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Abstract: Accurate identification of pedestrian crossing intention is of great significance to the safe
and efficient driving of future fully automated vehicles in the city. This paper focuses on pedestrian
intention recognition on the basis of pedestrian detection and tracking. A large number of natural
crossing sequence data of pedestrians and vehicles are first collected by a laser scanner and HD
camera, then 1980 effective crossing samples of pedestrians are selected. Influencing parameter sets of
pedestrian crossing intention are then obtained through statistical analysis. Finally, long short-term
memory network with attention mechanism (AT-LSTM) model is proposed. Compared with the
support vector machine (SVM) model, results show that when the pedestrian crossing intention
is recognized 0 s prior to crossing, the recognition accuracy of the AT-LSTM model for pedestrian
crossing intention is 96.15%, which is 6.07% higher than that of SVM model; when the pedestrian
crossing intention is recognized 0.6 s prior, the recognition accuracy of AT-LSTM model is 90.68%,
which is 4.85% higher than that of the SVM model. The determination of pedestrian crossing intention
parameter set and the more accurate recognition of pedestrian intention provided in this work provide
a foundation for future fully automated driving vehicles.

Keywords: natural observation data; pedestrian intention recognition; fully automated vehicle;
intention parameter set; attention mechanism

1. Introduction

Background

According to traffic accident statistics released by the Chinese government, 63,093 people died in
traffic accidents in China in 2016. Among them, the number of pedestrian deaths caused by vehicle
impacts was 16,525, accounting for 26.2% of all deaths, while the number of people injured was 40,114,
accounting for 17.7% of all injuries. Data from China’s road safety administration on pedestrian
accidents related to zebra crossings shows that from 2015 to 2017 there were 14,000 vehicle-pedestrian
collisions on zebra crossings in China, resulting in 3898 deaths [1].

The number of accidents at zebra crossings can be lowered significantly if vehicles are able to
understand pedestrian intentions before crossing. Due to rapid developments in technology, a fully
automatic driving system will be available in the very near future. Such vehicles have significant
potential to reduce collision-related casualties while improving traffic conditions and reducing traffic
congestion and vehicle emissions. In 2017, the United States Department of Transportation issued
Automated Driving Systems 2.0: A Vision for Safety [2], aiming to improve the safety and reliability of
the automatic driving system to reduce accident rates. Previously, in 2016, the Society of Automotive
Engineers of China issued an automated driving technology roadmap [3], in which it was noted that
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every vehicle should be equipped with automated driving or auxiliary driving systems by 2026-2030.
It is therefore evident that the autopilot system is considered highly important all over the world.

Many challenges remain in the development of automated driving technology. Aside from issues
associated with developing suitable infrastructure [4] and regulating autonomous cars, technologies
currently used in autonomous vehicles have not achieved the level of robustness to handle various
traffic scenarios such as varied weather, lighting conditions, road types or environments [5]. In
addition, for vehicles driving in a more complex traffic scene, especially in the urban environment,
autonomous vehicles also face the additional challenge of how to achieve effective interaction with
other road users. This task provides the key to reducing the accident rate by accurately identifying the
intention of road users and then making the most correct and reasonable decision. Failure to effectively
identify the intention of travelers will lead to traffic accidents, such as those experienced by Google’s
autonomous vehicle.

Understanding pedestrian crossing intention in the unsignalized road section is one of the most
important tasks for autonomous vehicles at present. By accurately identifying the pedestrian crossing
intention in front of the vehicle, the system can engage vehicle deceleration in advance, avoid collision
with the pedestrian, and improve safety. Additionally, if the vehicle can accurately judge there is no
pedestrian crossing intention, it can directly drive at the original speed, improving driving comfort
and efficiency. At present, most existing research related to intention recognition is divided into two
categories: human posture language-based and pedestrian motion estimation-based.

e  Human posture language:

Raul et al. [6] proposed a method to predict the future trajectory, posture, and intention of
pedestrians. By balancing the Gaussian process dynamics model (B-GPDMs), the key points or joints
of pedestrians are extracted, then the trajectory and intention of pedestrians is inferred. Recognition
accuracy using this method reaches up to 80%. Raul et al. [7,8] also presented a method of pedestrian
intention recognition based on a hidden Markov model. The method employs 11 key three-dimensional
positions and displacements on the human body to identify pedestrians, reaching an accuracy of
80% intention recognition 125 ms after the start of the movement. Fang et al. [9,10] continuously
extracted the feature vectors of T frame images and input them into SVM to identify pedestrian starting,
crossing, and stopping intentions by locating human body key points and calculating the angle,
distance, and other feature vectors between key point, attaining 93% accuracy of intention recognition.
Flohr et al. [11] also proposed a method to estimate pedestrian orientation based on head and body
orientation approximations, reaching an accuracy of 90%. Variimidis et al. [12] focus on the motion and
head orientation to predict whether the pedestrian is about to cross the street or not. An accuracy of
72% for head orientation estimation and 85% for motion detection is obtained. Rasouli et al. [5,13] used
AlexNet to extract features related to pedestrian movement and the surrounding environment, extracted
t frames continuously to construct feature matrix, and input this into linear SVM to determine whether
pedestrians will cross the street. Ghori et al. [14] proposed a real-time learning framework based on
the relationship between human posture and intention to realize pedestrian intention recognition.
The results show that this method can detect the intention earlier and more definitely and has the
ability to recognize the intention of the traveler 1 s in advance. Schulz et al. [15] and Brouwer et al. [16]
identified whether pedestrians had the intention to cross the street after estimating the head posture
of the pedestrian. These vision-based intention estimation algorithms often treat the problem as
dynamic object tracking by taking into account changes in the position, velocity, and orientation of
pedestrians [17]. Kohler et al. [18] focuses on monocular-video-based detection of the pedestrian’s
intention. on average it allows for detection of the movement within 6 frames at a frame rate of 50 Hz
and an accuracy of 80 %.

e  Pedestrian motion estimation:

Volz et al. [19] predicted pedestrian intention by the pedestrian’s movement track. The prediction
results show that using a very sparse feature set, the prediction results are better, with prediction
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accuracy reaching 91.67%. In another study, Volz et al. [20] used long-term and short-term memory
networks to predict the intention of pedestrians, collecting pedestrian crossing data through laser
scanner and obtaining model input after preprocessing the collected two-dimensional point cloud
image. Using this method, after verification, the recognition accuracy of the recognition results is
improved by nearly 10-20% compared with that of the SVM algorithm. In [21], V6lz et al. proposed
a pedestrian intention prediction method combining the pedestrian motion tracking algorithm and
data-driven method, which improved the generalization ability of the model. In references [19-21],
the input variables of the model proposed are not considered comprehensively, and the model may
not reflect pedestrian intention accurately. Camara et al. [22] proposed an intention heuristic model
using input parameters including pedestrian trajectory, vehicle trajectory, and relative position. On
the Daimler standard pedestrian data set, the crossing intention of pedestrians when they arrive
at the roadside is predicted with 96% accuracy. Zhao et al. [23] put forward an improved naive
Bayesian method, which can effectively identify pedestrian intention 0.5 s before the pedestrian
crossing. Hashimoto et al. [24] proposed a dynamic Bayesian network model of the relationship
between the intersection environmental information and pedestrian behavior. The results show that
the model can identify the pedestrian crossing decision from the pedestrian location information.
Schneemann et al. [25] further improved detection by presenting a context-based pedestrian motion
history image and SVM model for pedestrian intention recognition. Hashimoto et al. [26] considered
contextual information about the scene such as signal status, whether pedestrians are walking alone or
in groups, and how close they are to the curb to identify intentions. Skovierov et al. [27] collected the
position, speed, and orientation information of all traffic participants of pedestrians, and realized the
recognition of pedestrian intention through the Bayesian network. Zhao et al. [28] collected the speed,
position, and direction data of pedestrians through lidar, and used deep autoencoder-artificial neural
network (DA-ANN) to identify the intention of pedestrians. The accuracy of the model reached 95%.

In references [19-21,28], the intention parameter set used by the authors only includes the distance
between pedestrian and zebra crossing, or the distance between the vehicle and zebra crossing, ignoring
the influence of pedestrian speed and vehicle speed on pedestrian crossing intention, which has a
certain impact on recognition accuracy. In addition, in reference [22], the number of samples used by
the author in model training is limited. As such, although the accuracy of model recognition is high,
there may be overfitting problems. In reference [7], when the model is 0.3 s ahead of time to identify
the pedestrian intention, the recognition accuracy is not high, reaching only 80%. Motivated by the
analysis of the existing works in related literatures, the characteristic variables that affect pedestrian
crossing intention are analyzed in this work, a more comprehensive intention parameter set is obtained,
and the long short-term memory network with attention mechanism(AT-LSTM) algorithm is adopted
to improve the recognition accuracy of the model.

A mature vehicle-pedestrian intention recognition system must include pedestrian detection,
tracking, and pedestrian intention recognition. Previous research [29] by the authors has provided a
relevant analysis of pedestrian detection and tracking and achieved accurate detection and tracking
of pedestrians. The recognition of pedestrian intention is the focus of this work on the basis of the
previous research. As shown in Figure 1, this work can be divided into five parts. Section 1 presents the
research background and related work which currently can be categorized as research that is based on
posture language and research that is data-driven. Section 2 discusses research methodology, in which
the AT-LSTM and support vector machine (SVM) algorithms are introduced along with algorithm
parameter setting and model input variables. Section 3 details the parameters of pedestrians and
vehicles, which are mainly collected by four-layer laser scanner and HD camera, followed by data
normalization and filtering processing. Section 4 provides statistical analysis results of characteristic
parameters. In this part, the variables closely related to pedestrian crossing intention are determined
through statistical analysis. In Section 5 the results of recognition at 0 s and 0.6 s in advance using
the two models are analyzed and the performance of the model with specific evaluation metrics
is determined.
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Figure 1. Pedestrian crossing intention recognition framework.

The main framework of this paper follows that of the previous research into the detection and
tracking of pedestrians. The current work recognizes pedestrian crossing intention to form a complete
system. The main framework is shown in Figure 1.

2. Method

2.1. Long Short-Term Memory Network (LSTM)

Long short-term memory network (LSTM) was first proposed by Hochreiter and Schmidhuber
(1997) to solve the problem of gradient disappearance in recurrent neural networks. The key to this
network is that the LSTM unit selectively adds or deletes some information through the gate structure,
providing a mechanism to allow information to pass through selectively. The LSTM unit has three gate
structures (input gate, forgetting gate, and output gate) to maintain and update the cell state. Here, 7
ft, or, and C; are used to represent the three gate structures and nerve cell states corresponding to t
time. The details are provided as follows:

)

The first step of LSTM is to delete some information in the nerve cells. Determined by the sigmoid
layer of forgetting gate, its input is the data input x; of the current layer and the output h;_; of
hidden layer from its upper layer, as shown in Equation (1):

fe = o(Wy b, xi] + by) (1)

where o represents sigmoid activation function and Wy represents cyclic weight.

The second step works to determine which new information should be stored in the cell state. It
consists of two parts: (a) the input gate is determined by the sigmoid layer to be updated; (b) the

)]
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new candidate value C; is created by the tanh layer and added to the nerve cells. This process is
denoted in Equations (2) and (3):

i = o(We-[hy—q, 5] + by) )

ag = tanh(WC-[ht_1,xi] + bc) 3)
where W; represents cyclic weight and b; represents input bias.

(3) By calculating Equations (1)-(3), the state of the whole nerve cell is updated. Firstly, the original
state of the nerve cell C;_; is multiplied by f; to delete the information that is useless and should
be discarded, then i;-C; is added to determine the current update value of the state of the nerve
cell, as illustrated in Equation (4): _

Ct = frCa +ir G (4)

(4) Finally, the information output is obtained through the output gate. Firstly, the sigmoid layer is
used to determine which part of the information of the state of nerve cells will be output. Tanh is
then employed to process the state of the nerve cells. Finally, the two parts of information are
multiplied to determine the information to be output. This process is shown in Equation (5):

or = 0(Wor[le—1, ] + bo) ©)
(5) The last output of the LSTM unit is /; and its formula is provided below:

hy = optanh(Cy) (6)

2.2. Long Short-Term Memory Network Model with Attention Mechanism (AT-LSTM)

The attention mechanism works by imitating the human selective attention mechanism and
operates by scanning data, focusing on data information. To obtain more information, increased
attention is given to the details of the target, while other useless information is inhibited. Thus, the
use of limited attention resources works to quickly screen out high-value data from a large amount of
information to meet the pedestrian crossing intention discriminant of feature information processing
efficiency and accuracy. In this work, the problem of pedestrian crossing intention recognition is
regarded as a modeling and classification problem of time series. As both key features and redundant
features will exist in the feature sequence extracted multiple times, applying attention mechanism
will ensure greater weight is given to the key features in the modeling process, thus improving the
efficiency and accuracy of the model prediction. Figure 2 illustrates how the attention mechanism is
introduced into the LSTM framework for pedestrian crossing intention recognition.

In the LSTM framework, a learning function F is introduced (here, the learning function is realized
through the fully connected layer). The learning function is used to calculate the weight W; of the
output vector h; of the LSTM layer, and the final feature representation vector a is obtained by weighting.
Finally, the recognition result of the pedestrian crossing intention is transmitted through the softmax
layer. The calculation formula is shown in Equation (7):

er = F(h) @)
where h; represents the output of the LSTM layer at time t. The calculation formula of weight W; is:

exp(er)

Wy= =
i1 exp(e;)

®)
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The formula is then weighted to obtain feature representation vector a, and its expression is shown
in Equation (9):

a= Y exp(W;h) )

n
t=1

Output layer
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Figure 2. LSTM framework for integrating attention mechanism.
2.3. AT-LSTM Model Input and Parameter Setting

Pedestrian crossing intention recognition can be regarded as a time series modeling and prediction
problem. In this paper, intention association features are extracted through the continuous data
flow of time series before the pedestrian and vehicle cross the street, then AT-LSTM is adopted for
classification of pedestrian crossing intention. As detailed in the parameter analysis results, model
input includes the seven characteristic parameters of vehicle speed, the distance between vehicle and
zebra crossing, pedestrian speed, distance between pedestrian and zebra crossing, time to collision
(TTC), age, and gender.

The time series of each characteristic parameter T-0 s is expressed as a characteristic vector.
Additionally, Sye, Disyen, Sped, Disped, TTC, Age, and Gen are used to represent the above parameters,
respectively. Seven eigenvectors form the eigenmatrix. The input of the model is MT =
[Szeh, Diszeh, S;T;e & DiSZe & TTCT, A geT, GenT], where T is the time series length of 0-T s. When the model
is identified 0.6 s in advance, the input of the model is M" = [Sgeh, DisZeh’ SZB " Dis;le " TTC", Age", Gen"|,
where 7 is the length of 0.6-T s time series.

The parameter setting for the AT-LSTM algorithm is determined by the expert experience method,
that is, after ensuring the correctness of data and network, the default super parameter setting is
employed (a learning rate of 0.1, dropout rate of 0.5, the number of hidden units of 100, and the
max epochs of 50), the change of loss is observed, the range of each super parameter is preliminarily
determined, then parameters are adjusted. For each super parameter, only one parameter is adjusted
each time and the loss change is observed. The AT-LSTM network is composed of four layers of the
stack, the dropout rate is 0.4, the number of hidden units per layer is 128, and the activation function of
a fully connected layer is ReLU, and the max epochs is 80. Adam optimizer is adopted in the network,
with a learning rate of 0.01 and an attenuation of 0.9.
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2.4. Support Vector Machine (SVM) Theory and Feature Set Parameter Input

The support vector machine was first proposed by Cortes and Vapnik in 1995 and provides
significant advantages in the recognition of small samples, non-linear, and high-dimensional patterns.
The SVM method has strong generalization and has been widely used in the field of pattern recognition.

Before using SVM for training, the data to be trained and the data to be tested need
to be expressed in a certain format. The data representation format used in this paper is

as follows: m! = [ST Dis’ ST Dis! TTCT,AgeT,GenT,labels], where T is the time series

veh’ veh’ = ped’ ped”
length of 0-T s. When the model is identified 0.6 s in advance, the input of the model is
m" = [S"  Dis" SZE ’” Disze ’ TTC", Age", Gen™, labels], where n is the length of 0.6-T s time series.

veh’ veh’

2.5. Kernel Function Selection and Sarameter Optimization

Kernel function has a direct impact on the training classification accuracy and test recognition
rate of the SVM model. At present, the selection of kernel functions is still the focus of a large number
of researchers. Each kernel function has its own advantages and disadvantages. The characteristics
of each kernel function are different. The characteristics of the SVM model built by different kernel
functions are also different. Common kernel functions include the following: linear kernel, polynomial
kernel, radial basis function kernel, and sigmoid tanh. By comparing the classification accuracy of
different kernel functions, the radial basis function kernel is selected in this paper.

According to the formula of the kernel function, we can know that the parameter C and the kernel
function parameter o have a large influence on the performance of SVM. As the parameters can be
searched in a wide range, this paper employs a genetic algorithm to optimize the parameters of the
kernel function. In the case of five folds cross-validation, the optimal parameters C = 89.08, 0 = 4.84
after optimization by genetic algorithm.

3. Experimental

3.1. Experimental Site

The zebra crossing selected in this paper is located at the west gate of Chang’an University and
crosses Wenyi South Road. The width of the zebra crossing is 12 m, and it is located in a straight
section of the two-way road with four lanes with a small and negligible slope. There is no signal light
control at the site, a double yellow line in the middle of the road, and no refuge island, green belt, or
monitor capturing device above the road. Approximately 30 m away from the zebra crossing there
are signs for pedestrians and schools. The speed limit of this section is 60 km/h and the speed limit is
set 100 m away from the zebra crossing. A sketch of the experimental section is provided in Figure 3.
The traffic flow of the zebra crossing is mainly composed of taxis and private cars, accounting for more
than 95% of the traffic, and the remaining traffic is predominantly buses and minivans. Traffic flow is
about 600 veh/h in rush hours and 400 veh/h in non-rush hours.
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Figure 3. Photographs of the experimental section.

3.2. Experimental Equipment

The main equipment used in the experiment was a laser scanner and mini HD monitor, as shown
in Figure 4. The laser scanner model was an IBEO LUX 4L-4 (IBEO Automotive Systems GmbH,
Hamburg, DE, Deutschland) with a scanning frequency of 12.5 Hz, a detectable range of 0.3 m—200 m,
and a vertical viewing angle of 3.2° FOV. The Ilv-Premium software associated with a laser scanner
can display the target type (car, bus, pedestrians), position, and speed in real-time, and all data can
be stored and replayed. The video resolution of the mini HD monitor was 1920 = 1080. The left
half of the image in Figure 4 shows the laser scanner; the right half of the image is the HD monitor.
The experimental equipment was placed on the left side of the road, 15 m away from the zebra crossing,
equipment 0.6 m away from the ground and the laser scanner could effectively cover both sides of the
road, as shown in Figure 3. In this paper, as the laser scanner could not see whether the pedestrian had
reached the curb, an HD monitor and laser scanner time synchronization was used to determine the
position of the pedestrian at different times. Secondly, a camera was also used to determine the gender
and observation age of pedestrians. All equipment was placed in relatively concealed locations to
avoid interference with vehicles and pedestrians. In order to protect personal privacy, the recorded
video data was used only for scientific research.
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Figure 4. Parameter acquisition equipment.

3.3. Data Collection and Analysis

All data observation and collection experiments were conducted on sunny days to avoid the
influence of the weather. From 2016 to 2018, several data collections were carried out in May each year,
with each collection period lasting 1 h. Collection periods included morning and evening rush hours,
and more than 90 h of experimental data were obtained in total.

Event-Labeling methodology

The event labeling guidelines proposed in this paper carry out identification the instant that
a pedestrian starts or finishes an activity. In this work, pedestrian crossing intention is divided
into three categories: walking-stopping, walking-walking, and stopping-starting. Specifically, a
walking-stopping activity is defined as the action when the pedestrian gets closer to the zebra crossing
and the speed of the pedestrian decreases and finally becomes 0 km/h, stopping in front of the zebra
crossing. Walking-walking activity is defined as the action when pedestrians cross the street directly
without any stop and the speed is always greater than 0 km/h in the process. A stopping-starting
activity is defined as the action from the initial standstill in front of the zebra crossing to the beginning
of a pedestrian’s motivation to cross the street. This criterion was adopted because these transitions
are easily labeled by human experts, thus enabling the creation of reliable ground truths.

To complete more accurate modeling of pedestrian crossing intention, it was also necessary
to extract information of surrounding vehicles and the movement information of the pedestrians
themselves. The extracted data included the distance between pedestrians and zebra crossing,
pedestrian speed, vehicle speed, the distance between vehicles and zebra crossing, time to collision
(TTC), and the age and gender of pedestrians. The parameter of crossing intention was extracted
according to the following steps:

(1) Valid samples of three types of crossing (walking-stopping, walking-walking, and
stopping-walking) are obtained.

(2) The instantaneous moment t when the pedestrians cross the curb or stop at the curb is determined.

(3) Theinstantaneous time tis taken as the starting point, then the time series parameters of pedestrian
T s before crossing the curb is reverse extracted (the parameters are described above), as shown in
Figure 5.

(4) The instantaneous time t is taken as the starting point, then the time series parameters of vehicle
in 0-T s are extracted in reverse.
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Figure 5. Time series of pedestrian crossing.

Using the above process, a total of 1980 effective samples were extracted, which included 680
walking-stopping groups, 658 walking-walking groups, and 642 stopping-starting groups. The process
of model recognition is thus essentially a three-class classification problem.

Detailed definitions of some parameters are provided as follows:

Distance between pedestrian and zebra crossing (m)-Dis,4: refers to the arithmetic square root of
the sum of the square of the longitudinal distance (dis;,,;) between pedestrian and curb and the square

of the transverse distance(dis;y,y,):
Disped =y disjon? + distyan® (10)

Distance between vehicle and zebra crossing (m)-Dis,,,: refers to the vertical distance between
the current location of the vehicle and the location of zebra crossing.
TTC (s): refers to the ratio of the distance between the vehicle and the zebra crossing to the

vehicle speed:

Disveh

TTC = (11)

veh

In this paper, the vehicle speed and the distance between vehicles and zebra crossing are much
higher than other parameters. Inputting data with different value range into the recurrent neural
network creates a problem because while the network may adapt the data with a different value
range, it will become more difficult to learn. Therefore, all parameters are normalized to improve the
learning efficiency and recognition accuracy of the model. Meanwhile, due accuracy limitations of the
acquisition instrument, the parameters selected in the feature set have a certain step in the data obtained
in the actual test process, which may weaken the correlation between the data. The most important
task in the process of identifying the intention to cross the street is to mine the relevant characteristics
of the data from the pedestrian crossing data and the surrounding vehicle data. To eliminate the partial
step of the original collected data and ensure the pedestrian crossing intention recognition model
maintains high accuracy, the intention parameter set is filtered. For most problems, the Kalman filter is
the most effective and efficient method and is selected to filter the intention parameter set in this work.

4. Feature Parameter Analysis Results

4.1. Age and Gender

There are many parameters that influence pedestrian crossing intention. From the perspective
of psychology, Pei et al. [30] and Guo et al. [31] found that pedestrian crossing decision making is
most correlated with age. Young and middle-aged pedestrians are relatively radical when crossing the
street. When the external environment allows, the probability of inducing these pedestrians to cross
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the street is relatively high. However, as the elderly are less physically capable, they are more cautious
when crossing the street. They often avoid vehicles when crossing, and the probability of inducing the
elderly to cross the street is relatively low when the external conditions allow. To improve the training
accuracy of the model, the pedestrian’s age was divided. according to natural observation, using the
classification method mentioned in the references which define 18-30 as a youth, 30-59 as middle age,
and >60 as old age [32-34].

4.2. Distance between Vehicle and Zebra Crossing

As shown in Figure 6a, the error bar diagram of T-0 s before crossing the street under three
pedestrian intentions is drawn at the interval of 0.3 s, respectively. The main effect analysis shows
that pedestrian crossing intention is significantly related to the distance between the vehicle and zebra
crossing (p < 0.001), and the difference of time before crossing also significantly affects the distance
between the vehicle and zebra crossing (p < 0.001). It is also observed that there is no interaction effect
between the time of the street crossing in advance and the intention of the street crossing (p > 0.05).
Therefore, the interaction of the two factors has no significant effect on the distance between vehicles
and zebra crossing. The three polylines in the figure have no intersection, which also indicates that
there is no interaction effect, consistent with the results in Table 1.

70 4
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60 4 ® walking-walking 100+ $
g\ A stopping-starting
50 \%i \3\ 801 -
A T _ :
E T Tt E :
E 404 — T 60+
] <
= S
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(a) (b)

Figure 6. Distance between vehicles and zebra crossings under different crossing intentions.
(a) The distance between vehicles and zebra crossings at different times and with different intentions.
(b) Mean distance between vehicles and zebra at crossings under different intentions.

Table 1. Main effect test table.

Source df F Sig.
Label (walking-smiddleping, walking-walking, smiddleping-starting) 2 2690.34 00
Time (0-T's) 7 63.86 00
Label * Time 14 035 1.00
Total number 15,840

As shown in Figure 6b, when the intention of pedestrians is walking-stopping, the mean distance
between vehicles and zebra crossing is 19.44 m; when the intention of pedestrians is walking-walking,
the mean distance between vehicles and zebra crossing is 49.28 m; when the intention of pedestrians is
stopping-walking, the mean distance between vehicles and zebra crossing is 45.13 m. The one-way
analysis of variance (ANOVA) test shows that the distance between vehicles and zebra crossings can
significantly affect pedestrian crossing intentions (F (2,15840) = 2247.65, p < 0.001). The post-hoc
comparisons are provided in Table 2. It can be seen that the mean distance between vehicles and zebra
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crossing under walking-stopping and walking-walking, the mean distance between vehicles and zebra
crossing under walking-walking and stopping-starting, and the mean distance between vehicles and
zebra crossing under walking-stopping and stopping-starting are all significantly different (p < 0.001).

Table 2. Post-hoc comparison table.

Label Std Error Sig.
e . walking-walking 15 00
walking-smiddleping smiddleping-starting 26 00
. . lIking-smiddlepin, 36 00
Iking-walk it ping
watking-watang smiddleping-starting 19 00
. . . lking-smiddlepin, 15 00
1 _ walking pmg
smiddleping-starting walking-walking 26 00

4.3. Vehicle Speed

As shown in Figure 7a, the error bar graph of vehicle speed in T-0 s before crossing under three
pedestrian intentions is drawn at 0.3 s intervals. The main effect analysis shows that vehicle speed
demonstrates significant difference under different crossing intentions (p < 0.001), while the influence
of time change before pedestrian crossing on vehicle speed is not significant (p > 0.05). In addition,
there is no interaction effect between the advance time of crossing the street and the intention of
pedestrians (p > 0.05). It can be seen that the interaction of the two factors has no significant effect on
vehicle speed. The absence of any intersection between the three polylines in the figure also indicates
that there is no interaction effect, which is consistent with the results in Table 3.

07 60
® walking-stopping $
®  walking-walking 50 -
35 4 stopping-starting
— 40+
[ N
< %4 = — & 30
3 i
2 —y S 2
& ——— &
20 -
25 4
—_— _‘_
10 '
20 T T T T T T T T 0
21s 18 15 125 09 06s 03s 0s walking-stopping walking-walking stopping-starting
Time(s) Label
(@) (b)

Figure 7. Vehicle speed diagram under different crossing intentions. (a) Vehicle speed at different times
with different intentions. (b) Mean vehicle speed under different intentions.

Table 3. Main effect test table.

Source df F Sig.
Label (walking-smiddleping, walking-walking, smiddleping-starting) 2 92.46 00
Time (0-T's) 7 1.51 16
Label * Time 14 63 0.84
Total number 15,840

As shown in Figure 7b, when the intention of pedestrians is walking-stopping, the mean speed of
vehicles is 29.94 km/h; when the intention of pedestrians is walking-walking, the mean speed of vehicles
is 30.61 km/h; when stopping-walking is the intention of pedestrians, the mean speed of vehicles is 31.21
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km/h. The one-way ANOVA test shows that the mean vehicle speed under different intention labels
displays a significant difference (F (2,15840) = 83.69, p < 0.001). The post-hoc comparisons are shown
in Table 4. It can be seen that the mean vehicle speed under walking-stopping and walking-walking is
significantly different (p < 0.001); the mean vehicle speed under walking-walking and stopping-starting
have no significantly different (p = 0.15 > 0,05); the mean vehicle speed under walking-stopping and
stopping-starting are significantly different (p < 0.001).

Table 4. Post-hoc comparison table.

Label Std Error Sig.
e . walking-walking 16 00
walking-smiddleping smiddleping-starting 22 00
o . walking-smiddleping 17 00
walking-walking smiddleping-starting 20 15

. L . walking-smiddleping 21 00
smiddleping:starting walking-walking 23 15

4.4. Time to Collision (TTC)

As shown in Figure 8a, the error bar graph of TTC in T-0 s before crossing under three pedestrian
intentions is drawn at 0.3 s intervals. The main effect analysis shows that there are significant differences
in TTC under different crossing intentions (p < 0.001) and TTC under different crossing moments
(p < 0.001), as shown in Table 5. The table also illustrates that the interaction effect between different
intentions and times is not significant (p > 0.05), which is further demonstrated by the absence of any
intersection of the three polylines in Figure 8a. It can be seen that the interaction of the two factors has
no significant effect on the TTC.

As shown in Figure 8b, when the intention of pedestrians is walking-stopping, the mean TTC
is 2.51 s; when the intention of pedestrians is walking-walking, the mean TTC is 5.79 s; when the
intention of pedestrians is stopping-walking, the mean TTC is 5.11 s. The one way ANOVA test shows
that the mean TTC value under different intentions is significantly different (F (2,15840) = 1719.60, p
< 0.001). The post-hoc comparisons are shown in Table 6 and post-hoc comparisons are provided in
Table 2. It can be seen that the mean TTC under walking-stopping and walking-walking, the mean
TTC under walking-walking and stopping-starting, and the mean TTC under walking-stopping and
stopping-starting are all significantly different (p < 0.001).
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4 ® walking-walking 12 -
— ®  stopping-startin,
. — ppmg g ‘ s
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i — |
] 21 ]
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21s 18s 15s 12s 09s 0.6s 03s O0s walking-stopping ~ walking-walking  stopping-starting
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Figure 8. TTC diagram under different crossing intentions. (a) TTC at different times and with different
intentions (b) TTC under different intentions.
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Table 5. Main effect test table.

Source df F Sig.
Label (walking-smiddleping, walking-walking, smiddleping-starting) 2 1973.26 00
Time (0-T s) 7 40.35 00
Label * Time 14 14 0.89
Total number 15,840

Table 6. Post-hoc comparison table.

Label Std Error Sig.

s . walking-walking 03 00
walking-smiddleping smiddleping-starting 04 00
o . walking-smiddleping 04 00
walking-walking smiddleping-starting 05 00

. L . walking-smiddleping 03 00
smiddleping-starting =)\ e walking 04 00

4.5. Pedestrian Speed

As shown in Figure 9a, the error bar graph of pedestrian speed in T-0 s before crossing under
different pedestrian intentions is drawn at 0.3 s intervals. The main effect analysis shows that there is a
significant influence on pedestrian speed under different crossing intentions and pedestrian speed
under different crossing moments (p < 0.001), as shown in Table 7. The interaction effect between
different intentions and different moments is significant (p < 0.001), and the three polylines in Figure 9a
have intersection points, indicating the existence of interaction effects. Therefore, the interaction of
two factors can significantly affect the pedestrian speed.

walking-stopping 10 4
® walking-walking
5 " stopping-starting ¢

@

—

I <rose

pedestrian speed (km/h)
w
/m
pedestrian speed (km/h)

O A d
2 b4

: > oo
: $
— T 0

0 T T T T T T _._ T T
21s 1.8s 15s 12s 09s 06s 03s Os walking-stopping  walking-walking  stopping-starting
Time(s) Label

(a) (b)

Figure 9. Pedestrian speed diagram under different crossing intentions. (a) Pedestrian speed at different
times and with different intentions. (b) Mean pedestrian speed under different intentions.

As illustrated in Figure 9b, when the intention of pedestrians is walking-stopping, the mean
pedestrian speed is 2.22 km/h; when the intention of pedestrians is walking-walking, the mean
pedestrian speed is 4.27 km/h; when the intention of pedestrians is stopping-walking, the mean
pedestrian speed is 0.39 km/h. The one way ANOVA test shows that the mean pedestrian speed value
under different intentions is significantly different (F (2,15840) = 2274.09, p < 0.001). The post-hoc
comparisons are shown in Table 8.
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Table 7. Main effect test table.

Source df F Sig.
Label (walking-smiddleping, walking-walking, smiddleping-starting) 2 2985.39 00
Time (0-T s) 7 21.08 00
Label * Time 14 60.86 00
Total number 15,840

Table 8. Post-hoc comparison table.

Label Std Error Sig.

s . walking-walking 03 00
walking-smiddleping smiddleping-starting 04 00
o . walking-smiddleping 03 00
walking-walking smiddleping-starting 04 00

. L . walking-smiddleping 04 00
smiddleping-starting =)\ e walking 04 00

4.6. Distance between Pedestrians and Zebra Crossings

As shown in Figure 10a, the error bar graph of the distance between pedestrians and zebra

crossings in T-0 s before crossing under different pedestrian intentions is drawn at 0.3 s intervals.
The main effect analysis shows that there are significant differences in the distance between pedestrians
and zebra crossings under different crossing intentions and the distance between pedestrians and

zebra crossings under different crossing moments (p < 0.001), as shown in Table 9. The interaction
effect between different intentions and different moments is significant (p < 0.001). It can be seen that
the interaction of two factors can significantly affect Distance between pedestrians and zebra crossings.
The three polylines in Figure 10a have intersection points, indicating the existence of interaction effects.

Distance(m)

34
* walking-stopping 3]
= walking-walking .
4+ stopping-starting
24 & :
\i ’5\ 5 :
™~ T 4
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14 = T~ é)
\i 1 i
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T T T
51s 18s 15s 1 I2s Ol9s Ol6s Ol3s 0s walking-stopping ~ walking-walking  stopping-starting

Time(m) Label

(a) (b)

Figure 10. Distance between pedestrians and zebra crossings under different crossing intentions.
(a) Distance between pedestrians and zebra crossings at different times and with different intentions.
(b) Mean distance between pedestrians and zebra crossings under different crossing intentions.

Table 9. Main effect test table.

Source df F Sig.
Label (walking-smiddleping, walking-walking, smiddleping-starting) 2 2263.66 00
Time (0-T s) 8 570.24 00
Label * Time 14 133.48 00

Total number 15,840




Sensors 2020, 20, 1776 16 of 21

As shown in Figure 10b, when the intention of pedestrians is walking-stopping, the mean
distance between pedestrians and zebra crossings is 0.44 m; when the intention of pedestrians is
walking-walking, the mean distance between pedestrians and zebra crossings is 1.05 m; when the
intention of pedestrians is stopping-walking, the mean distance between pedestrians and zebra
crossings is 0.18 m. The one way ANOVA test shows that the mean pedestrian speed value under
different intentions is significantly different (F(2,15840) = 2018.46, p < 0.001). Post-hoc comparisons are
shown in Table 10. It can be seen that the mean distance between pedestrians and zebra crossings under
walking-stopping and walking-walking, the mean p distance between pedestrians and zebra crossings
under walking-walking and stopping-starting, and the mean distance between pedestrians and zebra
crossings under walking-stopping and stopping-starting are all significantly different (p < 0.001).

Table 10. Post-hoc comparison table.

Label Std Error Sig.

e . walking-walking 01 00
walking-smiddleping smiddleping-starting 02 00
o . walking-smiddleping 01 00
walking-walking smiddleping-starting 02 00

. L . walking-smiddleping 02 00
smiddleping-starting walking-walking 01 00

5. Model Analysis Results

In this experiment, a total of 1980 effective samples were collected, 80% of which are used as
training sets and the remaining 25% as test sets for model training, as shown in Table 11. The AT-LSTM
algorithm is predominantly used for model training, and the SVM algorithm was used for model
accuracy comparison. An analysis of the accuracy of the model to recognize the intention of crossing
0 s in advance and 0.6 s in advance is the primary focus of this work.

Table 11. Number of intention samples.

Label Train Sample  Test Sample
walking-smiddleping 510 170
walking-walking 494 164
smiddleping-walking 482 160

5.1. Model Recognition Results 0 s in Advance

Recognition results based on the AT-LSTM network model and SVM model for when the input
feature time series is T-0 s, that is, the intention of pedestrians is not recognized in advance, are shown
in Table 12. It can be seen from the recognition accuracy that the network model based on AT-LSTM has
a higher recognition accuracy than the SVM model. The pedestrian intention recognition accuracy of
the AT-LSTM model is 96.15%, while the pedestrian intention recognition accuracy of the SVM model
is 90.08%. Therefore, it is more advantageous to identify pedestrian intention based on the AT-LSTM
model. In addition, the model needs to have the ability of real-time computing. The computing
time of AT-LSTM and SVM models is 0.0049s and 0.0036s respectively through tic and toc functions.
We trained the model with a CPU of core i5-7th. The training time of model AT-LSTM and SVM model
is 3 min 42 s and 4 min 7 s respectively.

Table 12. Model recognition accuracy of 0 s in advance.

Total Number SVM Model AT-LSTM Model
1980 90.08% 96.15%
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The following Figure 11 shows the receiver operating characteristic (ROC) curves of the two
recognition models, in which the curves deviate far from the 45° oblique line. The results illustrate that
both models have good recognition performance.
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Figure 11. ROC curve of model identification 0 s in advance.

Figure 12 shows the confusion matrix based on the AT-LSTM model and SVM model. The figure
illustrates the model recognition accuracy under the three types of labels, in which the two models
display good recognition accuracy.

walking-stopping walking-stopping

walking-walking

walking-walking

stopping-starting stopping-starting

Figure 12. Confusion matrix for model identification 0 s in advance. (a) AT-LSTM model. (b) SVM model.
5.2. Model Performance Evaluation 0 s in Advance

Precision recall rate and F1 scores are used to further evaluate the classification performance
of the models, with results provided in Table 13. It can be seen from Table 13 that the classification
performance of the AT-LSTM model is significantly better than that of the SVM model in terms of the
precision, recall rate, and F1 scores of the model.

Table 13. Model performance evaluation.

Model Precision Recall Rate F1 Scores

AT-LSTM  95.43% 98.24% 96.81%
SVM 89.89% 94.12% 91.96%
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5.3. Model Recognition Results 0.6 s in Advance

Recognition results based on the AT-LSTM network model and SVM model are shown in Table 14
for when the length of the input characteristic time series is T-0.6 s, that is, the pedestrian crossing
intention is recognized 0.6 s in advance. According to the results, the recognition accuracy of the
AT-LSTM network model is higher than that of the SVM model. The accuracy of pedestrian intention
recognition of the AT-LSTM model is 90.68%, and that of the SVM model is 85.83%. It can also be
observed that when crossing intention occurs 0.6 s in advance, the pedestrian crossing intention
recognition also has high accuracy. The accuracy of pedestrian crossing intention recognition 0.6 s in
advance is generally lower than that of 0 s in advance. In addition, the computing time of AT-LSTM
and SVM models is 0.0023 s and 0.0054 s respectively through tic and toc functions. The training time
of model AT-LSTM and SVM model is 2 min 36 s and 2 min 52 s respectively.

Table 14. Model recognition accuracy for 0.6 s in advance.

Total Number SVM Model AT-LSTM Model
1980 85.83% 90.68%

The following Figure 13 shows the ROC curves of the two recognition models. It can be seen that
when the pedestrian crossing intention is recognized 0.6 s in advance, the two curves display relative
deviation from the 45° diagonal, illustrating that both models have good recognition performance.
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Figure 13. ROC curve of model identification 0.6 s in advance.

Figure 14 respectively show the confusion matrix based on the AT-LSTM model and SVM model
when pedestrian crossing intention recognition occurs 0.6 s in advance.

The figures illustrate model recognition accuracy under the three types of labels in which the two
models display good recognition accuracy. It is worth noting that the model recognition accuracy is
generally lower when pedestrian crossing intention recognition occurs 0.6 s before crossing compared
to when pedestrian crossing intention recognition occurs 0 s before crossing.
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Figure 14. Confusion matrix for model identification 0.6 s in advance. (a) AT-LSTM model. (b)
SVM model.

5.4. Model Performance Evaluation 0.6 s in Advance

The performance of the two models when the pedestrian intention is recognized 0.6 s in advance
is evaluated according to precision, recall rate, and F1 scores of the models as listed in Table 15. It can
be seen from these results that the recognition performance of the AT-LSTM model is still superior to
the SVM model.

Table 15. Model performance evaluation.

Model Precision Recall Rate F1 Scores

AT-LSTM  90.34% 93.53% 91.91%
SVM 85.08% 90.58% 87.74%

6. Conclusions

In this paper, the motion parameters of pedestrians and vehicles were collected by a four-layer
laser scanner and 1980 groups of effective samples were selected. The statistical method was then
employed to test the significance of the selected data, and a more comprehensive set of characteristic
parameters that can reflect the intention of pedestrians to cross the street was obtained. It is determined
that TTC has a significant impact on pedestrian crossing intention, which is consistent with the results
of the literature [35]. In addition, as consistent with the research results in the literature [19-21,28],
the distance between pedestrians and zebra crossing and the distance between vehicles and zebra
crossing have a significant impact on pedestrian crossing intention. Contrasting from the above studies,
pedestrian crossing speed and the vehicle speed is also determined to have a significant impact on
pedestrian crossing intention, which enriches the pedestrian crossing intention parameter set and lays
a foundation for more scholars to carry out real-time online pedestrian crossing intention research.

Taking the feature parameter set as the input of the AT-LSTM algorithm, a pedestrian crossing
intention model with high recognition accuracy was trained and compared with the traditional SVM
algorithm. Results illustrated that while the two models have high recognition accuracy, the AT-LSTM
model provides more advantages for pedestrian crossing intention recognition, reaching 96.15%. This
result is 6.07% higher than the SVM model. In addition, when the proposed model recognized the
intention of pedestrians crossing the street 0.6 s in advance, it was still able to complete accurate
recognition, with the recognition accuracy reaching 90.68%, 4.85 % higher than the SVM model.
The AT-LSTM model proposed in this paper has a high accuracy of intention recognition, which is of
practical significance for future fully automated driving vehicles to effectively avoid human vehicle
conflict and improve driving efficiency on urban roads.
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