ﬂ SCNSors m\py

Article
Jellytoring: Real-Time Jellyfish Monitoring Based on
Deep Learning Object Detection

Miguel Martin-Abadal *(*, Ana Ruiz-Frau >{7, Hilmar Hinz 2" and Yolanda Gonzalez-Cid !

1 Department of Mathematics and Computer Science, Systems Robotics and Vision Group (SRV), Universitat

de les Illes Balears, 07122 Palma, Spain; yolanda.gonzalez@uib.es
2 Department of Marine Ecosystem Dynamics, IMEDEA (CSIC-UIB), Institut Mediterrani d"Estudis Avangats,
07190 Esporles, Spain; anaruiz@imedea.uib-csic.es (A.R.-F.); hhinz@imedea.uib-csic.es (H.H.)
Correspondence: miguel. martin@uib.es

check for
Received: 31 January 2020; Accepted: 17 March 2020; Published: 19 March 2020 updates

Abstract: During the past decades, the composition and distribution of marine species have changed
due to multiple anthropogenic pressures. Monitoring these changes in a cost-effective manner is
of high relevance to assess the environmental status and evaluate the effectiveness of management
measures. In particular, recent studies point to a rise of jellyfish populations on a global scale,
negatively affecting diverse marine sectors like commercial fishing or the tourism industry. Past
monitoring efforts using underwater video observations tended to be time-consuming and costly
due to human-based data processing. In this paper, we present Jellytoring, a system to automatically
detect and quantify different species of jellyfish based on a deep object detection neural network,
allowing us to automatically record jellyfish presence during long periods of time. Jellytoring
demonstrates outstanding performance on the jellyfish detection task, reaching an F1 score of 95.2%;
and also on the jellyfish quantification task, as it correctly quantifies the number and class of jellyfish
on a real-time processed video sequence up to a 93.8% of its duration. The results of this study are
encouraging and provide the means towards a efficient way to monitor jellyfish, which can be used
for the development of a jellyfish early-warning system, providing highly valuable information for
marine biologists and contributing to the reduction of jellyfish impacts on humans.

Keywords: deep learning; object detection; jellyfish quantification; jellyfish monitoring

1. Introduction

During the past decades, the marine environment has been under increased pressure by human
activities, such as the over-exploitation of marine species [1], the destruction and modifications of
habitats [2], the introduction of alien species [3], as well as pollution [4] and human-induced climate
change [5,6]. These pressures have caused highly relevant changes in the composition and distribution
of marine organisms [7].

The detection and quantification of changes in marine species are of vital importance to monitor
environmental status and its change over time, in particular, the benefits society derives from
ecosystems, known as ecosystem services [8]. Furthermore, the capacity to monitor is critical in the
assessment of the effectiveness of control or recovery measures implemented through management.

Visual observations of marine organisms using video cameras are increasingly adopted to monitor
the marine environment due to the low cost of this technology and the wide applicability within
a challenging environment for humans. Until recently, video observations have been processed
and classified by human observers, which in many instances is time-consuming and consequently
financially costly [9,10].

Sensors 2020, 20, 1708; d0i:10.3390/s20061708 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1925-7378
https://orcid.org/0000-0002-1317-2827
https://orcid.org/0000-0003-4909-0089
https://orcid.org/0000-0001-6155-2288
http://www.mdpi.com/1424-8220/20/6/1708?type=check_update&version=1
http://dx.doi.org/10.3390/s20061708
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 1708 2 of 21

In addition, the underwater environment is a highly dynamic environment, where a wide range of
variables such as water turbidity, scale deformations, illumination variations, presence of flares, color
distortions or light can affect the quality of the images collected, making data extraction a challenging
undertaking.

Over the last decade, automatic detection methods have arisen as a cost-effective way for image
location and classification [11], this is highly relevant in regards to the increasing amount of image data
that is being collected from the marine environment. In general, images of animal species are used to
record and quantify their density, distribution and behavior [12-15]. Getting to determine where objects
are located in a given image (object localization) and which category each object belongs to (object
classification) can be useful in a multitude of scenarios and implemented for multiple applications. In
the marine environment object detection and classification has been used among others to record fish
presence and recognition [16-19], to monitor marine turtles [20] or in the classification of planktonic
organisms [21].

General existing solutions for organisms automatic detection can be roughly classified into two
groups: traditional computer vision algorithms or artificial intelligence based approaches.

Traditional computer vision algorithms use feature detection algorithms (SIFT, SURF, BRIEEF, etc.)
to extract feature information from the image (position of corners, edges, blobs, etc.). An object is
recognized in a new image by individually comparing its features to a database and finding candidate
matching features. The difficulty with these traditional approaches is the necessity to choose which
features are important for each task. As the number of organisms to classify increases, feature extraction
becomes more complex [22].

Artificial intelligence approaches, in turn, can be divided into two groups, machine learning and
deep learning approaches:

Machine learning based approaches perform an informative region selection followed by a
feature extraction of the selected regions (e.g., SIFT [23], HOG [24], Haar-like [25]) and finally a
region classification using a determined method (e.g., Supported Vector Machine [26], AdaBoost
[27], Deformable Part-based Model [28]). Still, the feature extraction process needs to be determined
manually.

Deep learning based frameworks for image processing and object detection specifically, mostly rely
on region-based Convolutional Neural Networks (CNN) like R-CNN [29] or its performance evolutions:
Fast R-CNN [30] and Faster R-CNN [31], to generate deeper neural networks with more layers, able
to learn and extract more complex features. Here, the full process is automated, with no need of a
previous feature extraction, as the network inputs an image and is able to extract its own features.

In this paper, we present Jellytoring, a system to automatically detect and quantify different species
of jellyfish based on a deep object detection neural network. Within the context of human—environment
interactions, jellyfish are organisms that can create a multitude of impacts on human wellbeing. Among
others, the presence of jellyfish aggregations can clog seawater intake screens in water desalination and
power plants, causing power reductions and shutdowns [32,33], leaving entire populations without
electrical supply. In aquaculture, large aggregations of jellyfish can cause important socio-economic
impacts by killing farmed fish in pens [34,35]. In commercial fishing, jellyfish can interfere with fishing
operations by constituting a health hazard to fishermen when retrieving the nets, by splitting the
fishing nets due to the weight of the jellyfish in the nets or by ruining the catch [36]. Additionally,
jellyfish are known to create negative impacts on coastal tourism by generating unpleasant experiences
among coastal users with associated impacts on tourism revenues and the tourism industry [37].

The development of an automatic jellyfish detection and identification system could contribute to
the reduction of jellyfish impacts on humans, providing the means towards an effective acquisition
of jellyfish presence surveillance data which could be used for the development of a jellyfish
early-warning system. The nature and characteristics of jellyfish, however, are challenging aspects to
overcome in the development of such a system. Jellyfish are often translucent organisms whose bodies
can adopt significantly different configurations, due to the movement of their tentacles in relation to

Sensors 2020, 20, 1708 3of 21

their main body structure, i.e., the bell or umbrella. These aspects, translucent nature and changing
shapes, together with the added difficulties of object detection in underwater environments, represent
challenging conditions for the development of a jellyfish detection system.

We focused on the North-Western Mediterranean sea, an area with a high human population and a
popular tourism destination, where human-jellyfish interactions are frequent. Specifically, we studied
three jellyfish species which are common during the summer months and which often cause undesired
effects on tourism satisfaction, namely Pelagia noctiluca, Cotylorhiza tuberculata and Rhizostoma pulmo.

The remainder of this paper is structured as follows. Section 2 reviews related work on jellyfish
detection, quantification and monitoring and highlights our main contributions. Section 3 describes the
used neural network architecture and its training details. Section 4 describes the adopted methodology
and materials used in this study. The experimental results are presented in Section 5. Finally, Section 6
presents the main conclusions and outlines future work.

2. Related Work and Contributions

This section briefly describes the existing related efforts on jellyfish detection and monitoring.
The main contributions of this paper are highlighted at the end of this section.

2.1. State-of-the-Art

During the last decades, the monitoring of jellyfish species has mostly been carried out manually,
relying on human visual observations to detect, identify and quantify specimens; that is either by
direct observations made in the field [38] or by using video recordings that subsequently needed
manual analysis [39]. The use of aerial vehicles has also been adopted, to cover a larger study areas
[40]. However in general, visual observations tend to be slow, labor and resource intensive, thus
restricting the spatial and temporal extent of the studies [41,42].

Some studies have used the aid of traditional computer vision techniques to automate
the detection of jellyfish. Rife et al. [43] tested various image filtering techniques and
segmentation algorithms to track deep-ocean jellyfish on conventional camera imagery. However, this
implementation only considers a generic jellyfish class, not distinguishing between different species.
Moreover, the selected combination of filtering and segmentation algorithm does not allow for a
real-time tracking application.

As in many other research areas, the recent development of deep learning architectures has offered
major improvements in accuracy for observational ecological studies [44], dealing at the same time
with the spatial and temporal limitations of human visual observation [45]. Even so, the application of
deep learning for jellyfish detection has been very limited. To our knowledge, only two peer-reviewed
publications have focused on the subject.

Kim et al. [46] make use of an unspecified CNN along with collaborative filters to build a jellyfish
recognition algorithm for sea surface imagery taken by an unmanned aerial vehicle. Similar to the
studies mentioned above, this study does also not distinguish between different species of jellyfish.
Furthermore, limiting image capture to the water surface underestimates jellyfish numbers, as jellyfish
distribution is not limited to surface waters only and tend to occupy a large extent of the underlying
water column.

French et al. [47] implement a 10-layer VGG-style CNN architecture to detect jellyfish in
underwater sonar imagery, correctly classifying up to a 90% of the jellyfish for the test set. The
use of sonar imagery presents some advantages, like the usability at deeper areas where light does
not reach. On the other hand, it suffers from some drawbacks versus the usage of normal camera
imagery, like lower resolution or grey-scale coloring, complicating the detection task. This study did
not differentiate between different jellyfish species.

Finally, we found that none of these works performed a jellyfish quantification to provide
information of occurrences over time, nor used time series processing techniques to improve the
detection rate that allowed for the implementation of a monitoring algorithm.

Sensors 2020, 20, 1708 4 of 21

2.2. Main Contributions
The main contributions of this paper are composed of:

1. A real-time jellyfish monitoring system based on deep learning object detection named Jellytoring,
which provides highly valuable information to biologists, ecologists and conservationists on the

presence and occurrence of different species of jellyfish in an studied area.
2. The usage of a deep CNN, trained several times to fine tune its hyperparameters to detect and

classify up to three different species of jellyfish on underwater images. We evaluated the network

on a test set of images, comparing its results to other neural networks.
3. First system to achieve real-time automatic quantification and identification of different species

of jellyfish. We designed and tested an algorithm that can be executed in real-time and uses the

network detection to quantify and monitor jellyfish presence on video sequences.
4. The creation of a publicly available dataset used for the training and testing of the neural network

and the quantification algorithm, containing the original images and corresponding annotations.

3. Deep Learning Approach

This section describes the framework and network selection process along with its architecture
and training details.

3.1. Framework and Network Selection

There are several deep learning frameworks based on CNN that can be used to extract instance
information from images. They go from the standard region proposal based object detection
frameworks of Faster R-CNN [31] or some of its direct evolutions like FPN [48], mask R-CNN [49] or
RFCN [50]; to regression-based ones like YOLO [51] or SSD [52]; or even more specific frameworks
like deep salient object detection [53].

In our case, we aim to implement an object detection framework able to detect and classify up
to three species of jellyfishes present in underwater images, with no need of obtaining the pixel-wise
segmentation of the detected instances nor any extra feature that could slow the process. We wanted
to ensure that the system is able to perform real-time quantification on a wide spectrum of setups,
widening its applicability.

Taking into account both the computational cost along with the features of the aforementioned
frameworks and the requirements of our application, we opted for the usage of the Faster R-CNN
framework. This framework allow us to obtain the jellyfish instances bounding boxes and its
classification, while balancing the detection performance and computational cost trade off by selecting
an adequate deep learning architecture for this specific task.

Due to the slow movement of the jellyfish, an architecture with high detection performance,
despite having a relatively high image analysis time is suitable. Therefore, based on the performance
metrics provided by Google on tests [54] conducted for diverse object detection architectures over the
COCO dataset [55], we selected the Faster R-CNN-based implementation of the Inception ResNet v2
[56] architecture. It uses a region proposal network to generate object position instances and then the
Inception ResNet v2 to fine-tune these proposals and output a final prediction, presenting a two-stage
detection framework.

Inception ResNet v2 is a very deep CNN with over 450 layers that can efficiently learn to identify
objects in images, outputting instance bounding boxes and classifying them into one of the specified
classes with a confidence percentage.

Selecting appropriate kernel sizes for the convolutional layers is a crucial aspect when detecting
objects in an image, as the same object may show variations in shape and size. Larger kernels are
preferred for the detection of bigger objects while smaller kernels are favored for smaller ones. To
address this variation, Inception-ResNet V2 architecture performs multiple parallel convolutions
using different kernel sizes, making the network “wider” rather than “deeper”. The blocks of layers
containing these convolutions are called Inception Modules [57].

Sensors 2020, 20, 1708 5of 21

The network also uses Residual Connections [58], through which the output of the convolution
operation of the Inception Module is added to the input. This introduces shortcuts in the model
resulting in more optimal and accurate networks. This architecture combines Inception Modules and
Residual Connections which results in the Inception-ResNet modules. Figure 1 shows a compressed
view of the whole Inception ResNet v2 architecture. More in-depth information about this architecture
can be found in [56].

10x 20x 10x

Convolution
MaxPool
AvgPool
Concat

@ Dropout

@ Fully Connected

& Softmax

Residual .'

Figure 1. Inception ResNet v2 architecture. Credit: Google Al Blog.
3.2. Training Details

The Inception-ResNet V2 architecture is trained by means of readjusting the kernel values in the
convolutional layer filters, back-propagating the loss computed over the predictions obtained on the
softmax layers.

Due to the high number of layers, the loss becomes small and insufficient to update the
kernel values properly. To prevent the middle part of the network from “dying out” during the
backpropagation process, an auxiliary classifier is applied at the output of the second block of
Inception-ResNet modules. In this way, an auxiliary loss is computed and added to the prior one as
shown in Equation (1).

Total_loss = main_loss + aux_loss x 0.3. €))

To train the network and adjust the kernel weights, the smooth L1 location backpropagation loss
function is used, which loss increases as the predicted bounding box location diverges from the ground
truth. Additionally, the Momentum optimizer algorithm together with gradient clipping strategies
[59] are utilized to achieve a minimum global error.

The architecture used for this application had already been trained over the COCO dataset [55].
To retrain the network, it is needed a set of images containing different species of jellyfish and their
corresponding ground truth annotations, where the position and class of each jellyfish instance are
indicated.

4. Methodology

This section introduces the general workflow of Jellytoring and subsequently provides details of
each work step taken i.e., the acquisition and labeling of the data from the training and testing sets,
the tested network hyperparameters and studied combinations, the validation process and evaluation
metrics and finally, the quantification algorithm.

Sensors 2020, 20, 1708 6 of 21

4.1. Workflow

First, a set of images containing jellyfish needs to be forwarded into a frozen version of a trained
model of the deep object detection neural network. After its inference, the network generates the
jellyfish detection.

Following, this detection is optimized by a non-maxima suppression (nms) algorithm [60], deleting
overlapping ones. Then, the final predictions for each analyzed image are obtained by deleting
instances with an associated confidence lower than a selected threshold value (Cy,1). These predictions
can be used to measure jellyfish occurrences and species recognition in the forwarded images on its
own.

Furthermore, if the initial source of data is a video sequence, the network detection can be
forwarded into the quantification algorithm to obtain the evolution of number and species of jellyfish
present on the video sequence. This algorithm first deletes instances with an associated confidence
lower than a selected threshold value (Cy;,») and then applies time series processing techniques. More
in depth information about the quantification algorithm is provided in Section 4.6.

Figure 2 represents the workflow of Jellytoring.

Detections Final predictions

Data =»| Model |—> —>| nms |—>| Cthr1 |—>

Quantification Quantification

algorithm > F_Iﬁj
Cihr2, Wsize, Wover

Figure 2. Jellytoring workflow.

4.2. Data Collection

The present study focuses on three jellyfish species, namely Pelagia noctiluca, Rhizostoma pulmo
and Cothyloriza tuberculata. To obtain the needed data to train and test the neural network, we extracted
images containing instances of the studied jellyfish from underwater video recordings.

The first source of data consisted of a series of recordings we generated by mounting a GoPro
camera onto a platform and deploying it at the seafloor, pointing upwards. In order to obtain a variety
of exposure conditions, recordings were done during different times of the day, over different seabed
types and weather conditions. Using this method we generated up to 4 h of recordings. Secondly,
to obtain additional data, we examined diverse social media sites publicly available videos where
appeared instances of the three studied jellyfish. From these sources, we extracted a total of 842 images,
each one containing at least one jellyfish instance. When possible, images containing more than one
instance were extracted. The resolution of the images range from 320 x 240 to 1920 x 1080 pixels, they
can be forwarded into the network without any processing, as the network is able to process different
image and bounding boxes sizes thanks to its multiple feature extraction kernels sizes and shapes.

We built a varied dataset containing jellyfish instances under different conditions, such as jellyfish
coloration, position and size; or water illumination, depth and turbidity. We obtained a varied and
robust dataset to train the neural network without overfitting the training data and to test it on different
scenarios to ensure its wide usability. Figure 3 shows sample images from the dataset show-casing
different environmental conditions.

Sensors 2020, 20, 1708 7 of 21

Figure 3. Images from the dataset showing the three jellyfish species under different environmental
conditions. Left: P. noctiluca, center: R. pulmo, right: C. tuberculata.

To log the presence of the different jellyfish species, annotation files were generated using the
Labellmg tool [61]. For each image, a bounding box around each jellyfish instance was drawn and
was classified according to its species. The Labellmg tool then generates an “.xml” file containing the
position and classification of each instance within the corresponding image. A total of 962 jellyfish
occurrences were recorded, 327 corresponding to Pelagia noctiluca, 292 to Rhizostoma pulmo and 343 to
Cothyloriza tuberculata. Figure 4 shows an original image along with its ground truth “.xml” text file.

<annotation>
<folder>Tuberculata</folder>
<filename>IMG_00012.3pg</filename>
<path>D:\Jellyfish\Tuberculata\IMG_00012.jpg</path>
>

<database>Unknown</database>
</source>
<size>
<width>1280</width>
<height>720</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>tuberculata</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>616</xmin>
<ymin>127</ymin>
<xmax>973</xmax>
<ymax>525</ymax>
</bndbox>
</object>
</annotation>

Figure 4. Left: Original image. Right: Corresponding ground truth “.xml” file, specifying the jellyfish
location and class.

4.3. Hyperparameter Selection

When training a neural network the value of specific hyperparameters can determine some of the
network features and the training process itself. To find the values of these hyperparameters that offer
the best performance, the network was trained using different values and combinations.

The considered hyperparameters were:

o Data augmentation: it is a technique that consists of applying random rotations and horizontal
and vertical transformations to the training images in order to train over more diverse data,
helping to reduce overfitting [62].

e Learning rate: this hyperparameter modifies the training step size the network uses when
searching for an optimal solution. We also studied the effect of applying a decay learning rate,
which consists of lowering the learning rate value as the training progresses [63].

e Number of iterations: this hyperparameter sets the number of times the network back-propagates
and trains [63].

Sensors 2020, 20, 1708 8 of 21

Table 1 shows the values and combinations of hyperparameters that we used to train the neural
network.

Table 1. Hyperparameter values and combinations.

Index | Data aug. | Learn. Rate | Iterations
1 10k
2 5x 1074 20k
3 40k
4 No 10K
5 decay 20k
6 40k
7 10k
8 5% 107 20k
9 40k
10 Yes Tk
11 decay 20k
12 40k

4.4. Validation

We conducted twelve different experiments, each one assessing the performance of
hyperparameter combination. When training the network, we made use of the 10k-fold cross-validation
method [64]. Through this method, the dataset is split into ten equally sized subsets and the network
is trained ten times, each time using two different subsets as the test data (20% of the dataset) and the
remaining eight subsets as training data (80% of the dataset). This method reduces the variability of
the results, as these are less dependent on the selected test and training datasets, therefore obtaining a
more accurate performance estimation.

Using the 10k-fold cross-validation, ten models were generated for each experiment, M, where
K =1..12 represents the experiment number and i = 1...10 the model index. We ran the ten output
models with their corresponding test subsets, obtaining jellyfish detection of all the models.

To remove overlapped detection and obtain the final predictions of each model, P}, an nms
algorithm is applied. This algorithm computes the intersection area between detection and eliminates
the least confident ones when the intersection area is greater than a threshold. Threshold values for this
type of application are usually set between 30-70% [65,66], in our case, we selected a fairly restrictive
threshold of 40%, as it is not common that two or more jellyfish appear superimposed in the images.

From these predictions, each model is evaluated in terms of detection performance, obtaining its
results metrics R’. Finally, the detection performance Ry of each experiment is computed as the mean
of its ten Ri, models performance. The best model M corresponding to the experiment that presented
the best results is selected to generate the quantification and monitoring predictions. The validation
process of the experiments is shown in Figure 5.

MODELS PREDICTIONS RESULTS
DATA L
Py R%
TRAIN MEAN
»| TRAINING |- : —> [CLASSIFICATION(-> : = [EVALUATION|—> T —

A
|t A
IIMAGES i FILES

TEST

Figure 5. Experiment K validation process. For each one of the twelve hyperparameter combinations,
the network was trained ten times using the k-fold cross-validation method, outputting ten models.
These models were run and evaluated over the test data. Finally, the results of the models were obtained
and its mean performance calculated.

Sensors 2020, 20, 1708 9 of 21

4.5. Model Evaluation

The first step to evaluate a model and measure its performance is to classify each one of the
predictions over the test set data as either correct (True Positive, TP) or incorrect (False Positive, FP). To
do so, we used the Intersection over Union (IoU) measure, which provides the similarity between the
predicted and the ground-truth bounding-boxes areas. The IoU value is defined as the area of the
intersection between bounding-boxes divided by the union of the bounding-boxes areas (Equation (2)).

ToU = Aintersection] (2)

Aunion
To determine whether a prediction is a TP or an FP, an IoU threshold value needs to be established.
Following the criteria applied in the PASCAL VOC challenge [67], this threshold was set at thr;,, = 0.5.
A prediction is classified as TP if the IoU value with any ground truth bounding-box is greater than
the thrj,, and the predicted class matches the corresponding one specified in the ground truth box.
Otherwise, the prediction is classified as an FP (Equation (3)).

TP, if IoU >= thrjs, & Class,.; = Classg,

FP, otherwise.

Prediction = { (©)]

Finally, ground-truth instances that do not have a IoU > thr;,,, with any prediction are counted as
undetected instances (False Negatives, FN).

Once each prediction is classified as either TP or FP, and the number of FN is obtained, evaluation
metrics are computed.

Average Precision (AP) [68] is one the most frequently used metrics in object detection applications.
It is largely used in object detection competitions such as PASCAL VOC [67], ImageNet [69] or COCO
[55]. This metric takes into account all predictions, offering a solid comparative standard between
networks and applications. Once the AP is obtained for each class, a mean Average Precision (mAP) for
all classes is computed.

Following, a threshold sweep over the prediction confidence from 0% to 100% in 1% steps was
performed (Cy,1). For each step, the predictions with an associated confidence level lower than the
Cyr1 were removed; and the Precision and Recall metrics from the TP, FP and FN values were calculated.

Precision represents the percentage of TP predictions with respect to all predictions (Equation
(4)). Recall refers to the percentage of TP predictions with respect to all real instances present in the
ground-truth data (Equation (5)).

.. TP
Precision = TP+ EP’ 4)
TP
Recall = TPLEN' (5)

Finally, the F1 score [70] is calculated for each sweep step from its corresponding Precision and
Recall values (Equation (6)). The F1 score is a measure of overall accuracy. The Cy;,q associated to the
step with the highest F1 score is selected as the optimal Cy;,1, obtaining the best Precision and Recall
metrics.

Recall x Precision

F1 =2 .
score x Recall + Precision

(6)

Since the main aim in our application is to detect and count the number of jellyfish, finding the
optimal Cy,,q is critical as we need a good trade-off between maximizing the prediction of jellyfish
(TP) while minimizing the number of wrongly detected jellyfish (FP). The process that evaluated the
prediction performance of the model is represented in Figure 6.

Sensors 2020, 20, 1708 10 of 21

PREDICTIONS

CONFUSION MATRIX RESULTS
Lsa = - FP MAP
COMPARE F1 SCORE
GROUND TRUTH i
r
FN | TP

Figure 6. Model evaluation process. The final predictions are compared to their corresponding ground
truth using the Intersection over Union (IoU) method and obtaining the False Positive (FP), False
Negative (FN) and True Positive (TP) values. From these, the F1 score at the optimal threshold Cy,,1,
altogether with the mean Average Precision (mAP) values are calculated.

4.6. Real-Time Quantification

After training the network and selecting the best hyperparameter values and combination, we
assessed the capability of the network at real-time jellyfish monitoring tasks. To do so, a video
sequence was manually labeled, indicating the number and classes of jellyfish present at each frame.
Subsequently, the same video was analyzed by the neural network. Each time that the network was
able to analyze a frame for the video sequence, it generated a predicted information point, containing
the number and classes of jellyfish present at the analyzed frame.

The neural network detection may be affected by sporadic changes in luminosity, strange jellyfish
positions, water reflexes, etc., resulting in the loss of TP detection or the appearance of FN detection. To
minimize the effect of sporadic changes in the detection and improve the quantification performance
of the neural network, we implemented diverse time series processing techniques.

Firstly, we performed a window analysis over the predicted information points. This technique
takes the information of W;;,, number of predicted information points and processes it to generate
a resulting information point (R_I_point). In our case, the value of the resulting information point
was taken as the most occurring value from the analyzed window predicted information points. The
application of this technique helps to eliminate sporadic detection errors. Three different window sizes
were tested: Wg;,, = 4, 8,12 information points.

Secondly, we decided to apply an overlap between the information windows in order to preserve
the significance of the predicted information points in the transition between windows. This overlap
allows us to obtain resulting information points more frequently. Three different window overlaps
were tested: Woper = 25%, 50%, 75%. A representation of the application of these time series processing
techniques over a series of predicted information points can be seen in Figure 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
EEEEEEEEEEEEEEEDm

Figure 7. Representation of the window analysis and overlapping techniques (Wgj,e = 8, Woper = 50%).
The black squares represent the predicted information points, the blue lines represent the windows
and the orange dots are the resulting information point of each window.

Due to the implementation of these techniques, the optimal confidence threshold to obtain the
best Similarity is bound to diverge from the previously selected Cy,1. So, following the procedure
explained in Section 4.5, we performed a threshold sweep over the confidence of the video sequence

Sensors 2020, 20, 1708 11 of 21

detection. For each threshold, we applied all combinations of windowing parameters. Finally, for each
combination, the Cy,, that resulted in the best Similarity was selected.

The comparison between the manual and network predictions was carried out by computing
the Similarity between the manual and neural network quantification, expressed as the percentage of
correct resulting information points over the total number of resulting information points (Equation
(7)). We classify an information point as correct when it correctly indicates the number and classes of
jellyfish present in a determined time of the analyzed video.

correct R_I_point
total R_I_point ~

@)

Similarity =

5. Results and Discussion

This section reports the performance obtained for each experiment in the final predictions and
discusses the effect of each hyperparameter over it. Also, it exposes the real-time quantification results
obtained from analyzing a video sequence and the conclusions that can be extracted from these. Finally,
it presents a comparison between the performance of the selected Inception-ResNet V2 architecture
versus two of its main competitors in both final predictions and quantification.

5.1. Experiment Performance

Average results obtained from the ten models corresponding to each one of the K=1...12
experiments are shown in Table 2.

Table 2. Results obtained from the evaluation of each experiment K, indicating the hyperparameters
used along with the AP obtained for each class, the mAP value, optimal Cy,1 and corresponding F1
score. Bold data indicates the highest score obtained for each metric.

AP
Exp. | D. aug. Lr. Iter. Pnoct. R.pulmo C.tuber mAP | Csq | F1 Score
1 10k | 85.3% 98.2% 97.2% 93.6% 85% 93.7%
2 0.0005 | 20k | 86.3% 97.7% 97.3% 93.8% 85% 94.0%
3 No 40k | 86.1% 97.6% 97.1% 93.6% 93% 94.1%
4 10k | 86.5% 98.1% 97.5% 94.0% 82% 94.1%
5 decay | 20k | 86.3% 98.4% 97.3% 94.0% 95% 94.2%
6 40k | 85.8% 98.9% 96.6% 93.8% 91% 94.2%
7 10k | 84.4% 97.5% 96.7% 929% 79% 93.6%
8 0.0005 | 20k | 86.5% 98.8% 96.7% 94.0% 91% 94.5%
9 Yes 40k | 86.8% 99.0% 96.5% 94.1% 89% 94.8%
10 10k | 87.1% 98.5% 96.9% 94.1% 69% 94.6%
11 decay | 20k | 87.6% 99.0% 97.5% 94.7% 86% 95.0%
12 40k | 88.2% 99.0% 97.7% 95.0% 90% 95.2%

All experiments showed mAP values in the 93-95% range, reaching a maximum of 95.0% for
experiment 12 and a minimum value of 92.9% for experiment 7. The comparison of AP values for
the three species shows that R. pulmo and C. tuberculata have higher AP values than P. noctiluca. This
might be related to the fact that R. pulmo and C. tuberculata are bigger specimens and the shape of
their bodies remains relatively unchanged while swimming and therefore they might be easier to
identify. On the contrary, in P. noctiluca the relative position of the tentacles in relation to the main
body (umbrella) changes to a greater extent with the movement of the animal, adopting a multitude of
shapes, making it more difficult to identify. Regarding the Cy;,q and F1 score values, most experiments
found the best F1 score when applying relatively high Cy;,1 values, indicating that most TP detection
had high confidence levels. Experiments showed F1 scores ranged from of 93% to 95%, reaching a
maximum of 95.2% for experiment 12 again.

The comparison of the different experiments on a hyperparameter basis indicates that the
application of data augmentation, the use of a higher number of iterations and the decay

Sensors 2020, 20, 1708 12 of 21

technique application resulted into increased performances. Experiment 12, which featured all three
hyperparameters, presented the best performance. Figure 8 illustrates an example of the detection of
jellyfish over images from the test set.

Figure 8. Jellyfish detection examples over test set images. Left: green bounding boxes over P. noctiluca;
center: blue boxes over R. pulmo; right: orange bounding boxes over C. tuberculata.

5.2. Real-Time Quantification

To perform the quantification task and obtain its results, we made use of the best model M from
experiment 12, containing the previously selected best-performing hyperparameters. We forwarded a
1920 x 1080 video sequence recorded by the authors using the procedures mentioned in Section 4.2 and
analyzed it in real-time. No images from this video had been used either for training nor for testing
the network. The duration of the video is approximately 5 min and contains a single jellyfish species
(P. noctiluca) as, despite the best efforts, no videos with more than one of the studied jellyfish species
could be located. This analysis was carried out in a computer with the following specs—processor:
Intel i7-7700, RAM: 16 GB, GPU: NVIDIA GeForce GTX 1080).

Table 3 shows the obtained results for all windowing parameter combinations. The third column of
the table indicates the time between resulting information points (Tr_j_peint) in seconds after applying
the time series processing techniques, obtained from Equation (8).

w_size x (1 — w_overla
TR_I_point = (fPS = P), (8)

where fps indicates the frame rate at which the network was able to analyze the forwarded video. The
Inception ResNet V2 architecture was able to perform the inference of a frame each 0.625 s (1.6 fps).

Table 3. Quantification results obtained from analyzing a video sequence for all windowing parameter
combinations. Bold data indicates the highest score obtained for each metric.

Wsize | Wover | TR_1_point | Cinr2 Similarity
25% 1.87 11% 87.7%
4 50% 1.25 12% 87.9%
75% 0.62 20% 87.5%
25% 3.75 36% 90.5%
8 50% 2.50 36% 92.2%
75% 1.25 36% 90.5%
25% 5.62 20% 93.8%
12 50% 3.75 27% 92.7%
75% 1.87 27% 92.1%

Sensors 2020, 20, 1708 13 of 21

TR_1_point can be adjusted to meet the monitoring target requirements. The W;;,, could be lowered
and the Wy, raised to reduce this time, or the other way around to increase it.

It can be seen that all combinations showed high Similarity values, reaching a maximum of 93.8%
when using a W, = 12 predicted information points and an overlapping between windows of
Wover = 25%. Selecting these windowing parameters, a resulting information point is obtained each
5.62 s (following Equation (8)), endorsing that this value is adequate for the monitoring of slow-moving
organisms such as jellyfish.

It can also be appreciated that the best Similarity for all combinations was achieved when applying
much lower Cy,;, than the Cyy,,q values obtained during the pure prediction task presented in Table 2.
The time series processing techniques eliminate spurious FP predictions, allowing us to reduce the Cy»
values and introducing low confidence TP predictions while not being punished by low confidence FP.

The solidity of results using the quantification algorithm can be appreciated in Figure 9, which
shows the difference between the jellyfish count obtained when using the final predictions versus the
application of the quantification algorithm algorithm over the Inception ResNet V2 detection.

Figure 9a shows the count of each studied jellyfish species calculated from the final predictions.
It can be seen how this value highly varies in time. Figure 9b shows the count obtained after the
quantification algorithm using the windowing parameters that showed the best performance. The
count is stable over time and closer to reality.

Additionally, the manually generated jellyfish count, acting as ground truth, for the same video is
presented in Figure 10a along with its comparison against the obtained quantification in Figure 10b.
The comparison has been made only for the Pelagia noctiluca species, as it was the only species present
in the video sequence, thus, there is no quantification of errors for the other two species.

—— P. noctiluca
— R. pulmo
C. tuberculata

HTWN\ HHIIWWMMM‘ |

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 3:15 3:30 345 4:00 415 4:30
Time

N

Jellyfish Count

0

(a)

= P. noctiluca
— R. pulmo
C. tuberculata

I —

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15 4:30
Time

(b)
Figure 9. Results of the jellyfish count from Inception ResNet V2 final predictions (a) and quantification

algorithm (b) over a video showcasing nearly 5 min of footage of up to two P. noctiluca jellyfish going
in and out of the frame.

N

Jellyfish Count

0

Sensors 2020, 20, 1708 14 of 21

= P. noctiluca
— R. pulmo
C. tuberculata

I

0:00 0:15 0:30 045 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15 430

N

Jellyfish Count

0

Time
(a)
3
—— Ground Truth
=
o
3?2 — Network Quantification
o
-C H
)
Y
=1
3 J’ [
0

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15 4:30
Time

(b)
Figure 10. Results of the jellyfish count from manually generated ground truth (a) and its comparison
against the results from the Inception ResNet V2 network quantification algorithm (b).

Figure 10 shows that some of the divergences can be found when the jellyfish count changes,
where the network quantification shows a slower reaction compared to the manual quantification,
caused by the computational time of the network and the Tg ; ,ins introduced by the time series
processing techniques. Also, some other quantification error are due to some timely close resulting
information points containing detection errors.

An illustrative video of Jellytoring analyzing the studied video sequence can be seen on the SRV
research group web page [71].

5.3. Neural Network Performance Comparison

To evaluate the effectiveness of the selected neural network and address its adequacy to our
application in terms of detection performance and computational cost, we performed a comparison
between the Inception-ResNet V2 architecture and two other object detection architectures, the
InceptionV2 [72] and the ResNet101 [58].

These architectures were selected as they are close competitors to Inception-ResNet V2 in terms of
detection performance and computational cost trade-off [54].

First, the three architectures were trained and tested over the dataset presented in Section 4.2 with
the selected best hyperparameters from Section 5.1 and the 10k-fold cross-validation strategy. The
detection performance comparison was conducted using the mAP and F1 score evaluation metrics.
Table 4 shows the comparison between detection performance metrics.

The mAp and F1 score comparison among the three architectures indicates that Inception-ResNet
V2 offers the highest detection performance. ResNet101 architecture shows detection metrics close to
those of Inception-ResNet V2 albeit slightly lower. Conversely, Inception V2 shows worse mAP and F1
score values.

Sensors 2020, 20, 1708 15 of 21

Table 4. Summary of detection performance metrics of Inception-ResNet V2, Inception V2 and ResNet101
neural network architectures. Bold data indicates the highest score obtained for each metric.

Architecture mAP | F1 Score
Inception V2 76.5% 80.2%
ResNet 93.9% 94.2%
Incep.-ResNet V2 | 95.2% 95.2%

Following, the video sequence presented in Section 5.2 was forwarded into the three architectures
and their detection’s were processed by the quantification algorithm.

Table 5 exposes the comparison between quantification results. The presented Similarity results
are from the best Cyy,, for each combination. The W;,, values were adjusted, taking into account each
network fps, to maintain the same time between resulting information points as the ones obtained in
Table 3.

Table 5. Quantification results of Inception-ResNet V2, Inception V2 and ResNet101 neural network
architectures. Bold data indicates the highest score obtained for each metric.

Inception-V2 ResNet101 Inception-ResNet V2
fps achieved: 25.2 fps achieved: 10.0 fps achieved: 1.6
Wsize | Wover | Similarity Wsize | Wover | Similarity Wsize | Wover | Similarity
25% 70.3% 25% 90.0% 25% 87.7%
63 50% 70.7% 25 50% 89.3% 4 50% 87.9%
75% 72.1% 75% 89.0% 75% 87.5%
25% 70.0% 25% 87.8% 25% 90.5%
126 50% 72.0% 50 50% 87.5% 8 50% 92.2%
75% 71.3% 75% 86.7% 75% 90.5%
25% 69.9% 25% 87.8% 25% 93.8%
189 50% 73.3% 75 50% 86.3% 12 50% 92.7%
75% 70.9% 75% 84.8% 75% 92.1%

In terms of fps achieved, the Inception V2 architecture was able to analyze 25.2 frames per second,
while the ResNet101 managed to process 10 frames per second. Both architectures achieve higher fps
values than the Inception-ResNet V2 architecture (1.6), meaning that higher W;;,, values can be used to
incorporate more predicted information points in each window, helping to reduce spurious detection
errors. Nevertheless, it can be seen that neither the Inception V2 nor the ResNet101 architectures
were able to obtain higher Similarity values than the Inception ResNet V2, reaching 73.3% and 90.0%,
respectively.

Figures 11a and 12a show the results of the jellyfish count from the ResNet101 and Inception V2
network final predictions, respectively. In the same way, Figures 11b and 12b present the corresponding
network quantification when using the best windowing parameters.

The high detection and quantification metrics shown by the Inception-ResNet V2 network
make it the most suitable for jellyfish monitoring. The ResNet101 architecture offers a moderate
trade-off between computational cost and quantification performance, still reaching good detection
and quantification metrics at higher frames per second, making it suitable for detecting and quantifying
faster species. The Inception V2 architecture offers a more extreme trade-off between computation
cost and quantification performance, providing much lower inference time at still reasonably good
detection and quantification metrics.

Sensors 2020, 20, 1708 16 of 21

3
= P. noctiluca
— R. pulmo
C.t ulata

0
0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 215 2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15 4:30
Time

(a)

N

Jellyfish Count
-

3
—— P. noctiluca
2 — R. pulmo
=P C. tuberculata
o
o
=
2
&=
=1
o
=
0

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 215 2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15 4:30
Time

(b)
Figure 11. Results of the jellyfish count from the ResNet101 network final predictions (a) and
quantification algorithm (b).

3
= P. noctiluca
— R. pulmo
C. tuperculata

0
0:00 0:15 0:30 045 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15 4:30
Time

(a)

N

Jellyfish Count

3
—— P. noctiluca
= — R. pulmo
c
32 C. tuberculata
o
<
2
Y
=1
) ’—‘ ’_‘
S
0

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 245 3:00 3:15 3:30 345 4:00 4:15 4:30
Time
(b)
Figure 12. Results of the jellyfish count from the Inception V2 network final predictions (a) and
quantification algorithm (b).

Sensors 2020, 20, 1708 17 of 21

6. Conclusions and Future Work

This paper presents Jellytoring, a system for real-time jellyfish monitoring from underwater video
recordings. Jellytoring uses a deep object detection neural network to detect and classify jellyfish
instances, combined with a quantification algorithm. A main advantage of this system is that it is able
to automatically monitor jellyfish presence without the need for any human interaction, allowing us to
generate continuous and precise records. Additionally, the information can be fed to the system in
real-time, generating live records.

The neural network evaluation presented very high metrics in the prediction task, reaching a
maximum F1 score of 95.2% when the data augmentation and learning rate decay techniques were
applied and the network was trained for 40,000 iterations. On the same page, the best quantification
results were obtained when choosing a W;,, of 12 information points and a Wy, of 25%, being able to
analyze a video sequence with a Similarity of 93.8% between the manually generated ground truth and
the output of the quantification algorithm. These results indicate that the presented system is able to
detect, quantify and monitor jellyfish with high accuracy, thanks to the quantification algorithm that
improves the neural network detection.

Additionally, Jellytoring can be customized, widening the applicability of the system. This can be
done either by using other network architectures or changing the windowing parameters from the
time series processing techniques. Some other possible applications could be the monitoring of other
jellyfish species, faster species such as fish, or even other objects like marine waste.

Further developments will focus on lightening the system computational load while maintaining
high accuracy levels. Also, we will work on increasing the number of jellyfish species the network can
distinguish, widening its spatial application. Our final goal is to implement this system on a floating
station and be executed online to monitor the presence and class of jellyfish and relate it to determined
water conditions.

We provide our dataset and code, along with the best trained inference frozen model in a GitHub
repository [73].

Author Contributions: Conceptualization, A.R.-F. and H.H.; data curation, A.R.-F. and H.H.; investigation,
MM.-A., AR-F, HH. and Y.G.-C.; methodology, M.M.-A. and Y.G.-C,; software, M.M.-A ; validation, M.M.-A.
and Y.G.-C.; writing—original draft, M.M.-A.; writing—review and editing, M.M.-A., A.R.-F,, HH. and Y.G.-C.
All authors have read and agreed to the published version of the manuscript.

Funding: Miguel Martin-Abadal was supported by Ministry of Economy and Competitiveness (AELFEDER,UE),
under contract DPI2017-86372-C3-3-R. Ana Ruiz-Frau was supported by a Marie-Sklodowska-Curie Individual
Fellowship (JellyPacts project number 655475). Hilmar Hinz was supported through a Ramoén y Cajal Fellowship
financed by the Ministerio de Economia y Competitividad de Espana and the Conselleria d’Educacié, Cultura
i Universitats Comunidad Auténoma de las Islas Baleares (RyC 2013 14729). Yolanda Gonzalez-Cid was
supported by Ministry of Economy and Competitiveness (AELFEDER,UE), under contracts TIN2017-85572-P and
DPI12017-86372-C3-1-R.

Acknowledgments: We would like to thank Charlotte Jennings for her help in the collection of data and analysis
of the images.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pauly, D.; Watson, R.; Alder, J. Global trends in world fisheries: Impacts on marine ecosystems and food
security. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 5-12. [CrossRef] [PubMed]

2. Kaiser, M.; Collie, J.; Hall, S.; Jennings, S.; Poiner, I. Modification of marine habitats by trawling activities:
Prognosis and solutions. Fish Fish. 2002, 3, 114-136. [CrossRef]

3. Galil, B.S. Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea. Mar. Pollut. Bull. 2007,
55,314-322. [CrossRef]

4. Islam, M.S.; Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine
fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 2004, 48, 624—649.
[CrossRef]

http://dx.doi.org/10.1098/rstb.2004.1574
http://www.ncbi.nlm.nih.gov/pubmed/15713585
http://dx.doi.org/10.1046/j.1467-2979.2002.00079.x
http://dx.doi.org/10.1016/j.marpolbul.2006.11.008
http://dx.doi.org/10.1016/j.marpolbul.2003.12.004

Sensors 2020, 20, 1708 18 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Hughes, T.; Baird, A.; Bellwood, D.; Card, M.; Connolly, S.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.;
Jackson, J.; Kleypas, J.; et al. Climate change, human impacts, and the resilience of coral reefs. Science 2003,
301, 929-933. [CrossRef]

Perry, A.L.; Low, PJ.; Ellis,].R.; Reynolds,].D. Ecology: Climate change and distribution shifts in marine
fishes. Science 2005, 308, 1912-1915. [CrossRef]

Halpern, B.; Walbridge, S.; Selkoe, K.; Kappel, C.; Micheli, F.; D’Agrosa, C.; Bruno,].; Casey, K.; Ebert, C.;
Fox, H.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948-952. [CrossRef]
Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework Working Group for
Assessment Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; p. 245.
Caughlan, L. Cost considerations for long-term ecological monitoring. Ecol. Indic. 2001, 1, 123-134.
[CrossRef]

Del Vecchio, S.; Fantinato, E.; Silan, G.; Buffa, G. Trade-offs between sampling effort and data quality in
habitat monitoring. Biodivers. Conserv. 2019, 28, 55-73. [CrossRef]

Moniruzzaman, M.; Islam, S.; Bennamoun, M.; Lavery, P. Deep Learning on Underwater Marine Object
Detection: A Survey. In Proceedings of the Advanced Concepts for Intelligent Vision Systems (ACIVS),
Antwerp, Belgium, 18-21 September 2017; pp. 150-160.

Borowicz, A.; McDowall, P.; Youngflesh, C.; Sayre-McCord, T.; Clucas, G.; Herman, R.; Forrest, S.; Rider,
M.; Schwaller, M.; Hart, T.; et al. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger
Islands as a seabird hotspot. Sci. Rep. 2018, 8, 3926. [CrossRef]

Gomez Villa, A.; Salazar, A.; Vargas, F. Towards automatic wild animal monitoring: Identification of animal
species in camera-trap images using very deep convolutional neural networks. Ecol. Inf. 2017, 41, 24-32.
[CrossRef]

Hong, S.J.; Han, Y,; Kim, S.Y; Lee, A.Y.; Kim, G. Application of Deep-Learning Methods to Bird Detection
Using Unmanned Aerial Vehicle Imagery. Sensors 2019, 19, 1651. [CrossRef]

Valletta, J.J.; Torney, C.; Kings, M.; Thornton, A.; Madden, J. Applications of machine learning in animal
behaviour studies. Anim. Behav. 2017, 124, 203-220. [CrossRef]

Li, X.; Shang, M.; Qin, H.; Chen, L. Fast accurate fish detection and recognition of underwater images with
Fast R-CNN. In Proceedings of the OCEANS 2015-MTS/IEEE, Washington, DC, USA, 19-22 October 2015;
pp- 1-5.

Li, X.; Shang, M.; Hao, J.; Yang, Z. Accelerating fish detection and recognition by sharing CNNs with
objectness learning. In Proceedings of the OCEANS 2016, Shanghai, China, 10-13 April 2016; pp. 1-5.
[CrossRef]

Villon, S.; Chaumont, M.; Subsol, G.; Villéger, S.; Claverie, T.; Mouillot, D. Coral Reef Fish Detection and
Recognition in Underwater Videos by Supervised Machine Learning: Comparison Between Deep Learning
and HOG+SVM Methods. In Proceedings of the Advanced Concepts for Intelligent Vision Systems, Lecce,
Italy, 24-27 October 2016; pp. 160-171.

Levy, D.; Levy, D.; Belfer, Y.; Osherov, E.; Bigal, E.; Scheinin, A.P; Nativ, H.; Tchernov, D.; Treibitz, T.
Automated Analysis of Marine Video with Limited Data. In Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA 18-22 June
2018; pp. 1466-14668. [CrossRef]

Gray, P.C.; Fleishman, A.B.; Klein, D.J.; McKown, M.W.; Bézy, V.S.; Lohmann, K.J.; Johnston, DW. A
Convolutional Neural Network for Detecting Sea Turtles in Drone Imagery. Methods Ecol. Evol. 2019,
10, 345-355. [CrossRef]

Py, O.; Hong, H.; Zhongzhi, S. Plankton classification with deep convolutional neural networks. In
Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control
Conference, Chonggqing, China, 20-22 May 2016; pp. 132-136.

O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.;
Walsh, J. Deep Learning vs. Traditional Computer Vision. Adv. Comput. Vis. 2020, 128-144. [CrossRef]
Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91.
[CrossRef]

Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20-25 June
2005; pp. 886-893.

http://dx.doi.org/10.1126/science.1085046
http://dx.doi.org/10.1126/science.1111322
http://dx.doi.org/10.1126/science.1149345
http://dx.doi.org/10.1016/S1470-160X(01)00015-2
http://dx.doi.org/10.1007/s10531-018-1636-5
http://dx.doi.org/10.1038/s41598-018-22313-w
http://dx.doi.org/10.1016/j.ecoinf.2017.07.004
http://dx.doi.org/10.3390/s19071651
http://dx.doi.org/10.1016/j.anbehav.2016.12.005
http://dx.doi.org/10.1109/OCEANSAP.2016.7485476
http://dx.doi.org/10.1109/CVPRW.2018.00187
http://dx.doi.org/10.1111/2041-210X.13132
http://dx.doi.org/10.1007/978-3-030-17795-9_10
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

Sensors 2020, 20, 1708 19 of 21

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Lienhart, R.; Maydt, J. An Extended Set of Haar-like Features for Rapid Object Detection. In Proceedings of
the International Conference on Image Processing, Rochester, NY, USA, 22-25 September 2002.

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]

Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to
Boosting. J. Comput. Syst. Sci. Int. 1997, 55, 119-139. [CrossRef]

Felzenszwalb, PE,; Girshick, R.B.; McAllester, D.A.; Ramanan, D. Object Detection with Discriminatively
Trained Part Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627-1645. [CrossRef]
Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Columbus, OH, USA, 24-27 June 2014; pp. 580-587.

Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7-13 December 2015; pp. 1440-1448.

Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 91-99. [CrossRef]

Lee, J.; Choi, H.-W,; Chae, J.; Kim, D.; Lee, S. Performance analysis of intake screens in power plants on mass
impingement of marine organisms. Ocean Polar Res. 2006, 28, 385-393.

Matsumura, K.; Kamiya, K.; Yamashita, K.; Hayashi, F.; Watanabe, I.; Murao, Y.; Miyasaka, H.; Kamimura,
N.; Nogami, M. Genetic polymorphism of the adult medusae invading an electric power station and wild
polyps of Aurelia aurita in Wakasa Bay, Japan. J. Mar. Biol. Assoc. UK 2005, 85, 563-568. [CrossRef]

Purcell,].E.; Baxter, E.J.; Fuentes, V.L. Jellyfish as products and problems of aquaculture. Adv. Aquacult.
Hatch. Technol. 2013, 404-430. [CrossRef]

Merceron, M.; Le Fevre-Lehoerff, G.; Bizouarn, Y.; Kempf, M. Fish and jellyfish in Brittany (France). Equinoxe
1995, 56, 6-8.

Purcell, J.E.; Uye, S.i.I,; Lo, W.T.T. Anthropogenic causes of jellyfish blooms and their direct consequences
for humans: A review. Mar. Ecol. Prog. Ser. 2007, 350, 153-174. [CrossRef]

Fenner, PJ.; Lippmann, J.; Gershwin, L. Fatal and Nonfatal Severe Jellyfish Stings in Thai Waters.]. Travel
Med. 2010, 17, 133-138. [CrossRef]

Pierce, J. Prediction, location, collection and transport of jellyfish (Cnidaria) and their polyps. Zoo Biol. 2009,
28,163-176. [CrossRef]

Graham, W.M.; Martin, D.L.; Martin, J.C. In situ quantification and analysis of large jellyfish using a novel
video profiler. Mar. Ecol. Prog. Ser. 2003, 254, 129-140. [CrossRef]

Houghton, J.; Doyle, T.; Davenport, J.; Hays, G. Developing a simple, rapid method for identifying and
monitoring jellyfish aggregations from the air. Mar. Ecol. Prog. Ser. 2006, 314, 159-170. [CrossRef]

Langlois, T.J.; Harvey, E.S.; Fitzpatrick, B.; Meeuwig,].J.; Shedrawi, G.; Watson, D.L. Cost-efficient sampling
of fish assemblages: Comparison of baited video stations and diver video transects. Aquat. Biol. 2010,
9, 155-168. [CrossRef]

Holmes, T.H.; Wilson, S.K.; Travers, M.].; Langlois, T.].; Evans, R.D.; Moore, G.I.; Douglas, R.A.; Shedrawi,
G.; Harvey, E.S.; Hickey, K. A comparison of visual- and stereo-video based fish community assessment
methods in tropical and temperate marine waters of Western Australia. Limnol. Oceanogr. Methods 2013,
11, 337-350. [CrossRef]

Rife, J.; Rock, S.M. Segmentation methods for visual tracking of deep-ocean jellyfish using a conventional
camera. [EEE]. Ocean. Eng. 2003, 28, 595-608. [CrossRef]

Wildchen, J.; Mdder, P. Machine learning for image based species identification. Methods Ecol. Evol. 2018,
9, 2216-2225. [CrossRef]

Willi, M.; Pitman, R.T.; Cardoso, A.W.; Locke, C.; Swanson, A.; Boyer, A.; Veldthuis, M.; Fortson, L.
Identifying animal species in camera trap images using deep learning and citizen science. Methods Ecol. Evol.
2018, 2018, 1-12. [CrossRef]

Kim, H.; Koo, J.; Kim, D.; Jung, S.; Shin, J.; Lee, S.; Myung, H. Image-Based Monitoring of Jellyfish Using
Deep Learning Architecture. IEEE Sens.]. 2016, 16, 2215-2216. [CrossRef]

French, G.; Mackiewicz, M.; Fisher, M.; Challis, M.; Knight, P.; Robinson, B.; Bloomfield, A. JellyMonitor:
Automated detection of jellyfish in sonar images using neural networks. In Proceedings of the 14th IEEE
International Conference on Signal Processing, Beijing, China, 12-16 August 2018; pp. 406—412.

http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1017/S0025315405011483
http://dx.doi.org/10.1533/9780857097460.2.404
http://dx.doi.org/10.3354/meps07093
http://dx.doi.org/10.1111/j.1708-8305.2009.00390.x
http://dx.doi.org/10.1002/zoo.20218
http://dx.doi.org/10.3354/meps254129
http://dx.doi.org/10.3354/meps314159
http://dx.doi.org/10.3354/ab00235
http://dx.doi.org/10.4319/lom.2013.11.337
http://dx.doi.org/10.1109/JOE.2003.819315
http://dx.doi.org/10.1111/2041-210X.13075
http://dx.doi.org/10.1111/2041-210X.13099
http://dx.doi.org/10.1109/JSEN.2016.2517823

Sensors 2020, 20, 1708 20 of 21

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Lin, T.; Dollar, P; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object
Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21-26 July 2017; pp. 936-944. [CrossRef]

He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870.

Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In
Proceedings of the NIPS, Barcelona, Spain, 5-10 December 2016.

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27-30 June 2016; pp. 779-788. [CrossRef]

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y,; Berg, A.C. SSD: Single Shot MultiBox
Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11-14 October
2016; pp. 21-37.

Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B. Sanity Checks for Saliency Maps.
In Proceedings of the Advances in Neural Information Processing Systems 31, Montreal, QC, Canada, 2-8
December 2018; pp. 9505-9515.

Google-Tensorflow. COCO-Trained Models. 2018. Available online: https://github.com/tensorflow /
models/blob/master/research/object_detection/g3doc/detection_model_zoo.md (accessed on 30 January
2020).

Lin, T.Y.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P,;
Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on
Computer Vision (ECCV), Zurich, Switzerland, 6-12 September 2014.

Szegedy, C.; Ioffe, S.; Vanhoucke, V. Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Cadiz, Spain, 9-11 May 2016.
Szegedy, C.; Liu, W,; Jia, Y; Sermanet, P; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 8-10 June 2015.

He, K.; Zhang, X; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June
2016; pp. 770-778.

Pascanu, R.; Mikolov, T.; Bengio, Y. On the Difficulty of Training Recurrent Neural Networks. In Proceedings
of the 30th International Conference on International Conference on Machine Learning-Volume 28, Atlanta,
GA, USA, 16-21 June 2013; pp. 111-1310-11I-1318.

Neubeck, A.; Van Gool, L. Efficient Non-Maximum Suppression. In Proceedings of the International
Conference on Pattern Recognition, Hong Kong, China, 20-24 August 2006; pp. 850-855.

Tzutalin, D. Labellmg. 2018. Available online: https://github.com/tzutalin/labellmg (accessed on 10
November 2018).

Taylor, L.; Nitschke, G. Improving Deep Learning using Generic Data Augmentation. arXiv 2017,
arXiv:1708.06020.

Bengio, Y. Practical Recommendations for Gradient-Based Training of Deep Architectures. In Neural
Networks: Tricks of the Trade; Springer: Berlin, Germany, 2012.

Geisser, S. The Predictive Sample Reuse Method with Applications. J. Am. Stat. Assoc. 1975, 70, 320-328.
[CrossRef]

Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS—Improving Object Detection with One Line of
Code. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22-29 October 2017; pp. 5562-5570.

Buil, M.D. NON-MAXIMA SUPRESSION; Technical report, Computer Graphics and Vision; Graz University
of Technology: Graz, Austria, August 2011.

Everingham, M.; Van Gool, L.; Williams, C.K.I; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes
(VOC) Challenge. Int.]. Comput. Vis. 2010, 88, 303-338. [CrossRef]

Zhu, M. Recall, Precision and Average Precision; Technical report; Department of Statistics and Actuarial
Science, University of Waterloo: Waterloo, ON, Canada, September 2004.

http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2016.91
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tzutalin/labelImg
http://dx.doi.org/10.1080/01621459.1975.10479865
http://dx.doi.org/10.1007/s11263-009-0275-4

Sensors 2020, 20, 1708 21 of 21

69.

70.

71.

72.

73.

Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K,; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Miami, FL, USA, 20-25 June 2009.

F1 Score. Wikipedia, the Free Encyclopedia. 2018. Available online: https://en.wikipedia.org/wiki/F1_
score (accessed on 23 March 2019).

Martin-Abadal, M.; Ruiz-Frau, A.; Gonzalez-Cid, Y. Video: Real-time Jellyfish Detection and Quantification.
2019. Available online: http://srv.uib.es/jellyfish-quantification/ (accessed on 17 March 2020).

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens,].; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27-30 June 2016; pp. 2818-2826.

Martin-Abadal, M. Jellyfish Object Detection. 2019. Available online: https:/ /github.com/srv /jf_object_
detection (accessed on 17 March 2020).

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/F1_score
http://srv.uib.es/jellyfish-quantification/
https://github.com/srv/jf_object_detection
https://github.com/srv/jf_object_detection
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work and Contributions
	State-of-the-Art
	Main Contributions

	Deep Learning Approach
	Framework and Network Selection
	Training Details

	Methodology
	Workflow
	Data Collection
	Hyperparameter Selection
	Validation
	Model Evaluation
	Real-Time Quantification

	Results and Discussion
	Experiment Performance
	Real-Time Quantification
	Neural Network Performance Comparison

	Conclusions and Future Work
	References

