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Abstract: In recent years, the field of deep learning has achieved considerable success in pattern
recognition, image segmentation, and many other classification fields. There are many studies and
practical applications of deep learning on images, video, or text classification. Activation functions
play a crucial role in discriminative capabilities of the deep neural networks and the design of new
“static” or “dynamic” activation functions is an active area of research. The main difference between
“static” and “dynamic” functions is that the first class of activations considers all the neurons and
layers as identical, while the second class learns parameters of the activation function independently
for each layer or even each neuron. Although the “dynamic” activation functions perform better
in some applications, the increased number of trainable parameters requires more computational
time and can lead to overfitting. In this work, we propose a mixture of “static” and “dynamic”
activation functions, which are stochastically selected at each layer. Our idea for model design is
based on a method for changing some layers along the lines of different functional blocks of the best
performing CNN models, with the aim of designing new models to be used as stand-alone networks
or as a component of an ensemble. We propose to replace each activation layer of a CNN (usually
a ReLU layer) by a different activation function stochastically drawn from a set of activation functions:
in this way, the resulting CNN has a different set of activation function layers.

Keywords: Convolutional Neural Networks; ensemble of classifiers; activation functions; image
classification; skin detection

1. Introduction

Deep neural networks have become extremely popular as they achieve state-of-the-art performance
on a variety of important applications including image classification, image segmentation, language
processing, and computer vision [1]. Deep neural networks typically have a set of linear components
whose parameters are usually learned to fit the data, and a set of nonlinearities, which are pre-specified,
typically in the form of a sigmoid, a tanh function, a rectified linear unit, or a max-pooling function.
The presence of nonlinear activation functions at each neuron is essential to give the network the ability
of approximate arbitrarily complex functions [2], and its choice affects net accuracy and sometimes the
speed of training.

In this paper, we perform a large-scale empirical comparison of different activation functions
across a variety of image classification and for an image segmentation problem. Starting from two
of the best performing models, i.e. ResNet50 [3] for the classification task and DeepLabv3+ [4] for
the segmentation task, we compare different approaches for replacing activation layers and different
methods for building ensembles of CNNs obtained by varying the activation layers.

Sensors 2020, 20, 1626; doi:10.3390/s20061626 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3502-7209
https://orcid.org/0000-0003-0290-7354
http://dx.doi.org/10.3390/s20061626
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/6/1626?type=check_update&version=2


Sensors 2020, 20, 1626 2 of 15

After presenting and comparing several activation functions, we propose a new model based
on the use of different activation functions at different levels of the graph: to this aim, we propose
a method for stochastic selection of activation functions to replace each activation layer of the starting
network. The activation functions are randomly selected from a set of nine approaches, including the
most effective ones. After training the new models on the target problem, they are fused together
to build an ensemble of CNNs. It is well known in the literature [5] that networks trained using
back propagation are unstable; this behavior can be used for building an ensemble of classifiers.
These networks are partially independent, and their fusion permits to boost the performance of
a stand–alone network.

The proposed framework for ensemble creation is evaluated on two different applications: image
classification and image segmentation. In the image classification field, we deal with several medical
problems by including in our benchmark 13 image classification datasets. Biomedical image retrieval is
a challenging problem due to the varying contrast and size of structures in the images [6]. CNNs have
already been used on several medical datasets reaching very high performance, including keratinocyte
carcinomas and malignant melanomas detection [7], sub-cellular and stem cell image classification [8],
thyroid nodules classification [9] from ultrasound images, or breast cancer recognition [10]. Our testing
protocol includes a fine-tuning of each model in each dataset and a testing evaluation and comparison:
our experiments show that the proposed ensembles work well in all the tested problems gaining
state-of-the-art classification performance [11].

In the image segmentation field, we deal with the skin segmentation problem: the discrimination
of skin and non-skin regions in a digital image has a wide range of applications including face
detection [12], body tracking [13], gesture recognition [14], and objectionable content filtering [15]. Skin
detection has great relevance also in the medical field, where it is employed as a component of face
detection or body tracking: for example, in the remote photoplethysmography (rPPG) problem [16], it
is a component of a system solving the problem of estimating the heart rate of a subject given a video
stream of his/her face. In our experiment, we carry out a comparison of several approaches performing
a single training on a small dataset including only 2000 labeled images, while testing is performed on
11 different datasets including images from very different applications. The reported results show that
the proposed ensembles reach state-of-the-art performance [17] in most of the benchmark datasets
even without ad-hoc tuning.

The code developed for this work will be available at https://github.com/LorisNanni.

2. Literature Reviews

In the last years, deep learning has gained increasing attention in several computer vision
applications, such as image classification and retrieval, object detection, image segmentation, and many
other applications [18]. CNNs are deep neural networks designed to work similarly to the human brain
in visual perception: CNNs are able to distinguish meaningful features in an image in order to classify
the image as a whole. They are constituted of several types of layers of neurons: i.e., convolutional
layers, activation layers, subsampling layers, and fully connected layers [19].

Most recent architectures present a substantially higher number of layers and parameters, which
gives much more representation learning capability to those models. However, many parameters can
produce overfitting. This problem can be solved with the introduction of regularization techniques,
data augmentation, and better performing activation functions.

In particular, the purpose of activation layers is to decide if a neuron would fire or not, according
to a nonlinear transformation of the input signal. The design of new activation functions in order to
improve training speed and network accuracy is an active area of research [20,21]. Recently, the sigmoid
and hyperbolic tangent, which were the most widely used activations functions, have been replaced by
Rectified Linear Units (ReLU) [22]: ReLU is a piecewise linear function equivalent to the identity for
positive inputs and zero for negative ones. Thanks to the good performance of ReLU and the fact that
it is fast, effective, and simple to evaluate, several alternatives to the standard ReLU function have

https://github.com/LorisNanni
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been proposed in the literature. The most known “static” activation function are: Leaky ReLU [23],
an activation function equal to ReLU for positive inputs but having a very small slope α > 0 for negative
ones; ELU [21], which exponentially decreases to a limit point α in the negative space; and SELU [24],
a scaled version of ELU (by a constant λ). Moreover, in [25], a randomized leaky rectified linear
unit (RLReLU) is proposed, which uses nonlinear random coefficient instead of linear. The choice of
optimal activation functions in a CNN is an important issue because it is directly related to the resulting
success rates. Unfortunately, an analytical approach able to select optimal activation functions for
a given problem is not available; therefore, several approaches try to determine them by trial and error.
“Dynamic” activation functions are a class of function whose parameters, differently from “static” ones,
are learned during training. Parametric ReLU (PReLU) [26] is a Leaky ReLU where the amount of
the slope α is learned; Adaptive Piecewise Linear Unit (APLU) [20] is a piecewise linear activation
function with learnable parameters: it calculates piecewise linear function independently for each
neuron and learns them during the training process. Another “dynamic” function is proposed in [27],
whose shape is learned by a linear regression model. In [28], two different variants are proposed:
a “linear sigmoidal activation”, which is a fixed structure function whose function coefficients are
static, and its “dynamic” variant, named “adaptive linear sigmoidal activation”, which can adapt itself
according to the complexity of the given data. Two of the best performing functions are Swish [29],
which is the combination of a sigmoid function and a trainable parameter, and the recent Mexican
ReLU (MeLU) [30], which is a piecewise linear activation function that is the sum of PReLU and
multiple Mexican hat functions.

The main difference between “static” and “dynamic” functions is that the first class of activations
considers all the neurons and layers as identical, while second class learns parameters independently
for each layer or even each neuron. Although the “dynamic” activation functions perform better than
“static” in some applications, their parametric nature increases the number of trainable parameters
and thus the possibility of overfitting. In this work, we propose a mixture of “static” and “dynamic”
activation functions.

3. Activation Functions

This study considers 10 different activation functions (more details, and specific reference for each
function, are given in [30]), namely the widely used ReLU and several variants. The functions used are
summarized in Table 1, while in the following the analytical expression together with their derivatives
are given. Several dynamic activation functions depend on a hyperparameter, named maxInput, which
is a normalization factor to better deal with input images varying between [0,1] or [0,255].

Table 1. Summary of the activation functions evaluated in this work: name, parameter settings or
initialization (if they are learned), learned parameters, and reference.

Name Parameters Setting/Initialization Learned Parameters Ref

ReLu – – [22]
Leaky ReLU a = 0.1 – [23]

ELU a = 1 – [21]
PReLU ac = 0 ac [26]
SReLU al = 0, tl = 0, ar = 1 tr = maxInput al, tl, ar, tr [31]
APLU N = 3, ac = 0, bc = rand() ∗maxInput, ac, bc [20]
MeLU K = 4, α = [2, 1, 3], λ = [2, 1, 1] c ∈ Rk [30]

wMeLU K = 8, α = [2, 1, 3, 0.5, 1.5, 2.5, 3.5], λ = [2, 1, 1, 0.5, 0.5, 0.5, 0.5] c ∈ Rk [30]
GaLU K = 4, α = [1, 0.5, 2.5], λ = [1, 0.5, 0.5] c ∈ Rk

sGaLU K = 2, α = [1], λ = [1] c ∈ Rk

The well-known ReLU activation function, for the generic couple of points (xi, yi), is defined as:

yi = f (xi) =

 0, xi < 0

xi, xi ≥ 0
(1)
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and its derivative is easily evaluated as:

dyi

dxi
= f ′(xi) =

0, xi < 0

1, xi ≥ 0
(2)

This work also considers several variants of the original ReLU function. The first variant is the
Leaky ReLU function, defined as:

yi = f (xi) =

{
axi, xi < 0
xi, xi ≥ 0

(3)

where the parameter a is a small real number (0.01 in this study). The main advantage of Leaky ReLU
is that the gradient is always positive (no point has a zero gradient):

dyi

dxi
= f ′(xi) =

{
a, xi < 0
1, xi ≥ 0

(4)

The second variant of the ReLU function considered in this work is the Exponential Linear Unit
(ELU) [21], which is defined as:

yi = f (xi) =

{
a(exp xi − 1), xi < 0

xi, xi ≥ 0
(5)

where a is a real number (1 in this study). ELU has a gradient that is always positive:

dyi

dxi
= f ′(xi) =

{
a exp(xi), xi < 0

1, xi ≥ 0
(6)

The Parametric ReLU (PReLU) is the third variant that is considered here. It is defined by:

yi = f (xi) =

{
acxi, xi < 0

xi, xi ≥ 0
(7)

where ac is a set of real numbers, one for each input channel. PReLU is similar to Leaky ReLU, the only
difference being that the ac parameters are learned. The gradient of PReLU is:

dyi

dxi
= f ′(xi) =

{
ac, xi < 0
1, xi ≥ 0

and
dyi

dac
=

{
xi, xi < 0
0, xi ≥ 0

(8)

S-Shaped ReLU (SReLU) is the fourth variant. It is defined as a piecewise linear function:

yi = f (xi) =


tl + al

(
xi − tl

)
, xi < tl

xi, tl
≤ xi ≤ tr

tr + ar(xi − tr), xi > tr

(9)

In this case, four learnable parameters are used, tl, tr, al, and ar, expressed as real numbers. They
are initialized to al = 0, tl = 0, ar = 1, and tr = maxInput. SReLU is highly flexible thanks to the rather
large number of tunable parameters. The gradients are given by:

dyi

dxi
= f ′(xi) =


al , xi < tl

1, tl
≤ xi ≤ tr

ar, xi > tr

(10)
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dyi

dal
=

{
xi − tl, xi < tl

0, xi ≥ tl , and (11)

dyi

dtl
=

{
−al, xi < tl

0, xi ≥ tl (12)

The fifth variant is APLU (Adaptive Piecewise Linear Unit). As the name suggests, it is a linear
piecewise function. It is defined as:

yi = ReLU(xi) +
n∑

c=1

acmin(0,−xi + bc) (13)

where n is an hyperparameter, set in advance, defining the number of functions (or hinges); and ac and
bc are real numbers, one for each input channel. The gradients are evaluated as:

d f (x, a)
dac

=

{
−x + bc, x < bc

0, x ≥ bc
and

d f (x, a)
dbc

=

{
−ac, x < bc

0, x ≥ bc
(14)

In our tests, the parameters ac are initialized to 0, and the points are randomly chosen. We also
added an L2-penalty of 0.001 to the norm of the parameters ac.

An interesting variant is the Mexican ReLU (MeLU), derived from the Mexican hat functions.
These are defined as:

φa, λ(x) = max
(
λ·maxInput−

∣∣∣x− a·maxInput
∣∣∣, 0

)
(15)

where a and λ are real numbers. These functions are used to define the MeLU function, based on the
definition of the PReLU detailed above:

yi = MeLU(xi) = PReLUc0(xi) +
∑

k−1
j=1c j φ

α j,λ j(xi) (16)

The parameter k represents the number of learnable parameters for each input channel, c j are the
learnable parameters, c0 is the parameter vector in PReLU, and α j and λ j are fixed parameters chosen
recursively. The MeLU activation function has interesting properties, inherited from the Mexican hat
functions, that are continuous and piecewise differentiable. ReLU can be seen as a special case of
MeLU, when all the ci parameters are set to 0. This is important because pre-trained networks based
on the ReLU function can be enhanced in a simple way using MeLU. Similar substitutions can be made
when the source network is based on Leaky ReLU and PReLU.

As previously observed, MeLU is based on a set of learnable parameters. The number of
parameters is sensibly higher with respect to SReLU and APLU, making MeLU more adaptable and
with a higher representation power but more likely to overfit. The gradient is given by the Mexican hat
functions. The MeLU activation function also has a positive impact on the optimization stage.

In our work, the learnable parameters are initialized to 0, meaning that the MeLU starts as a plain
ReLU function; the peculiar properties of the MeLU function come into play at a later stage of the
training. The first Mexican hat function has its maximum in 2·maxInput and is equal to zero in 0
and 4·maxInput. The next two functions are chosen to be zero outside the interval [0, 2·maxInput]
and [2·maxInput, 4·maxInput], with the requirement being they have their maximum in maxInput and
3·maxInput. The parameters α and λ are chosen to fulfill this requirement.

In this work we test two values of k, the standard value is k = 4 for MeLU and a wider version of
the function for k = 8 (wMeLU).
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The Gaussian ReLU, also called GaLU, is the last activation function considered in our work. Its
definition is based on the Gaussian type functions:

φg
a, λ(x) = max

(
λ·maxInput−

∣∣∣x− a·maxInput
∣∣∣, 0

)
+

+min
(∣∣∣x− a·maxInput− 2λ·maxInput

∣∣∣− λ·maxInput, 0
) (17)

where a and λ are real numbers. The GaLU activation function is defined as:

yi = GaLU(xi) = PReLUc0(xi) +
∑

k−1
j=1c j φg

a j,λ j(xi) (18)

which is a formulation similar to the one provided for MeLU, which again depends on the parameters
a j and λ j. Again, the function is defined in this way to provide a good approximation of nonlinear
functions. We use k = 4 for GaLU and k = 2 for its “smaller” version sGaLU.

Please note that, to avoid any overfitting, we use the same parameter setting suggested by the
original authors for each activation function, as reported in Table 1.

4. Materials and Methods

In this section, we describe both the starting models and the stochastic method proposed to design
new CNN models and create ensembles. In the literature, several CNN architectures have been proposed
for image classification (AlexNet [32], GoogleNet [33], InceptionV3 [34], VGGNet [35], ResNet [3],
and DenseNet [36]) and segmentation problems (SegNet [37], U-Net [38], and Deeplabv3+ [4]). In our
experiments, we selected two of the best performing models: ResNet50 [3] for image classification
and Deeplabv3+ [4] for segmentation. ResNet50 is a 50-layer network, which introduces a new
“network-in-network” architecture using residual layers. ResNet50, which was the winner of ILSVRC
2015, is one of the best performing and most popular architectures used for image classification.
In our experiments, all the models for image classification were fine-tuned on the training set of
each classification problem according to the model training parameters reported in Table 2. Data
augmentation includes random reflection on both axes and two independent random rescales of both
axes by two factors uniformly sampled in [1,2].

Table 2. Model training parameters used for image classification and skin segmentation.

Parameter Image Classification Skin Segmentation

batch size 32 32
learning rate 0.0001 0.001
max epoch 30 50

data augmentation Yes yes (30 epoch)

For image segmentation purposes, we selected Deeplabv3+ [4], a recent architecture based on
atrous convolution, in which the filter is not applied to all adjacent pixels of an image but rather to
a spaced-out lattice of pixels. Deeplabv3+ uses four parallel atrous convolutions (each with differing
atrous rates) followed by a “Pyramid Pooling” method. Since DeepLabv3+ is based on encoder–decoder
structure, and it can be built on top of a powerful pre-trained CNN architecture: in this work, we
selected again ResNet50 for this task, although our internal evaluation showed that ResNet101 and
ResNet34 gained similar performance. All the models for skin segmentation were trained on a small
dataset of 2000 images using class weighting and the same training parameters, as reported in Table 2.

Given a base model for each task, i.e. ResNet50 for image classification and DeepLabv3+ for skin
segmentation, we designed several variants of the initial architecture by replacing all the activation
layers (which were ReLU layers in both the starting models used in this work) by a different activation
function. The stand-alone methods named leakyReLU, ELU, SReLU, APLU, GaLU, sGaLU, PReLU, MeLU,
and wMeLU together with the original model (ReLU) are the 10 models tested in our experiments.
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Some of them depend on the training parameter maxInput, which was set to 1 if not specified (255,
otherwise).

After comparing several activation functions, we propose to design a new model based on the
use of different activation functions in different layers. According to the pseudo-code in Figure 1,
a RandAct model is obtained using the function StochasticReplacement, applied to an input CNN and
a set of activation functions, by randomly replacing all the activation layers of the input model. In our
experiments, we considered ResNet50 as the input model for image classification and DeepLabv3+ for
image segmentation. However, this method is general and it could be applied to any other model.
The output models RandAct and RandAct(255) were obtained from input models using the set of 9
alternative activation functions with the maxInput parameter equal to 1 or 255. To create an ensemble,
the function CreateEnsemble is used: first, StochasticReplacement is used to generate N RandAct
models, then the models are fine-tuned on the training set, and finally they were fused together in
an ensemble using the sum rule. The fusion of CNNs using the sum rule consists in summing the
outputs of the last softmax layer. Then, the final decision is obtained applying an argmax function. In
the segmentation task, we evaluated the sum of the output mask, which is equal to a vote rule at pixel
level. The ensemble created and tested in the experimental section are the following:

• FusRan10 and FusRan10(255) are ensembles obtained by the fusion of 10 RandAct or RandAct (255)
models (i.e., fixing maxInput = 1 or 255)

• FusRan20 = FusRan10 + FusRan10(255)
• FusRan3 and FusRan3(255) are the ensembles obtained by the fusion of 3 stochastic models as

RandAct or RandAct(255).
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Figure 1. Pseudo-code of the two procedures for stand-alone random model and ensemble creation.

Moreover, we also tested the following ensembles obtained by the sum rule of the above
stand-alone models:

• FusAct10 and FusAct10(255) are the ensembles obtained by the fusion of all the 10 non-random
stand-alone models obtained by varying the activation functions: i.e. ReLU, leakyReLU, ELU,
SReLU, APLU, GaLU, sGaLU, PReLU, MeLU, and wMeLU (fixing maxInput to 1 or 255)

• FusAct3 is a lightweight ensemble obtained by the fusion of the best 3 stand-alone models
(evaluated on the training set), FusAct3 = wMeLU + MeLU + PReLU for skin classification
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• FusAct3(255) is a lightweight ensemble obtained by the fusion of the best 3 stand-alone methods
for image classification, FusAct3(255) = wMeLu(255) + MeLu(255) + SReLu(255)

Finally, we proposed two ensembles obtained mixing different types of selection for activation
functions:

• FusAR20 = FusAct10 + FusRan10
• FusAR20(255) = FusAct10(255) + FusRan10(255)

5. Results

To evaluate the stand-alone models based on different activation functions, the stochastic method
for model and ensemble creation and the other ensembles described in Section 4, we performed
experiments on 13 well-known medical datasets for image classification and 11 datasets for skin
segmentation. Table 3 summarizes the 13 datasets for image classification including a short abbreviation,
the dataset name, the number of samples and classes, the size of the images, and the testing protocol.
We used five-fold cross-validation (5CV) in 12 out of 13 datasets, while we maintained a three-fold
division for the Laryngeal dataset (the same protocol in [39]). Table 4 summarizes the 11 datasets used
for skin segmentation. All models were trained only on the first 2000 images of the ECU dataset [40];
therefore, the other skin datasets were used only for testing (for ECU, only the last 2000 images not
included in the training set were used for testing).

Table 3. Summary of the Medical Datasets for image classification: short same (ShortN), name, number
of classes (#C), number of samples (#S), image size, testing protocol, and reference.

ShortN Name #C #S Image Size Protocol Ref

CH Chinese hamster ovary cells 5 327 512 × 382 5CV [41]
HE 2D HELA 10 862 512 × 382 5CV [41]
LO Locate Endogenous 10 502 768 × 512 5CV [42]
TR Locate Transfected 11 553 768 × 512 5CV [42]
RN Fly Cell 10 200 1024 × 1024 5CV [43]
TB Terminal bulb aging 7 970 768 × 512 5CV [43]
LY Lymphoma 3 375 1388 × 1040 5CV [43]

MA Muscle aging 4 237 1600 × 1200 5CV [43]
LG Liver gender 2 265 1388 × 1040 5CV [43]
LA Liver aging 4 529 1388 × 1040 5CV [43]
CO Human colorectal cancer 8 5000 150 × 150 5CV [44]

BGR Breast grading carcinoma 3 300 1280 × 960 5CV [45]
LAR Laryngeal dataset 4 1320 1280 × 960 Tr-Te [39]

Table 4. Summary of the Skin detection datasets with ground truth used for image segmentation: short
name (ShortN), name, number of images (#S), quality of the ground truth, and reference.

ShortN Name #S Ground Truth Ref

CMQ Compaq 4675 Semi-supervised [46]
UC UChile DB-skin 103 Medium Precision [47]

ECU ECU Face and Skin Detection 4000 Precise [40]
Sch Schmugge dataset 845 Precise (3 classes) [48]
FV Feeval Skin video DB 8991 Low quality, imprecise [49]

MCG MCG-skin 1000 Imprecise [50]
Prat Pratheepan 78 Precise [51]

VMD 5 datasets for human activity recognition 285 Precise [52]
SFA SFA 1118 Medium Precision [53]
HGR Hand Gesture Recognition 1558 Precise [54]
VT VT-AAST 66 Precise [55]
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The evaluation and comparison of the proposed approaches was performed according to two
of the most used performance indicators in image classification and skin segmentation: accuracy
and F1-measure, respectively. Accuracy is the ratio between the number of true predictions and the
total number of samples, while the F1-measure is the harmonic mean of precision and recall and it is
calculated according to the following formula F1 = 2tp/(2tp + f n + f p), where tn, fn, tp, and fp are the
number of true negatives, false negatives, true positives, and false positives evaluated at pixel-level,
respectively. According to other works on skin detection, F1 was calculated at pixel-level (and not
at image-level) to be independent on the image size in the different databases. Finally, to validate
the experiments, the Wilcoxon signed rank test [56] was used. For our experiments, all images were
resized to the input size of the CNN models (i.e., 224 × 224 for ResNet50 and all our variants) before
training and testing, and then the output mask for skin segmentation was resized back to original size.

In the first experiment, we evaluated the proposed methods for image classification on the datasets
listed in Table 3. Table 5 reports the accuracy obtained by all the tested stand-alone models and
ensembles: the last two columns report the average accuracy (Avg) and the rank (evaluated on Avg).

Table 5. Performance of the proposed approaches in the medical image datasets (accuracy).

Dataset Avg Rank
Method CH HE LO TR RN TB LY MA LG LA CO BG LAR

ReLU 93.5 89.9 95.6 90.0 55.0 58.5 77.9 90.0 93.0 85.1 94.9 88.7 87.1 84.55 15
leakyReLU 89.2 87.1 92.8 84.2 34.0 57.1 70.9 79.2 93.7 82.5 95.7 90.3 87.3 80.30 22
ELU 90.2 86.7 94.0 85.8 48.0 60.8 65.3 85.0 96.0 90.1 95.1 89.3 89.9 82.80 21
SReLU 91.4 85.6 92.6 83.3 30.0 55.9 69.3 75.0 88.0 82.1 95.7 89.0 89.5 79.02 24
APLU 92.3 87.1 93.2 80.9 25.0 54.1 67.2 76.7 93.0 82.7 95.5 90.3 88.9 78.99 25
GaLU 92.9 88.4 92.2 90.4 41.5 57.8 73.6 89.2 92.7 88.8 94.9 90.3 90.0 83.28 20
sGaLU 92.3 87.9 93.2 91.1 52.0 60.0 72.5 90.0 95.3 87.4 95.4 87.7 88.8 84.13 17
PReLU 92.0 85.4 91.4 81.6 33.5 57.1 68.8 76.3 88.3 82.1 95.7 88.7 89.6 79.26 23
MeLU 91.1 85.4 92.8 84.9 27.5 55.4 68.5 77.1 90.0 79.4 95.3 89.3 87.2 78.76 27
wMeLU 92.9 86.4 91.8 82.9 25.5 56.3 67.5 76.3 91.0 82.5 94.8 89.7 88.8 78.95 26
SReLU(255) 92.3 89.4 93.0 90.7 56.5 59.7 73.3 91.7 98.3 89.0 95.5 89.7 87.9 85.15 13
APLU(255) 95.1 89.2 93.6 90.7 47.5 56.9 75.2 89.2 97.3 87.1 95.7 89.7 89.5 84.35 16
GaLU(255) 92.9 87.2 92.0 91.3 47.5 60.1 74.1 87.9 96.0 86.9 95.6 89.3 87.7 83.73 19
sGaLU(255) 93.5 87.8 95.6 89.8 55.0 63.1 76.0 90.4 95.0 85.3 95.1 89.7 89.8 85.09 14
MeLU(255) 92.9 90.2 95.0 91.8 57.0 59.8 78.4 87.5 97.3 85.1 95.7 89.3 88.3 85.26 11
wMeLU(255) 94.5 89.3 94.2 92.2 54.0 61.9 75.7 89.2 97.0 88.6 95.6 87.7 88.7 85.27 10
RandAct 90.2 90.0 94.2 91.6 54.5 62.0 77.3 90.8 95.7 90.5 95.1 89.0 87.1 85.23 12
RandAct(255) 93.2 88.5 94.4 91.6 51.5 59.1 73.9 88.3 94.0 89.1 95.1 86.7 88.0 84.11 18
FusAct10 93.5 90.7 97.2 92.7 56.0 63.9 77.6 90.8 96.3 91.4 96.4 90.0 90.0 86.67 8
FusAct10(255) 95.1 91.3 96.2 94.2 63.0 64.9 78.7 92.5 97.7 87.6 96.5 89.7 89.8 87.46 6
FusRan10 95.4 91.3 95.8 95.1 63.0 64.2 78.9 93.8 98.7 91.1 96.5 90.3 90.2 88.02 5
FusRan10(255) 96.9 91.2 96.8 96.2 58.5 66.6 79.7 92.5 98.3 91.6 96.6 89.7 91.1 88.13 2
FusRan20 97.5 91.4 96.6 95.8 60.5 65.8 79.7 94.2 99.0 90.5 96.6 89.7 90.7 88.30 1
FusAR20 95.7 90.8 97.0 94.4 61.5 64.1 79.5 93.8 98.3 91.4 96.6 91.0 90.5 88.04 4
FusAR20(255) 96.3 91.2 96.6 95.3 62.0 64.9 79.5 93.8 98.3 90.1 96.6 90.3 90.8 88.12 3
FusAct3(255) 93.9 91.5 94.8 93.1 58.5 63.5 77.6 91.3 98.3 88.0 96.3 89.0 89.4 86.55 9
FusRan3(255) 96.3 90.9 95.6 95.1 54.0 62.9 78.7 92.5 98.7 90.9 96.2 90.0 90.5 87.10 7

From the results in Table 5, we can draw the following conclusions:

• All ensembles are ranked before the stand-alone methods: this demonstrates that changing the
activation function is a viable method for creating diversity among models.

• The method named ReLU, which is our baseline since it is the standard implementation of ResNet50,
performs very well, but it is not the best performing activation function: many activation functions
(with the maxInput = 255) perform better than ReLU on average.

• It is a very valuable result that methods such as wMeLU(255), MeLU(255), and some other
stand-alone approaches strongly outperform ReLU. Starting from a pretrained model and changing
its activation layers, we obtained a sensible error reduction. This means that our approaches
permit boosting the performance of the original ResNet50 on a large set of problems.
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• It is difficult to select a function that wins in all problems. Therefore, a good method to improve
performance is to create an ensemble of different models: both FusAct10 and FusAct10(255) work
better than each of their single components.

• Designing the models by means of stochastic activation functions (i.e., RandAct or RandAct(255))
gives valuable results: RandAct is ranked 12th, only two positions worse than the best stand-alone
model (wMeLU(255) ranked 10th) and before the baseline ReLU (15th).

• Moreover, the selection of stochastic activation functions is very valuable for the creation of
ensembles: both FusRan10 and FusRan10(255) perform very well compared to all stand-alone
models and other ensembles; their fusion FusRan20 = FusRan10 + FusRan10(255) is the first ranked
method tested on these experiments.

• The two small ensembles FusAct3(255) and FusRan3(255) perform very well; they strongly
outperform stand-alone approaches and reach performance comparable with other heavier
ensembles (composed of 10 or 20 models).

In the second experiment, we evaluated the proposed methods for skin segmentation on the
11 datasets listed in Table 4. In Table 6, the performance of all the tested stand-alone models and
ensembles are reported in terms of F1-measure; the last two columns report the average F1-measure
(Avg) and the rank (calculated on the average F1).

Table 6. Performance of the proposed approaches in the skin datasets (F1-measure).

Dataset Avg Rank
Method FV Prat MCG UC CMQ SFA HGR Sch VMD ECU VT

ReLU 0.759 0.831 0.872 0.881 0.799 0.946 0.950 0.763 0.592 0.917 0.745 0.823 18
leakyReLU 0.753 0.853 0.876 0.875 0.804 0.944 0.955 0.762 0.606 0.921 0.716 0.824 14
ELU 0.682 0.838 0.870 0.834 0.791 0.941 0.944 0.763 0.540 0.918 0.677 0.800 27
SReLU 0.722 0.839 0.867 0.860 0.807 0.950 0.958 0.743 0.610 0.919 0.709 0.817 25
APLU 0.774 0.840 0.874 0.880 0.796 0.942 0.945 0.761 0.593 0.914 0.745 0.824 16
GaLU 0.759 0.827 0.867 0.872 0.795 0.941 0.933 0.755 0.562 0.913 0.731 0.814 26
sGaLU 0.779 0.834 0.872 0.867 0.798 0.946 0.951 0.766 0.597 0.915 0.739 0.824 15
PReLU 0.785 0.852 0.878 0.886 0.809 0.947 0.953 0.770 0.633 0.924 0.740 0.834 10
MeLU 0.768 0.861 0.878 0.879 0.819 0.947 0.953 0.768 0.643 0.927 0.725 0.834 11
wMeLU 0.768 0.869 0.878 0.888 0.821 0.945 0.956 0.771 0.616 0.929 0.706 0.832 12
SReLU(255) 0.758 0.831 0.872 0.879 0.797 0.946 0.949 0.764 0.592 0.916 0.744 0.823 19
APLU(255) 0.755 0.839 0.873 0.873 0.797 0.940 0.947 0.760 0.584 0.909 0.744 0.820 22
GaLU(255) 0.776 0.832 0.870 0.869 0.790 0.938 0.940 0.758 0.566 0.911 0.756 0.819 24
sGaLU(255) 0.769 0.845 0.876 0.886 0.797 0.944 0.951 0.764 0.617 0.919 0.741 0.828 13
MeLU(255) 0.757 0.836 0.874 0.872 0.792 0.943 0.944 0.767 0.570 0.913 0.744 0.819 23
wMeLU(255) 0.759 0.832 0.873 0.880 0.799 0.946 0.950 0.763 0.599 0.917 0.742 0.824 17
RandAct 0.757 0.852 0.876 0.889 0.804 0.937 0.947 0.764 0.569 0.920 0.730 0.822 20
RandAct(255) 0.732 0.844 0.873 0.878 0.797 0.944 0.937 0.758 0.595 0.914 0.751 0.820 21
FusAct10 0.796 0.864 0.884 0.899 0.821 0.951 0.959 0.776 0.671 0.929 0.748 0.845 3
FusAct10(255) 0.791 0.854 0.881 0.897 0.813 0.949 0.955 0.774 0.654 0.925 0.761 0.841 8
FusRan10 0.795 0.864 0.883 0.901 0.818 0.949 0.958 0.775 0.667 0.927 0.752 0.844 7
FusRan10(255) 0.800 0.867 0.884 0.906 0.819 0.950 0.958 0.779 0.655 0.927 0.749 0.845 5
FusRan20 0.800 0.867 0.884 0.905 0.819 0.950 0.958 0.778 0.663 0.927 0.752 0.846 2
FusAR20 0.799 0.865 0.884 0.901 0.820 0.951 0.959 0.776 0.673 0.929 0.751 0.846 1
FusAR20(255) 0.798 0.862 0.883 0.903 0.817 0.950 0.957 0.777 0.660 0.927 0.758 0.845 6
FusAct3 0.790 0.874 0.884 0.896 0.825 0.951 0.961 0.776 0.669 0.933 0.737 0.845 4
FusRan3 0.783 0.870 0.883 0.902 0.818 0.951 0.959 0.778 0.635 0.930 0.717 0.839 9

From the results in Table 6 it can be derived that:

• ReLU is the standard DeepLabv3+ segmentation CNN based on ResNet50 encoder. This is
our baseline, since it has shown state-of-the-art performance for skin segmentation [17]. Many
stand-alone models based on different activation functions outperform ReLU: in this problem,
the activation functions with maxInput = 1 work better than those initialized at 255; therefore, we
set to 1 the maxInput for the ensembles with three models (FusAct3 and FusRan3).
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• Similar to the image classification experiment, all ensembles work better than any stand-alone
approach: FusAR20 is the best ranked method in our experiments, but two “lighter” ensembles,
namely FusAct3 and FusAct10, offer very good performance.

• Similar to the classification problem, the proposed approaches outperform ReLU, i.e. the standard
DeepLabv3+ based on ResNet50, a state-of-the-art approach for image segmentation.

• The reported results show that all the proposed ensembles reach state of the art performance [17]
in most of the benchmark datasets: all of them outperform our baseline ReLU.

To give a visual evidence of the performance improvement obtained by our ensemble FusRan20
with respect to the baseline ReLU, Figure 2 presents two graphics of performance on both datasets.
Moreover, in Figure 3, sample output masks from the Pratheepan dataset obtained by our ensemble
FusAR20 with respect to the baseline ReLU and the ground truth are shown. In all three sample images,
the improvement of the ensemble with respect to our baseline stand-alone method is clearly visible.
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Finally, we report some comparisons considering the Wilcoxon signed rank test. In Tables 7 and 8,
we compare the performance of some approaches for classification and segmentation: we selected the
most interesting approach for each size of ensembles (of course, the approaches can be different in the
two problems). The reported p-values confirm the conclusions drawn from Tables 5 and 6. Moreover,
the Wilcoxon signed rank test between FusRan10 and FusAct10 shows that the stochastic ensemble
outperforms the other one with a p-value of 0.0166 on our 13 datasets for image classification. Similarly,
FusRan10(255) outperforms FusAct10(255) with a p-value of 0.0713 in the image classification problem.
This is an experimental demonstration that introducing a stochastic selection is a method to improve
diversity of classifiers.

Table 7. P-value of the comparison among some tested approaches in the medical image classification
experiment (< denotes that the method in row wins, ˆ denotes that the method in column wins, =

denotes that there are were no statistically significant differences).

Classification ReLU wMeLU(255) FusRan3(255) FusRan10(255) FusRan20

ReLu — ˆ0.0046 ˆ0.0210 ˆ0.002 ˆ0.002
wMeLu(255) — ˆ0.0024 ˆ0.004 ˆ0.002
FusRan3(255) — ˆ0.004 ˆ0.002
FusRan10(255) — =0.7148
FusRan20 —

Table 8. P-value of the comparison among some tested approaches in the skin segmentation experiment.

Skin Segmentation. ReLU PReLU FusAct3 FusAct10 FusAR20

ReLu — ˆ0.0059 ˆ0.0029 ˆ0.001 ˆ0.001
preLu — ˆ0.0020 ˆ0.001 ˆ0.001
FusAct3 — =0.9844 =0.6797
FusAct10 — ˆ0.0938
FusAR20 —

Finally, using a Titan Xp, the classification time of a ResNet50 is 0.018 s per image; this mean
that, using an ensemble of 20 CNNs, it is possible to classify more than two images per second using
a single Titan Xp.

6. Conclusions

In this study, we proposed a method for CNN model design based on changing all the activation
layers of the best performing CNN models by stochastic layer replacement. We proposed to replace
each activation layer of a CNN by a different activation function stochastically drawn from a given set.
This means that the resulting model has different activation function layers. This generation process
introduces diversity among models making them suitable for ensemble creation. Interestingly, this
design approach has gained very strong performance for ensemble creation: a set of ResNet50-like
models designed using stochastic replacement of all activation layers and combined by sum rule
strongly outperforms both standard ResNet50 (i.e., with a static ReLU activation function) and a single
stochastic model (i.e., RandAct) in our experiments. A large experimental evaluation was carried out on
a wide set of benchmark problems both for image classification and image segmentation. Experimental
results demonstrate that the proposed idea is very effective to build a high-performance ensemble
of CNNs.

Even if these first results are limited to a single, albeit highly performing model, we plan as
a future work to assess the proposed method on a larger class of models including lighter architectures
suitable for mobile devices. The difficulty of studying ensembles of CNNs lies in the enormous speed
and memory resources required to conduct such experiments.
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