J. TWMU 2014, 84, 45–53.

5. Kawamura, K.; Okuno, Y.; Hirose, Y.; Ozone, K.; Tomita, K. Detection of Various Postures and Gait Using
a Wearable Triaxial Accelerometer. J. Phys. Ther. Sci. 2017, 32, 435–438. [CrossRef]

6. Madokoro, H.; Shimoi, N.; Sato, K. Unrestrained Multiple-Sensor System for Bed-Leaving Detection and
Prediction. Nurs. Health 2015, 3, 58–68. [CrossRef]

7. Madokoro, H.; Nakasho, K.; Shimoi, N.; Woo, H.; Sato, K. Invisible Sensors for Early Prediction of Discontinuous
Bed-Leaving Behavior Patterns. In Proceedings of the 5th International Conference on Sensors Engineering and
Electronics Instrumentation Advances, Tenerife, Spain, 25–27 September 2019; pp. 74–80.

8. Madokoro, H.; Shimoi, N.; Sato, K.; Xu, L. Development of Unrestrained and Hidden Sensors Using Piezoelectric
Films for Recognition and Prediction of Bed-Leaving Behaviors In Proceedings of the International Symposium
on Stability, Vibration, and Control of Machines and Structures, Budapest, Hungary, 16–18 June 2016; pp. 133–144.

9. Motegi, M.; Matsumura, N.; Yamada, T.; Muto, N.; Kanamaru, N.; Shimokura, K.; Abe, K.; Morita, Y.;
Katsunishi, K. Analyzing Rising Patterns of Patients to Prevent Bed-related Falls (Second Report). Trans. Jpn. Soc.
Health Care Manag. 2011, 12, 25–29.

10. Ogawa, K. Evidence-Based Nursing Ergonomics and Body-Mechanics; Tokyo Denki University Press: Tokyo, Japan,
2008.

11. Ministry of Health, Labour and Welfare in Japan National Health and Nutrition Survey Report. 2012. Avaiable
online: https://www.mhlw.go.jp/bunya/kenkou/eiyou/h24-houkoku.html (accessed on 17 January 2020).

12. Hatsukari, T.; Shiino, T.; Murai, S. The Reduction of Tumbling and Falling Accidents Based on a Built-in Patient
Alert System in the Hospital Bed. J. Sci. Lab. 2012, 88, 94–102.

13. Frank, E.; Trigg, L.; Holmes, G.; Witten, I.H. Naive Bayes for regression. Mach. Learn. 2000, 41, 5–15. [CrossRef]
14. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46,

175–185. [CrossRef]
15. Vapnik, V.; Lerner, A. Pattern Recognition Using Generalized Portrait Method. Automot. Rem. Control 1963, 24,

774–780.
16. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
17. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;

Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
18. Bayes, T. An Essay towards Solving a Problem in the Doctrine of Chances. Philos. Trans. R. Soc. B 1763, 53,

370–418. [CrossRef]

http://dx.doi.org/10.1589/rika.32.435
http://dx.doi.org/10.13189/nh.2015.030302
https://www.mhlw.go.jp/bunya/kenkou/eiyou/h24-houkoku.html
http://dx.doi.org/10.1023/A:1007670802811
http://dx.doi.org/10.1080/00031305.1992.10475879
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1093/biomet/45.3-4.296


Sensors 2020, 20, 1415 22 of 22

19. Kohonen, T. Self-Organizing Maps; Springer Series in Information Sciences; Springer: Berlin/Heidelberg, Germany,
1995; doi:10.1007/978-3-642-56927-2. [CrossRef]

20. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada,
20–25 August 1995; Volume 2, pp. 1137–1143.

21. Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection. Stat. Surv. 2010, 4, 40–79.
[CrossRef]

22. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 7291–7299.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-642-56927-2
http://dx.doi.org/10.1214/09-SS054
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sensor System
	System Structure
	Pad Sensor
	Rail Sensor
	Basic Characteristics
	Sensor Installation

	Bed-Leaving Behavior Pattern Recognition Based on Machine-Learning Algorithms
	Feature Calculation
	Recognition Algorithms
	NB
	kNN
	SVM
	RF
	CPN


	Datasets
	Target Behavior Patterns
	Datasets Obtained for Conditions
	Sensor Output Signals

	Evaluation Experiment
	Evaluation Criteria
	Comparison Results of Learning Algorithms
	Experimental Results for CDS
	Experiment Results for DDS
	Integration of Learning Datasets
	Discussion

	Conclusions
	References

