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Abstract: Ergonomics evaluation through measurements of biomechanical parameters in real time
has a great potential in reducing non-fatal occupational injuries, such as work-related musculoskeletal
disorders. Assuming a correct posture guarantees the avoidance of high stress on the back and on the
lower extremities, while an incorrect posture increases spinal stress. Here, we propose a solution for
the recognition of postural patterns through wearable sensors and machine-learning algorithms fed
with kinematic data. Twenty-six healthy subjects equipped with eight wireless inertial measurement
units (IMUs) performed manual material handling tasks, such as lifting and releasing small loads,
with two postural patterns: correctly and incorrectly. Measurements of kinematic parameters, such
as the range of motion of lower limb and lumbosacral joints, along with the displacement of the
trunk with respect to the pelvis, were estimated from IMU measurements through a biomechanical
model. Statistical differences were found for all kinematic parameters between the correct and
the incorrect postures (p < 0.01). Moreover, with the weight increase of load in the lifting task,
changes in hip and trunk kinematics were observed (p < 0.01). To automatically identify the two
postures, a supervised machine-learning algorithm, a support vector machine, was trained, and an
accuracy of 99.4% (specificity of 100%) was reached by using the measurements of all kinematic
parameters as features. Meanwhile, an accuracy of 76.9% (specificity of 76.9%) was reached by using
the measurements of kinematic parameters related to the trunk body segment.

Keywords: activity recognition; wearable sensors; risk assessment; musculoskeletal disorders; motion
analysis; working activities; machine-learning algorithms

1. Introduction

The assumption of non-neutral postures during working activities is the main cause of injuries
and accidents in a workplace [1-6]. Manual material handing (MMH) tasks expose workers to
a high level of ergonomic hazards, which finds high correlation with the onset of work-related
musculoskeletal disorders (WMSDs) [7-11]. Awkward postures have been identified as risk factors for
the musculoskeletal system, especially in the construction field [12-15]. Though different guidelines
have been designed for risk assessments, they have not always been definitive due to factors such as
high variability, repetitiveness, and a low standardization of tasks [16-22]. Ergonomics investigations,
based on measurements of kinematic and dynamic parameters that are obtained through motion
analysis, might be helpful in designing risk management in a real manufacturing scenario.

Construction workers perform activities that demand the repetitive lifting of loads with different
weights, the carrying of heavy loads, or being in a posture that is difficult to standardize [3,23,24].
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For instance, when considering MMH tasks such as lifting loads (LL), lower back pain, and lower
limb joints are the effect of WMSDs due to the adoption of incorrect postural patterns in this kind of
activity. According to guidelines, reducing the occurrence of musculoskeletal risks in LL tasks goes
through: (i) maintaining a straight spine, (ii) avoiding the full flexion of the trunk for a long period,
(iii) leveraging the lower extremities during the lifting phase, and (iv) bringing the load close to the
body in order to reduce the distance between the center of mass of the object and the center of the
mass of the human body [23]. Furthermore, it is essential to use better motion control through safer
posture, which limits, or helps to compensate for, a non-neutral distribution of biomechanical loads
on the back and the lower extremities. In 2003, Leon Straker compared three different techniques for
lifting low-lying objects: the squat, stoop, and semi-squat techniques [25]. The squat technique was
highly supported by many researches after observing high values of compression, shear force and
peak lumbar moments in the stoop technique [25-27].

Observational-based methods have usually been adopted to evaluate working posture and
fatigue level [28-32]. Though they are easy to apply to working places, they are biased by the
subjectivity of the raters. There is a need for objective quantification-fueled research efforts involving
instrumentation for motion analysis. Hwang et al. investigated the lifting squat and stoop techniques
by estimating kinematic and kinetic parameters through motion capturing solutions such as an
optoelectronic system (OS) and force plates [33]. These two devices are known for their accuracy and
reliability on measurements of kinematic variables, but they are difficult to introduce in a workplace
setting [11,22,33-35]. Continuous monitoring of a working site could be obtained through the adoption
of wearable motion capture systems that are suitable for outdoor motion analysis [2,4,9,10,17,36-39].
Wearable devices, like inertial measurement units (IMUs), represent the most suitable technologic
solution for gathering reliable measurements of kinematic parameters and performing motion analysis
in a real manufacturing scenario. In clinics, sports, daily life activities, and industrial applications, the
adoption of IMUs has enabled promising results [40—43].

Estimating biomechanical risks in MMH tasks through IMUs [4,37,39] allows for the design of
setups that are not bulky and that suitable for each working activity. In 2016, Gholipour and colleagues
assessed spinal posture during lifting tasks through three inertial sensors placed on pelvis and trunk
segments [38]. In 2017, Yan and colleagues designed a small setup to analyze the working postures
of construction workers in real time [4]. The setup was composed of two IMUs placed on the head
and trunk, preventing the detection of WMSDs related to the upper body, such as neck, shoulder and
low back pain [4,39]. Nath et al. focused on assessing the ergonomic risk levels of awkward postures
only through sensor data related to trunk and shoulder segments [9]. Even if these small setups do
not hamper workers in their MMH activities, they do not provide any information about lower limb
kinematics, which has been demonstrated to be highly involved in lifting tasks [33]. In fact, in our
previous work, a dependency on the weight of kinematic parameters related to the lower limbs during
the manual handling of small loads was found. This result highlighted the necessity to assess lower
extremity motion despite the use of small setups, especially in the real-time evaluation of postural
patterns [43].

The integration of a real-time posture analysis through wearables devices with machine learning
algorithms could represent a useful tool to reduce WMDSs. The reliability and precision of devices
that are employed for monitoring workers in their own workplace, along with the automatic detection
of motion activities, might provide a requalification of the work environment. The machine learning
algorithm allows for an automatic recognition of dangerous situations in several fields, such as
rehabilitation and ergonomics [44—49], as well as the improvement of the adaptability of prosthetic
lower limbs, as in a study by study Sun et al. [50]. Thus, hazard lifting and fall risk could be immediately
identified, thus increasing the safety on working places [1,38]. In 2019, Antwi-Afari and colleagues
evaluated working activity recognition through four supervised machine-learning classifiers that
were fed with wearable insole pressure data [51]. Regarding posture recognition in lifting activities,



Sensors 2020, 20, 1557 30f17

Gholipour et al. investigated the ability of artificial neuronal networks (ANNSs) in predicting spinal
posture during lifting and reaching a 5 kg load at different heights [38].

As supervised machine-learning algorithm, the support vector machine (SVM) guarantees good
outcomes classifying human motion patterns [44,47]. In industrial environments, SVMs have been
applied to classify and recognize the ergonomic posture of movement patterns [40]. In the last few
years, activity recognition has usually been based on machine learning algorithms that are fed with
inertial sensor data [38,52]. Alwasel et al. proposed and validated an SVM algorithm that classified
masonry workers’ poses as a function of their experience, obtaining a high rate of accuracy 92.11% [52].
In 2016, Ryu and colleagues tested the action recognition of masonry workers by using supervised
learning algorithms, such as an SVM, a k-nearest neighbor (kNN) algorithm, and a neural network [53].
Their classifiers were fed with accelerometer data of a sensor that was only placed on an upper segment
of each subject (e.g., the dominant hand) and reached an accuracy ranging between 80% and 100%.
However, providing reliable worker activity recognition needs data gathering that is not limited to the
upper segments. The aim of our study was to design an experimental protocol for assessing postural
patterns, defining a correct and incorrect posture according to the current safety and ergonomic
guidelines, and evaluating motion analysis through a wearable system and a biomechanical model.
An additional aim was to test the classification potential of an SVM for recognizing the two correct and
incorrect postural patterns during MMH tasks through the measurements of kinematic parameters
related to lower limb, pelvis and trunk body segments. The SVM was fed with two datasets: the
trunk-lower limb (TL-1) dataset, which was composed of data that were collected through eight sensors
and that were related to the kinematic parameters of the trunk and the lower limbs, and the upper
body (UpB) dataset, which was composed of data that were collected through two sensors that were
placed on pelvis and trunk body segments. The two datasets were analyzed to unveil the most effective
choice to assess human motion through a small setup in a workplace.

2. Materials and Methods

2.1. Experimental Setup

Twenty-six healthy subjects (age: 26.9 + 4.7 years; height: 171.0 + 7.8 cm; weight: 64.8 + 11.8 kg)
were recruited to participate in the study. Eight wireless inertial measurement units (MIMUs MTw,
Xsens Technologies—NL) were used to gather kinematic data of the upper and lower body segments
of each subject. More specifically, for the upper body segments, two sensors were placed (i) under the
suprasternal notch on the sternum body and (ii) posteriorly on pelvis; for the lower body segments, six
sensors were placed (i) laterally on the mid-thighs, (ii) laterally on the mid-shanks, and (iii) on the
instep of the feet. To limit relative movements between each sensor and its body segment, each IMU
was fixed with elastic straps (see Figure 1). The sampling rate was set at 40 Hz. All data were low-pass
filtered by applying a second-order recursive Butterworth filter at a cutoff frequency of 10 Hz, as the
dynamics of the motion did not exceed 5 Hz.

2.2. Experimental Procedure

The experimental protocol consisted of performing four MMH tasks—the lifting load task (LL) in
(i) the correct (CLL) and (ii) incorrect (ILL) postures and the releasing load task (RL) in (iii) the correct
(CRL) and (iv) incorrect (IRL) postures. Specifically, we assumed LL and RL as performed in the correct
posture, when completed, maintained the trunk as straight as possible and the knee as flexed, i.e., squat
lifting [54,55], according to the guidelines [23,24]. On the contrary, the incorrect posture comprised
knees being fully extended and the trunk being completely bended, i.e., stoop lifting [16,24].

The subjects performed the MMH tasks with three different loads: 1, 2, and 5 kg. The execution in
the correct and incorrect postures of tasks was randomized. Each combination of conditions (execution
and load) was repeated three times.



Sensors 2020, 20, 1557 40f17

Figure 1. Inertial measurement units (IMUs) positions on the human body segments.

Before the session, subjects were asked to perform the functional calibration procedure (FC) to
assess their body-to-sensors alignment [56]. In the FC procedure, each subject kept a standing upright
posture and a sitting position for five seconds. Subjects stood in a standing upright posture before
MMH tasks. In the LL task, they lifted the load from the ground and returned to the previous posture.
They kept the load close to the body at the elbow height before starting the RL task. In the RL task,
each subject released the load from the elbow height, repositioning it onto the ground and returning to
a standing upright posture with their hands along their sides. In the correct posture, subjects were
advised to reduce biomechanical loads on their lower limb joints, e.g., preventing torque at ankles,
maintaining heel contact with the ground, and limiting anterior knees movement over the toes. [55].
Moreover, to reduce biomechanical loads on the trunk body segment, they were asked to avoid twisting
while performing the MMH tasks of the experimental protocol. The loads were placed near the feet
of each subject in a box with two handles in order to guarantee a safe and comfortable grip. The
box was made of plastic and had dimensions of 18 cm x 29 cm X 14 cm (height x width X depth).
Subjects were asked to wear comfortable clothes and shoes without heels or any arch support. The
speed for executing the tasks was self-selected. Subjects rested for two minutes between tasks to avoid
fatigue effects.

2.3. Data Processing

All data were analyzed in post-processing by using the MATLAB (v.2018, Math Works, Natick,
MA) program. The displacement in the 3D space between the pelvis and trunk body segments (P'PTi),
expressed in mm, was calculated. Moreover, the range of motion (RoM) of the lumbosacral (R°MSacr),
left and right hip (RMHip; R°MHipg), left and right knee (R*°MKnee; R°MKneeg), and left and right
ankle (ROMAnkle; R°MAnkleg) joint angles in the sagittal plane, expressed in degrees, were analyzed.
Kinematics parameters were estimated through a biomechanical model (BM) according to [56,57].
More specifically, this biomechanical model defined a reference body frame for each body segment
as follows: the y-axis directed along the direction of progression, the z-axis vertically directed and
pointing upward, and the yz-plane parallel to sagittal plane. Joint angles were obtained by considering
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the rotation matrix between two adjacent body segments following the FC procedure [56]. To assess the
PIPT, vector, the anthropometric measurement of the distance between the midpoint of the anterior
superior iliac spines and the sternum, approximately under the suprasternal notch, a distance denoted
as 1y, was included in the BM as follows:

0
plopl, trk — 0 (1)
ltrk

Considering the anthropometric measurement of trunk ly, plopurk is the origin of the trunk
coordinate system (CSx) with respect to the pelvis coordinate system (CSy;).

@

PIR Plo
pthrk _ [ trk pltrk

0 00 1

where PR, is the rotation matrix expressing the relative rotation between the pelvis body segment
and the trunk body segment. Considering PIR, and ”lopl,t,k, PIT, is the roto-translation matrix that is
used to estimate the pose of the trunk body segment with respect to the pelvis body segment.

1
plT k—l — letrkT = RtrkTplopl,trk (3)
” 000 1

Considering the inverse of roto-translation matrix PIT o, ”kotrk,pl was obtained through this
product:
trk Pl Tpl
" Otrk,pl = - Rt‘rk b otrk,pl (4)

] pl trk
PPTyy = Opltrk —  Otrk,pl )
where the P'PTy; vector represents the displacement of the trunk body segment with respect to the
pelvis body segment.

2.4. Statistical Analysis

To assess motor modification among task conditions, a statistical analysis was performed
on kinematics parameters by considering the average across the three repetitions of each task.
Antero-posterior (AP), medio-lateral (ML), and vertical (V) components of the ” IPT,; vector, the joint
kinematics of the upper body, the lumbosacral joint (*°MSacr) and the lower-limb joint kinematics
(ROMHipL, ROMHipR, RoM¥nee; , ROMKneeg, ROM Ankle; , and R°M Ankleg) values were considered in the
statistical analysis. A 2 X 3 two-way repeated measures analysis of variance (ANOVA) was performed
separately on the LL and RL tasks, with main effects: Posture and Weight as within-subject factors. More
specifically, Posture presented two levels related to the two postural patterns, correct and incorrect,
while Weight presented three levels of 1, 2, and 5 kg. The significance level was set at 0.05 for all
statistical tests, and the Greenhouse—Geisser correction was adopted when the Mauchly’s test was
significant and the assumption of sphericity was violated. A Bonferroni test was used for post-hoc
analysis. If the interaction effect of Posture x Weight was significant, we broke down the interactions by
comparing the LL and RL tasks in the correct and the incorrect postures with paired t-tests at each
level of Weight.

2.5. Machine Learning Classifier

Posture classification was obtained through a support vector machine (SVM), which guarantees a
high classification performance even with a small dataset, as shown in a study by Zhang et al. [3,47].
The SVM classifier training and testing dataset consisted of kinematic parameters that were estimated
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through the BM. According to our kinematic parameters, the ten features consisted of the excursion
range of the displacement of the ? IPT,,« vector in the AP, ML, and V directions; the ranges of motion of
lumbosacral joint and the lower limb joints that were obtained by the three repetitions of each task
that was executed by each subject. We tested: (i) a dataset with all ten features, which was named
the trunk-lower limb (T-LI) dataset and considered all measured kinematic parameters of both the
trunk and lower limbs, and (ii) a smaller dataset with only four features that was named the upper
body (UpB) dataset and considered the kinematic parameters related to the upper body, "PT,, and
RoMgGacr. Furthermore, these two datasets were both divided into six sub-datasets by considering the
two postural patterns, i.e., correct and incorrect, and each load, i.e., 1, 2, and 5 kg. The machine-learning
algorithm and the analysis of its performance were obtained by using the MATLAB (v.2018, Math
Works, Natick, MA) software.

Before training and testing the SVM classifier, the features were normalized, by subtracting the
mean and dividing by the standard deviation of each feature. A leave-one-out cross-validation was
adopted to evaluate the performance of the classifier. As performance measurements, we considered:

e Accuracy (Acc)

( TP+ TN

TP+FP+TN+FN)X100/° ©)

e  Specificity (True Negative Rate—TNR)

(TN

———— % 100% 7
TN+FP)X 00% @)

e  Sensitivity/Recall (True Positive Rate—TPR)

(TP

TP—l——FI\[) X 100% (8)

e  Precision (Positive Predictive Value—PPV)

TP

(TP + FP

The true positive (TP) is the number of true positives, i.e., the SVM identifies the LL task or the RL

task that was labelled as the task that was performed in the incorrect posture; true negative (TN) is the

number of true negatives, i.e., SVM identifies the LL task or the RL task as that which was labelled

as the task that was performed in the correct posture; false positive (FP) is the false identification of

the incorrect posture; and false negative (FN) is the false identification of the correct posture. TNR

quantifies how classifier could avoid false detection in order to correctly discriminate the two postures.

TPR defines the ability of the SVM to recognize the MMH tasks that were executed in the incorrect

posture. PPV allows for the identification of how many tasks were executed in the incorrect posture

were correctly classified. We used those performance measurements to test SVMs with four different
kernel functions: linear, polynomial (quadratic and cubic), and Gaussian.

) x 100% )

3. Results

3.1. Results of the Statistical Analysis

The mean and standard deviation values of all kinematic parameters, estimated through the BM
over the three repetitions of tasks, and the results from statistical analysis are summarized in Table 1
for the LL task and in Table 2 for the RL task. No differences between the right and left side of the
lower extremities were found. We only report mean and standard deviation values for the right lower
limb joints in both Tables 1 and 2. Figure 2 shows the mean and standard deviation values of the
displacement of the P'PT,; vector in the AP, ML, and V directions of a subject performing the CLL and
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ILL tasks with the three loads. The displacement was normalized at task duration and is expressed as a
percentage. Mean and standard deviation values of right lower limb joint angles in the sagittal plane in
respect to the task duration of a subject performing the CLL and the ILL tasks with the three loads are
reported in Figure 3. We set the angles of hip flexion as positive, knee flexion, and ankle dorsiflexion.

Table 1. Mean, standard deviation, and p-values of the main effects Posture and Weight of a 2 x 3
two-way repeated measures ANOVA for the three components of the P IPT,,. vector (the displacement
in the 3D space between the pelvis and trunk body segments); the range of motion of the lumbosacral
joint and the right lower limb joints estimated through the biomechanical model (BM) in the correct
lifting loads (CLL) and incorrect lifting loads (ILL) tasks. * marks significant differences.

CLL Task ILL Task p-Value
1kg 2kg 5kg 1kg 2kg 5kg Posture ~ Weight
AP (mm) 222 + 68 215+ 74 215+ 71 298 + 59 288 + 62 284 + 76 <0.01* 0.21
PIPT, ML (mm) 41+19 41+21 46 + 20 48 +24 51 +25 58 + 30 <0.01*  <0.01*
V (mm) 80 + 50 76 + 55 75 £ 49 151 + 54 137 + 54 140 + 62 <0.01* 0.27

Sacr (°) 36.7+124 357+142 354+131 525+100 499+111 496+134 <0.01* 0.17
Hip (°) 994 +£10.7 1021+11.3 1045+132 753+152 776+156 80.0+165 <0.01* <0.01*
Knee (°) 102.1+16.8 1044+178 106.1+174 29.6+20.8 281+197 305+186 <0.01* 0.08
Ankle (°) 27.6+79 27.8+75 28.1+74 12.8 £4.9 128 £5.2 12.8 +4.6 <0.01* 0.80

RoM

Table 2. Mean, standard deviation, and p-values of the main effects Posture and Weight of a 2 x 3
two-way repeated measures ANOVA for the three components of the PIPT;; vector (the displacement
in the 3D space between the pelvis and trunk body segments); the range of motion of the lumbosacral
joint and the right lower limb joints estimated through the biomechanical model (BM) in the correct
releasing loads (CRL) and incorrect releasing loads (IRL) tasks.* marks significant differences.

CRL Task IRL Task p-Value
1kg 2kg 5kg 1kg 2kg 5kg Posture ~ Weight
AP (mm) 23473 231+75 226 £ 75 304 =57 295 x 61 287 +75 <0.01* 0.14
PIPTy ML (mm) 48 +21 47 +23 49 +20 52 +25 57 +26 61 +29 <0.01* 0.11
V (mm) 89 + 60 86 + 61 85+ 53 162 + 58 143 + 57 146 + 63 <0.01* 0.26

Sacr (°) 39.3+142 385+148 375+141 55.0+99 51.6+11.3 50.6+129 <0.01* 0.09
Hip (°) 1004 +£11.5 1034+11.0 105.7+115 750+164 771+166 78.0+162 <0.01* <0.01*
Knee (°) 1041+171 1068+184 1089+179 282+193 279+195 274+175 <0.01* 0.27
Ankle (°) 268 +7.7 268 +7.7 262+7.2 124 +4.1 119+5.1 120+ 4.2 <0.01* 0.44

RoM

No significant interaction was found for all considered parameters in the LL task. Considering
the LL task, statistical differences were found for all kinematic parameters in the main effect of posture
(p < 0.01). In the main effect of weight, significant differences were found for the ML component of the
PIPT,,; vector (p < 0.01) and for the ROMHip (p < 0.01, for both sides). In regards to the ML component
of the P'PT,,; vector, the Bonferroni test showed differences between the 1 and 5 kg loads (p = 0.02) and
between the 2 and 5 kg loads (p = 0.01),

Considering the range of motion of the right hip, differences were found between the 1 and 5 kg
loads (p < 0.01), between the 2 and 5 kg loads (p < 0.01), and between the 1 and 2 kg loads (p < 0.01).
As for the range of motion of the left hip, differences were found between the 1 and 5 kg loads (p <
0.01), between the 2 and 5 kg loads (p = 0.02), and between the 1 and 2 kg loads (p < 0.01).

In the RL task, a similar trend was observed in the main effect of posture. In fact, significant
differences were found for all kinematic parameters (p < 0.01). In the main effect of weight, significant
differences were found only for the RMHip (p < 0.01, of both side). In regard the R*MHip, the Bonferroni
test showed differences between the 1 and 5 kg loads (p < 0.01, of both sides) and between the 1 and
2 kg loads (p < 0.01, of both sides). A significant interaction for the ML component of the P'PT,; vector
was found. Breaking down the two-way repeated measures ANOVA in three paired t-tests, statistical
differences were found between the CRL task and the IRL task with the 2 kg load (p < 0.01) and the
5 kg load (p < 0.01).
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Figure 2. Mean (solid line) and standard deviation (dashed line) values of the range excursion of the
displacement of the P'PTy; vector in the AP, ML and V directions with respect to the task duration of a
subject performing the CLL and ILL tasks with 1 kg (a,d,g), 2kg (b,e,h) and 5 kg (c,£,i) loads.

3.2. Results of Machine Learning Classifier

In Tables 3 and 4, the performance measurements of the classifier in terms of accuracy (Acc), TNR,
TPR and PPV are reported for the LL task and the RL task, respectively. Regarding the SVM that was
fed with all kinematic parameters, the accuracy rate reached 98.7% in the LL task and 99.4% in the RL
task with the 1 kg load through the SVM linear kernel. In the LL task with a 2 kg load, the highest
values of accuracy (99.4%) and TPR (100%) were found through the SVM quadratic kernel rather than
in the other considered kernel functions, while the highest values of TNR and PPV (100%) were found
through the SVM Gaussian kernel. Considering the 5 kg load, a 98.1% accuracy rate was reached for
the LL task and a 98.7% accuracy rate was reached for the RL task through the SVM linear kernel.
Regarding PPV, it reached its highest values (98.7%) in the LL task and (100%) in the RL task through
the linear kernel. Furthermore, in the T-LI dataset, good results of TNR were obtained for the LL and
RL tasks with all three loads. Specifically, we obtained a TNR of 98.7% in the LL task and a TNR of
100% in the RL task through the SVM linear kernel with the highest load.
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Figure 3. Mean (solid line) and standard deviation (dashed line) values of the range excursion of
the right lower limb joint angles in the sagittal plane with respect to the task duration of a subject
performing the CLL and ILL tasks with 1 kg (a,d,g), 2kg (b,e,h) and 5 kg (¢ f,i) loads.

Table 3. Overall accuracy (Acc), specificity (true negative rate (TNR)), sensitivity/recall (true positive
rate (TPR)) and precision (positive predictive value (PPV)) values of the posture recognition when
using the four different kernel functions considering the trunk-lower limb (T-L1) and upper body (UpB)
datasets in the LL task.

LL Task
1kg 2kg 5kg
SVM

Acc TNR TPR PPV  Acc TNR TPR PPV  Acc TNR TPR PPV

kernels
Linear 98.7 987 987 987 949 94.9 94.9 94.9 98.1 98.7 974 987
TL1 Quadratic  95.5 96.2 94.9 96.1 99.4 98.7 100 98.7 974 96.2 98.7 963
B Cubic 96.8 974  96.2 97.4 98.7 987 987 987 968 96.2 974  96.2
Gaussian ~ 98.1 98.7 974 98.7 994 100 98.7 100 97.4 96.2 98.7  96.3
Linear 73.7 70.5 76.9 72.3 724 67.9 76.9 70.6 71.2 73.1 69.2 72.0
UpB Quadratic  76.9 76.9 76.9 76.9 71.8 70.5 73.1 71.3 67.3 67.9 66.7 675
Cubic 62.2 56.4 67.9 60.9 62.8 55.1 70.5 61.1 70.5 69.2 71.8 70.0
Gaussian ~ 69.2 66.7 718 68.3 73.1 70.5 75.6 72.0 69.2 69.2 69.2 69.2

In Figure 4, the confusion matrices of the classifiers related to the two datasets are reported when
considering only the highest values of accuracy in the LL task with the three loads. Focusing on the
T-LI dataset, the highest accuracy was reached through the SVM linear kernel for the 1 kg load with a
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processing time of 3.43 s, for the 2 kg load through the SVM quadratic (1.62 s) and Gaussian kernel
(1.52 s), and for the 5 kg load through the SVM linear kernel (1.78 s). Regarding the UpB dataset, the
highest accuracy was reached through the SVM quadratic kernel for the 1 kg load (780.40 s), for the
2 kg load through the SVM Gaussian kernel (1.88 s), and for the 5 kg load through the SVM linear
kernel (82.11 s).

Table 4. Overall accuracy (Acc), specificity (true negative rate (TNR)), sensitivity/recall (true positive
rate (TPR)) and precision (positive predictive value (PPV)) values of the posture recognition when
using the four different kernel functions considering the trunk-lower limb (T-Ll) and upper body (UpB)

datasets in the RL task.
RL Task
1kg 2kg 5kg
SVM
Acc TNR TPR PPV Acc TNR TPR PPV Acc TNR TPR PPV
kernels
Linear 99.4 98.7 100 98.7 99.4 98.7 100 98.7 98.7 100 97.4 100
TL1 Quadratic  98.1 98.7 97.4 98.7 99.4 98.7 100 98.7 94.9 93.6 96.2 93.8
B Cubic 97.4 98.7 96.2 98.7 99.4 98.7 100 98.7 95.5 93.6 97.4 93.8
Gaussian ~ 98.1 97.4 98.7 97.5 98.7 974 100 97.5 98.1 98.7 97.4 98.7
Linear 724 67.9 76.9 70.6 67.9 69.2 66.7 68.4 70.5 82.1 59.0 76.7
UpB Quadratic  71.2 62.8 79.5 68.1 744 70.5 78.2 72.6 76.3 73.1 79.5 74.7
Cubic 78.8 83.3 74.4 81.7 67.9 69.2 66.7 68.4 68.6 59.0 78.2 65.6
Gaussian 83.3 78.2 88.5 80.2 76.9 80.8 73.1 79.2 71.2 65.4 76.9 69.0
Acc=98.7 % Acc=994 % Acc=98.1%
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Figure 4. Confusion matrices for the T-LI dataset for the LL task with the 1 kg linear kernel (a), 2 kg
quadratic kernel (b) and 5 kg linear kernel (c) loads; and the UpB dataset for the LL task with the 1 kg
quadratic kernel (d), 2 kg Gaussian kernel (e) and 5 kg linear kernel (f). IP = incorrect Posture and CP

= correct Posture.
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In Figure 5, the receiver operating characteristic (ROC) curves of SVM related to the TL-1 dataset
and the UpB dataset are represented only for the LL task in order to compare the performance of the
SVM between the considered kernel function.

. F ~ d
'r_l—'
0.8 7 0.8 i 0.8 ~
o "
(.6 2 mO.ﬁ ,_/F_ﬂ 0.6
3 = £
0.4 J =04 0.4
0.2{ 0.2 0.2
I %
%02 01 06 08 1 % 02 04 06 08 1 0 02 04 06 08 1
FPR FPR FPR
(a) (b) (c)
1 : 1e 1
r o - o o
{ ny
081 0.8 — - 0.8 J
f i o ; "‘J
o 0.6 Jr o 0.6 ! 006 rr
= = =
0.4}/ =04 f 0.4 H
02 0.2 02}/
0502 02 06 08 1 %02 02 06 08 1 002 02 06 08
FPR FPR FPR
(d) (e) (f)
: - k — lf —
0.8 A 0.8 o 0.8 J,51”*
f(’_r F ol
o 06 o’ o 0.6 I e 061
= = 4 = e
0.4 )"H =04 7 =04
0.2 fJ 0.2 r.I 0.2 {
002 07 06 08 1 %0 02 04 06 08 1 0507 04 06 08
FPR FPR FPR
(z) (h) (i)
lp lp P—
I —
| " .—r—‘;
0.8 st 038 G,If u.si fﬁff’
0.6 /g ol [ 06 9
(24 [+ [« 1
P I [« J'H B
=04 =04 [ 0.4 f
0.2 J 02 0.2 Jj
or or 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
FPR FPR FPR

) (k) (0
== T-LI dataset == UpB dataset

Figure 5. Receiver operating characteristic (ROC) curves of the TL-1 dataset and the UpB dataset of the
LL task with: linear kernel 1 kg (a), 2kg (b), and 5 kg (c) loads; quadratic kernel 1 kg (d), 2 kg (e), and
5 kg (f) loads; cubic kernel 1 kg (g), 2 kg (h), and 5 kg (i) loads; and Gaussian kernel 1 kg (j), 2 kg (k)
and 5 kg (1) loads. The black circle represents the optimal ROC operating point.
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4. Discussion

The kinematic parameters, obtained through the biomechanical model, allowed for the unveiling
of differences between the correct and the incorrect postures in lifting/releasing load tasks. Bending
the trunk and keeping the trunk flexed for a long time could favor the onset of spinal disorders
during a lifting load task [4,23,39]. As shown in Figure 1, the AP, ML and V components of the plPTtrk
vector reached high mean values while a subject lifted load with the trunk completely bended. These
kinematic parameters, considered to detect the role of the upper body in the MMH tasks, allow for the
observation of differences between the two postural patterns with the three loads, as demonstrated by
statistical analysis. In Figure 2, the AP and the V components of the PIPT,, vector show a comparable
duration for the descent phase, i.e., moving to reach the load, and the ascent phase, i.e., moving to
lift the load, in the correct posture. Considering the LL task for the 1 kg load, we did not observe
differences for the AP and the V components during the two phases in both postures. Our hypothesis
is that the 1 kg load was easier to handle with respect to the other considered loads for all the subjects
of the study, showing a minimal effect on their movement.

In the incorrect posture, the ascent phase appeared to have been performed faster than the descent
phase in the LL task, especially for the 2 and 5 kg loads (see Figure 1), as can be seen by looking at the
AP and the V components. On the contrary, we observed no modifications of the ML component of the
PIPT,, vector during the ascent and the descent phase of the LL task (see Figure 2).

In Figure 3, a wide excursion of the hip angle is observable during the LL task in the correct
posture, which is considerably different from the incorrect one, as demonstrated by statistical results.
In Figure 2, a reduction of the range of motion of the knee and ankle joints in the incorrect posture
during the LL task is observable with respect to the correct one. These results of the range of motion of
the knee and ankle joints are closely related to the motion pattern of the two postures (Tables 1 and 2),
as we expected.

The study of Valero et al, highlighted how workers tend to increase productivity without taking
care of healthy postures, dramatically favoring risk of WMSDs [2]. They noticed that a safe posture
during working tasks was maintained by workers with more experience in their profession compared
to their less experienced colleagues. No correlation was found between experience and posture, while
an increase of productivity was correlated with a reduced control of the body posture of the workers [2].
These observations underline the need for relying on measurements of posture parameters in the
workplace. Our biomechanical model and our wearable setup allowed for a reliable measurement of
these parameters, quantifying important movement variables of the two considered postural patterns
on the lower limbs, as highlighted in the results of our previous study [43]. By increasing the number of
subjects, we obtained significance for all considered kinematic parameters in the main effect of posture.
Thus, increasing the mobility of the lower extremities allows for the maintenance of a straight trunk,
avoiding unsafe biomechanical stress on the spine and ensuring a better control in this MMH tasks.

In the main effect of weight, we found no significance for the AP and V components of the PIPT
vector, and we could not quantify a dependency on the weight increase of load. Only for the ML
component was a dependency on the weight observed, despite the results of a previous analysis on the
kinematic parameters of the trunk [43]. As shown in Table 1, we observed small differences in the CLL
and CRL tasks, while we found an increase of the mean value related to the increase of load in the ILL
and the IRL tasks. In our experimental protocol, the LL and RL tasks were executed symmetrically,
so we did not expect high excursion in the ML direction of the trunk with respect to the AP and V
directions. Despite the statistical significance, the variation of this parameter in the single trial of each
task was not sufficient to discriminate between the two postural patterns. Furthermore, interesting
results were found for the RoM of the hip joint, as demonstrated by the statistical analysis. According
to the previous results on the hip joint [43], we could confirm the effects that were related to the weight
increase of the load on this parameters (on both sides) for the two tasks. These results allow us to
reaffirm the necessity to include lower limb segments in the ergonomic evaluation of MMH tasks.
Regarding the knee joint, high standard deviation values were obtained in the ILL and the IRL tasks.
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This bias may have been due either to the sample size or to the different strategies that were adopted
by each subject in each condition, i.e., postural patterns or loads. In future developments, we will
further investigate this aspect.

According to our results, some subjects could feel safer being close to the load before lifting with
the correct posture, while others adopted the strategy that included bending the knees. Furthermore,
they could not limit the flexion of their trunk, as demonstrated by the results. Hwang et al. estimated
joint angles when the lumbar lordosis appeared during the lifting task [33]. They found significant
differences of the lumbosacral joint with respect to the weight increase and a correlation between lower
limb joints and the lumbosacral joint during the squat lifting and stoop lifting techniques. In the case
of the 5 kg load, we can consider our results similar to those of Hwang et al. for all joint angles [33].

The impossibility of setting a precise and reliable threshold for each considered parameter called
for a machine learning solution to gather more complete information coming from all body segments.
We tested the SVM with the two datasets: TL-1 dataset, which was obtained through data that were
collected with the eight IMUs, and the UpB dataset, which was composed of data that were collected
through two sensors that were placed on pelvis and trunk body segments. The UpB dataset could not
represent an effective solution for posture recognition, especially in real time application, considering
the time processing and measurements of performance of the considered machine-learning algorithm.
The SVM classifier showed a high accuracy rate in the LL and RL tasks with the three loads through
T-LI dataset. Both TPR and TNR values were high, demonstrating a balanced performance of the
classifier in distinguishing the two postures through the T-LI dataset. Specifically, the highest accuracy
was found through the SVM polynomial and Gaussian kernel in the LL task and through the SVM
linear and polynomial kernel in the RL task with the 2 kg load. In the RL task with the 5 kg load, we
obtained a 100% TPR value and a 97.4% TNR value (Table 4). In the study of Alwasel et al., a high
accuracy was reached in distinguishing between safe and unsafe postures assumed by expert and
inexpert masonry workers [52]. They implemented an SVM that was fed with inertial data of the
whole kinematic chain. Among the three considered SVM kernel functions, linear and polynomial
ones were found to perform classification with high accuracy (92%), similarly to our results. Regarding
the Gaussian kernel function, they did not find a high value of accuracy (89%) [52]. Conversely, we
obtained a high accuracy with such a kernel, especially in the LL task with the 2 kg load.

Considering the reduced UpB dataset, the SVM Gaussian kernel was found to perform classification
with good accuracy for the LL and RL tasks with all loads. As shown in Figure 3, even if we found a
good rate of accuracy in the LL task, the FP assumed values that increased with the weight of loads,
especially between the 1 and 2 kg loads. This result confirmed that the use of features related to a
body segment, e.g., the trunk, does not allow for the correct identification of the two postural patterns.
The weakness of this dataset could be in one feature of the trunk, the excursion range of the ML
displacement of the PIPTy vector. In our experimental protocol, the LL and RL tasks were executed
symmetrically, so we did not expect high alterations of these parameters with respect to the other
kinematic parameters of the trunk body segment that were estimated through the BM. The assessment
of the TPR and the TNR guaranteed a reliable analysis of the performance of the considered classifier.
The misclassification of an unsafe posture could not help to prevent WMSDs, exposing workers to
biomechanical risk. On the contrary, the misclassification of the correct posture does not expose the
user to any risk, even if it compromises the reliability of the classifier, which in turn could lead to the
abandoning of the use of the solution. Thus, considering only kinematic parameters that are related to
trunk segment does not allow for a reliable performance of the algorithm (see Figures 4 and 5).

Chen et al. trained an SVM algorithm with predefined posture classes to let the model discriminate
postures in a set of activities. Considering different combinations of training parameters to obtain a
high value of accuracy, they could not correctly classify squatting and stooping, even if they considered
a dataset representing the whole kinematic chain [7]. The discrimination of unsafe biomechanical loads
was better performed by the T-Ll dataset than the UpB dataset, where the obtained rate of accuracy
might not have been enough to identify a non-ergonomic working posture. As shown in Figure 4c, we
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obtained an FP value of two, so the classifier misclassified the lifting load task that was executed in the
incorrect posture for one repetition of the task for two subjects. Regarding the FN value, the classifier
misclassified the lifting load task that was performed in the correct posture for one repetition of the
task of one subject. In Figure 4f, the FN value is shown to be higher than the FN value in Figure 4c. The
FN value that was equal to twenty-one shows that the classifier misclassified the correct posture with
the incorrect posture for those subjects who may not have varied the motion of the trunk body segment
in the two postural patterns during the lifting load task. These results confirm that a small dataset,
with features related to one body segment, does not give any effective information on the postural
patterns and the motion phases of tasks. Regarding the processing time of the SVM algorithm with
the best accuracy (see Figure 4), an effective classification was obtained through the SVM quadratic
kernel for the TL-1 dataset and through the Gaussian kernel for the UpB dataset. Nevertheless, when
considering the level of accuracy and the high values of FP and FN, a small dataset is not an effective
choice (see Figures 4 and 5). Furthermore, when considering the TL-1 dataset, the processing time
result was lower than the result that was obtained in Alwasel et al. study [52].

The main limitations of our study are related to the reduction of the working factors for the MMH
tasks in our experimental protocol, which did not examine other important working factors. In the
future development of the methodology, we will also explore uncomfortable grip and asymmetrical
lifting to quantify sensitivity to load variation of the medio-lateral displacement of the trunk, the
frequency and repetition of the tasks to assess the effect of fatigue, and loads greater than 5 kg. A further
limitation is related to the small size of the sample, which was composed by unexperienced volunteers.
In future developments, we will increase the number of participants by recruiting experienced workers.

5. Conclusions

Measurements of kinematic parameters that are related to the trunk body segment and lower
limb joints and obtained through our biomechanical model allowed us to distinguish between a safe
and an unsafe posture. Interesting results on alterations of hip joint were observed when considering
low loads, as highlighted by statistical analysis. Moreover, the SVM classifier reached high rates of
accuracy, specificity, and sensitivity in discriminating the two postural patterns through all considered
kinematic parameters. On the contrary, the outcome of the SVM classifiers that were fed with kinematic
parameters related only to the trunk does not allow for a satisfactory analysis of risk. The success of a
biomechanical evaluation of risks in work environment, preventing non-fatal occupational injuries,
depends on a full motion analysis of a worker’s performance, i.e., including the contribution of lower
limb kinematics. To reduce overexertion in MMH tasks, mitigating the occurrence of back spasms and
sprains, the design of a real-time posture-monitoring tool, combined with our wearable system and
our biomechanical model, will be a powerful solution in the workplace.
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