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Abstract: Soil organic matter (SOM) is a crucial indicator for evaluating soil quality and an important
component of soil carbon pools, which play a vital role in terrestrial ecosystems. Rapid, non-destructive
and accurate monitoring of SOM content is of great significance for the environmental management
and ecological restoration of mining areas. Visible-near-infrared (Vis-NIR) spectroscopy has proven
its applicability in estimating SOM over the years. In this study, 168 soil samples were collected
from the Zhundong coal field of Xinjiang Province, Northwest China. The SOM content (g kg−1)
was determined by the potassium dichromate external heating method and the soil reflectance
spectra were measured by the spectrometer. Two spectral feature extraction strategies, namely,
principal component analysis (PCA) and the optimal band combination algorithm, were introduced
to choose spectral variables. Linear models and random forests (RF) were used for predictive models.
The coefficient of determination (R2), root mean square error (RMSE), and the ratio of the performance
to the interquartile distance (RPIQ) were used to evaluate the predictive performance of the model.
The results indicated that the variables (2DI and 3DI) derived from the optimal band combination
algorithm outperformed the PCA variables (1DV) regardless of whether linear or RF models were
used. An inherent gap exists between 2DI and 3DI, and the performance of 2DI is significantly
poorer than that of 3DI. The accuracy of the prediction model increases with the increasing number
of spectral variable dimensions (in the following order: 1DV < 2DI < 3DI). This study proves that
the 3DI is the first choice for the optimal band combination algorithm to derive sensitive parameters
related to SOM in the coal mining area. Furthermore, the optimal band combination algorithm can be
applied to hyperspectral or multispectral images and to convert the spectral response into image
pixels, which may be helpful for a soil property spatial distribution map.

Keywords: visible and near-infrared spectroscopy; principal component analysis; optimal band
combination algorithm; random forest; three-dimensional slice map

1. Introduction

The mining and processing of mineral resources have shown no shortage of economic benefits.
However, coal mining will disturb the soil layer, destroy vegetation and cause the soil to lose its
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utilization value [1]. These issues have posed a serious threat to the sustainable development of land
resources and the ecological environment [2]. The area of land damaged by coal mining every year at
the global scale is estimated to exceed 12.5 hm2 [3,4]. In China, large open-pit coal mines are mainly
concentrated in ecologically fragile zones under drought and semi-drought [5]. The self-repairing
ability of the soil in this region is relatively poor, and the ecological sensitivity is relatively strong [6].
The long-term development of mineral resources has resulted in serious environmental problems and
disasters. Soil is the foundation of many ecological processes (e.g., nutrient cycling, water balance,
litter decomposition, etc.) in terrestrial ecosystems [7]. Soil organic matter (SOM) is a crucial indicator
for evaluating soil quality and an important component of soil carbon pools, which play a vital role
in terrestrial ecosystems [8–10]. Therefore, the rapid, repetitive and accurate monitoring of SOM
content is of great significance for the environmental management and ecological restoration of mining
areas [11,12].

With the advancement of science and technology in recent decades, visible-near-infrared (Vis-NIR)
spectroscopy has become practical and affordable and has gradually begun to replace or assist
experimental analysis [13–15]. SOM has obvious spectral characteristics and is the main factor
affecting spectral deformation [1,16]. In the Vis region, it is dominated by the electron transition in
the chromophore, while in the NIR, it is manifested as the overtones and combined absorption of the
molecular vibrations of N-H, C-O, C-H, and other bonds [7].

Hyperspectral data are characterized by a large amount of data and multicollinearity and are
usually composed of three types of spectral information: valid information, redundant information,
and invalid information [10]. Using full-band modeling will be interfered with by noise and redundant
information, which will lead to unsatisfactory results. However, there is increasing evidence that
choosing the informative spectral variable can reduce the model’s complexity and improve the
prediction performance [17–19]. Principal component analysis (PCA) is a common method to reduce
the dimensionality of spectral data in obtaining effective variables [7,9]. The optimal band combination
algorithm has the advantage of enhancing the correlation between the specific properties and spectral
characteristics of a target, minimizing the influence of other irrelevant variables, and is widely applied in
soil evaluation [18,20–22]. Previous studies have mostly explored the performance of indices in the form
of two bands [1,23,24], while the potential of the three-band index (TBI) form has remained unknown.

Random forest (RF) is a machine learning method widely used in the field of classification and
regression in recent years [25]. Multiple soil properties have been linked to the Vis-NIR spectrum
through this algorithm, such as soil organic carbon (SOC) [26], soil cadmium (Cd) [27], forage
phosphorus (P) [28] and soil pH [29]. Numerous research results indicate that RF provides better
prediction results than the classical partial least-squares regression (PLSR) [29–31]. Furthermore,
compared to other machine learning technologies such as artificial neural networks (ANN) and support
vector machine (SVM), the RF model can provide the relative importance of each predictor, which
makes the results of the model highly interpretable [27,32].

The core of this study is to compute sensitive spectral variables by increasing the dimension of
the combination of spectral variables, so a series of spectral features (i.e., valid features, redundant
features, and invalid features) are generated. Then, we reduce the dimension of the variables and
choose the optimal spectral parameters to predict the SOM content in the mining area by the RF model.

The purpose of this study attempts to answer the following questions:

(i) Are there differences in prediction performances based on different feature selection methods
(PCA and optimal band combination algorithm)?

(ii) When the dimension of spectral parameters increases, what effect does it have on the predictive
performance of SOM content?

(iii) Can an acceptable prediction result be obtained from a single spectral parameter alone?
(iv) Can the selected optimal parameters be interpreted in terms of known soil properties or

functional groups?
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2. Materials and Methods

2.1. Study Areas and Soil Sampling

The research area is the Zhundong coalfield, which is located southeast of the Junggar basin of
China (43◦45′-45◦00′ N and 88◦45′-91◦10′ E) (Figure 1b). The coalfield covers an area of approximately
13,000 square kilometers, and the predicted coal reserves reach 390 billion tons. It is the largest
integrated coalfield in the world and is known as “the granary of China’s industry”. The study area
ranges in elevation and slope from 453 m to 1685 m and from 0◦ to 89◦, respectively (Figure 1b). The
site is in an extremely dry continental climate with average annual precipitation and temperatures
from 140 to 183 mm and 5.3◦ to 7.3◦, respectively [33]. According to the World Reference Base soil
classification and soil taxonomy [34], the common soil types of the study region are arenosols, solvents,
and gypsisols. The soil parent material is Quaternary alluvial deposits, and the surface vegetation is
sparse. The mainland use and land cover (LU/LC) types in the Zhundong coalfield are bare lands,
grassland and cropland [35]. Since the start of the Zhundong coal mine in 2006, heavy industrial and
mining activities have caused ecological imbalances and serious environmental pollution, and the soil
properties may be changing.
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Figure 1. Geographical location of Xinjiang Province (a) and study area (b), and spatial distribution of
sampling points (c).

A field survey was conducted in mid-June 2014, and we collected a total of 168 soil samples
(Figure 1c); during the collection period, no extreme weather (such as heavy rain or strong winds)
occurred. The main terrain of the study area is hilly, so the main route designed for the experiment was
along the roads. A relatively flat area away from the road (>300 m) was selected as the sampling site to
ensure the safety of vehicles and personnel. At each sampling point, topsoil samples (depth range from
0 to 20 cm) from five sub-samples within an area 10 m in diameter were collected with a wooden shovel
and mixed into composite samples (approximately 1.5 kg). The composite samples were immediately
loaded into a labeled waterproof ziplock bag, and the coordinates, elevation and vegetation coverage
of the samples were recorded using a handheld GPS and vegetation coverage meter. The samples were
brought back to the laboratory for indoor air drying for 2 weeks (room temperature ranging from 26
to 28 ◦C), non-soil materials (e.g., gravel, plant roots, and other materials) were carefully removed,
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and the samples were then gently crushed with an agate mortar and passed through a 1.5 mm sieve
to reduce the impact of particle size. The SOM content (g kg−1) was determined by the potassium
dichromate external heating method [36].

2.2. Vis-NIR Spectroscopy Measurement and Pre-Processing

The ASD FieldSpec® Pro FR spectrometer (Malvern Panalytical Ltd, Malvern, UK) was used for
acquisition of the soil reflectance spectra in the wavelength range of 350–2500 nm (output spectral
interval of 1 nm). The spectral acquisition process was as follows: in a dark room, a 50 W halogen
lamp (Malvern Panalytical Ltd, Malvern, UK) with an incident angle of 45◦ was mounted 60 cm above
the center of the sample to provide illumination. The soil sample was placed in a pre-cleaned petri
dish (1.0 cm in height × 3.6 cm in diameter), and a spatula was used to make its surface smooth. Each
sample was repeatedly scanned 12 times over the central area of the sample, and the average value was
taken as the reference spectrum after removing the abnormal spectrum. For each sample measurement,
we used a square white BaSO4 panel (with 99% reflectance) to calibrate the spectrometer.

Overall, the wavelength on the fringe (the first 50 nm and the last 100 nm) of the spectrometers had
a relatively low signal-to-noise ratio [11]. Therefore, we retained only the wavelengths from 400 nm to
2400 nm. The total number of spectral bands was reduced from 2001 to 401 to improve the calculation
efficiency and eliminate the redundant information using a Gaussian filter. The Savitzky–Golay filter
(with a polynomial order of two and window size of 11) was used to further reduce the signal noise of
the spectrum [37]. Continuum removal (CR) was used to extract spectral characteristics to facilitate
spectral interpretation [38]. All pre-processing in this study was carried out in MATLAB version
R2018b (MathWorks, Natick, MA, USA).

2.3. Vis-NIR Spectral Feature Extraction

In this study, PCA and the optimal band combination algorithm were used to conduct spectral
information extraction. PCA is a statistical analysis method widely used in spectral data feature
extraction, compression and dimensionality reduction [39]. Through orthogonal transformation, it can
convert the original spectral dataset into a set of uncorrelated principal components (PCs) under the
premise of retaining the original data information as much as possible [7]. The number of PCs used for
identifying spectral data was selected based on the cumulative contribution rate, and components
with a cumulative contribution rate greater than 95% were chosen. The extracted PCs are defined as
one-dimensional variables (1DVs) and divided into calibration and validation datasets (described in
the next section) for subsequent analysis and model input. To further explore the spectral variation of
the soil samples, we performed PCA on the CR spectra of the entire dataset (n = 168).

The optimal band combination algorithm can extract the most sensitive spectral information and
simplify the influence of unrelated bands [17]. According to previous research [17,27], we used the
following five two-band index forms to explore the relationship between SOM content and spectral
variables. The mathematical expression is characterized by Equations (1)−(5):

SI(Ri, Rj) a = (Ri + Rj) (1)

DI(Ri, Rj) b = (Ri − Rj) (2)

PI(Ri, Rj) c = (Ri × Rj) (3)

RI(Ri, Rj) d = (Ri/Rj) (4)

NDI(Ri, Rj) e = (Ri − Rj)/(Ri + Rj) (5)

Note: a sum index; b difference index; c product index; d ratio index; e normalized difference index.
Zhang, et al. [40] reported that adding a third band for a specific sensitive region to the

two-band spectral index can significantly improve the estimation accuracy of both and enhance
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the anti-interference ability. Therefore, we derived five types of three-band indices. The mathematical
expressions are as follows (Equations (6)−(10)).

TBI1(Ri, Rj, Rk) a = Ri/(Rj + Rk) (6)

TBI2(Ri, Rj, Rk) b = (Ri + Rj)/Rk (7)

TBI3(Ri, Rj, Rk) c = (Ri − Rj)/(Rj − Rk) (8)

TBI4(Ri, Rj, Rk) d = (Ri − Rj)/(Ri + Rj − 2Rk) (9)

TBI5(Ri, Rj, Rk) e = Ri + Rj − 2Rk (10)

Note: a three-band index 1; b three-band index 2; c three-band index 3; d three-band index 4; e

three-band index 5.
Where Ri, Rj, and Rk are the reflectance values at the range of 400−2400 nm, and Ri , Rj , Rk,

respectively. The feature extraction procedures of the optimal band combination algorithm involved
three steps: (1) for each index form, the Pearson correlation (r) between all possible band combinations
(in Equations (1)−(5) and (6)−(10) the band combinations were 4012 and 4013, respectively) and
SOM content was traversed; (2) for each index form (in Equations (1)−(10)], the |r| values were
sorted in ascending order to preserve the top 1% of the band combinations); (3) finally, the optimal
band combinations were then selected according to the minimum r error between the calibration
and validation data sets. The correlation graphs for the contour and slices were used to visualize
the optimal band combinations and sensitive spectral response regions. We designed a computer
program based on MATLAB version R2018b (MathWorks, Natick, MA, USA) to assist with the
calculations and analyses. The optimal band combinations in Equations (1)−(5) and Equations (6)–(10)
are denoted as the two-dimensional spectral index form (2DI) and three-dimensional spectral index
form (3DI), respectively.

2.4. Dataset Division and Modeling Strategy

The 168 samples were sorted in ascending order of SOM content. Then, we placed one of the three
samples into the validation set and the other two samples into the calibration set. This procedure led
to a calibration set and a validation set with 112 and 56 samples, respectively.

Random forests (RF) are the product of ensemble learning and are currently popular in the
fields of classification and regression [25]. Specifically, an RF combines two powerful statistical
techniques: boosting and classification and regression tree (CART). The boosting algorithm implements
the modeling process by iteratively extracting trees and then returning them to the model [41].
The regression tree performs binary splitting of each resulting section to obtain the split-point that
achieves the best model fit, and the combination of regression trees can yield more accurate and stable
predictions. Compared with other data mining algorithms, the RF model has better interpretability
because it can output the importance of features, which can assist us in evaluating and screening
important features [31]. RF modeling was implemented with the package “Regression Tree Ensembles”
version 0.02 based on MATLAB version R2018b (MathWorks, Natick, MA, USA).

The fitting of an RF model is controlled by the specification of three parameters: the number
of trees (ntrees), the number of variables per tree (mtry), and the minimum number of terminal nodes
(nodesize). The default value of ntrees (500) has proven to be insufficient to produce stable results [42].
Therefore, we choose an RF model with a ntrees value of 1000. For nodesize, we use the default values in
the package. For the optimization of mtry value, it ranged from one to five and from one to 10, both
were tested at the interval of one for the two-variable combinations (mentioned in the next Section 2.5).
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2.5. Statistical Analysis and Flow Chart

Analysis of variance (ANOVA) was used to verify whether significant differences (p < 0.05)
exist between the calibration and validation sets and between the SOM content and Vis-NIR spectral
data [18]. An accuracy assessment was conducted using the coefficient of determination (R2),
root mean square error (RMSE), and the ratio of the performance to the interquartile distance
(RPIQ). Bellon-Maurel et al. [43] defined four classes of RPIQ, namely, categories A (RPIQ > 4.05),
B (3.37 < RPIQ < 4.05), C (2.70 < RPIQ < 3.37), and D (RPIQ < 2.70), which indicate that a model can
excellently predict the property in question, has good predictability, has limited predictability or has
poor predictability, respectively. Taking the minimum RMSE in the calibration set as the objective,
the optimal mtry value was selected. The confidence intervals and prediction intervals [19] were
added to a scatter plot to measure the prediction reliability of the SOM (at the 0.05 confidence level).
The confidence interval represents covering the true fitted line with 95% probability, and the prediction
interval represents covering all future data points with 95% probability.

To explore the influence and importance of different spectral variable types on the prediction
accuracy of the SOM, we first developed estimation models with 1DV, 2DI, or 3DI and then combined
them in pairs. Figure 2 presents all the procedures used to predict the SOM content in this study.
In Figure 2, the blue arrows indicate the flow of the experiment; the red flat hexagons represent
the original data (SOM and Vis-NIR spectral data); the blue and green oval frames correspond to
the processed calibration and validation datasets, respectively; and the descriptions in the orange
rectangular boxes indicate the experimental operations. The labels 1DV, 2DI and 3DI represent variable
combination 1, 1DV+2DI, 1DV+3DI and 2DI+3DI represent variable combination 2.
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3. Results

3.1. Descriptive Statistics of SOM Content

The range of the entire SOM data set was 45.45 g kg−1, with a mean value of 7.46 g kg−1 (Table 1).
The kurtosis and skewness were 5.10 and 2.13, respectively, and both were greater than zero; hence,
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the distribution of the SOM can be considered offset to the right and steeply distributed. A coefficient
of variation (CV) of 117.23% was considered to have high variability, reflecting the differences in
soil parent materials and land use. Large soil variability may be beneficial to enhance the predictive
accuracy of the calibration model [44]. The pH values ranged from 7.60 to 10.60 (i.e., alkaline to
extremely alkaline). The mean value of pH indicates that the topsoil is strongly alkaline. A comparison
of the SOM content between the calibration and validation datasets showed no significant difference
according to the performance of ANOVA (p = 0.99) at the 0.05 significance level.

Table 1. Descriptive statistics of soil properties in the study areas.

Soil Properties Data Set Min Mean Max ST IQR CV (%) Ske Kur

SOM (g kg−1) Entire set (n = 168) 0.26 7.46 45.71 8.75 10.02 117.23 2.13 5.10
Calibration set (n = 112) 0.26 6.85 45.71 8.38 9.39 122.40 2.24 5.90
Validation set (n = 56) 0.49 7.74 42.74 9.25 10.30 119.53 2.16 5.16

pH Entire set (n = 168) 7.60 9.11 10.60 0.90 1.60 9.91 0.04 1.67

Standard deviation (SD); the interquartile range of the data samples (IQR); coefficient of variation (CV); skewness
(Ske); kurtosis (Kur).

3.2. Spectral Characteristic Analysis

The average spectral reflectance of the different SOM classes is illustrated in Figure 3. In the
entire-band range (400–2400 nm), with the increase in SOM, the spectral reflectance decreased gradually;
this trend was significant at wavelengths of 400–700 nm, which are mainly associated with minerals
that contain iron, as well as the presence of SOM [11,16]. The soil samples from different SOM classes
exhibited similar spectral shapes but with variable spectral intensities because the reflectance spectrum
in the Vis region is mainly affected by the soil chromophore and the black color of the organic matter
itself; therefore, soil with higher SOM is visually brighter than the SOM of light-colored soil [45].
However, in the NIR region, the spectral intensity variation is linked to the double-frequency and
combined-frequency absorption of chemical bonds such as N-H, C-H, and C-O [45]. Besides, there are
prominent absorption bands at approximately 1400 nm and 1900 nm and weak absorption bands at
approximately 2200 nm, similar to previous reports [20,26,46–49]. These features are caused by the
stretch vibration of OH bonds, mainly the absorption of free soil moisture at 1400 and 1900 nm, and by
the OH groups in clay lattices at 1400 and 2200 nm [11].
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The eigenvectors extracted by PCs were used to identify the obvious absorption characteristics of
the SOM content (Figure 4). The cumulative variance contribution rate of the first three PCS was greater
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than 90%. The eigenvector of PC1 (explaining 71.01% of the total spectral variation) presented three
positive peaks within 400–609, 1329–1645 and 1860–2089 nm that can be attributed to the presence of
Fe oxides, haematite, O-H, humic acid and smectite [7,50]. In the second PC (explaining 15.38% of the
total spectral change), the kurtosis of the positive peak within 400–609 nm was significantly enhanced,
while the positive peaks within 1412–1645 and 1860–2089 nm were converted to kurtosis weaker
negative peaks [45]. In the third PC (accounting for 4.91% of the total spectral change), the positive
peak (in PC1 and PC2) within 400–609 nm was converted into a positive peak between two negative
peaks. Moreover, a flat peak within 596–1311 nm and around 1400, 1900 and 2200 nm had both a sharp
positive peak and two weak negative peaks, which were associated with the presence of haematite,
aromatics, an asymmetric doublet, iron oxides, N-H, C-H, molecular water and clay minerals [45].
However, the specific spectral response of the peaks was sometimes difficult to determine due to
the overlapping nature of the hyperspectral data; nevertheless, these preliminary analyses make the
Vis-NIR modeling of SOM feasible.
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3.3. Relationship between SOM Content and Spectral Principal Components

The spectra were compressed using PCA, which was used to summarize the data and visualize the
spectral implication of PCs. Overall, in the calibration and validation sets, the correlation coefficients of
PCs for different datasets show the same trend; the correlations (r) varied from 0.43 (PC4) to –0.37 (PC1)
and from 0.31 (PC4) to –0.42 (PC3), respectively (Table 2). The five extracted PCs for the calibration
sets are listed in Table 3 for subsequent modeling.

Table 2. Correlations (r) between SOM content and principal component analysis (PCA) in the
calibration set and validation set.

Data Set PC1 PC2 PC3 PC4 PC5

Calibration set –0.37 0.31 –0.06 0.43 –0.19
Validation set –0.08 0.27 –0.42 0.31 –0.05
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Table 3. Quantitative relationship between SOM and spectral variables of different numbers of dimensions in the calibration (n = 112) and validation (n = 56) datasets.

Dimensions Spectral Variables Linear Model R2
c RMSEc (g kg−1) R2

v RMSEv (g kg−1) RPIQ

1DV PC1 y = 24.79 − 0.88x 0.14 16.44 0.01 16.36 0.67
PC2 y = 8.59 + 3.22x 0.10 11.30 0.07 12.20 0.82
PC3 y = 8.40 − 1.17x 0.01 11.82 0.18 12.77 0.81
PC4 y = 4.18 + 13.72x 0.19 10.97 0.09 13.79 0.87
PC5 y = 7.79 − 11.90x 0.04 11.21 0.01 15.00 0.86

2DI SI (R2260, R1450) y = 27.85 − 25.56x 0.34 11.79 0.34 12.59 1.08
DI (R800, R790) y = 20.03 − 348.35x 0.46 9.19 0.43 9.98 1.03

PI (R1490, R2340) y = 21.08 − 86.87x 0.33 9.13 0.30 10.92 1.04
RI (R785, R805) y = −70.94 + 83.80x 0.47 9.58 0.49 10.38 1.10

NDI (R800, R790) y = 19.38 − 353.96x 0.48 9.19 0.46 9.98 1.03

3DI TBI1 (R2265, R2230, R1465) y = −83.16 + 174.51x 0.69 6.95 0.64 7.65 1.34
TBI2 (R2215, R1460, R2255) y = 128.19 − 62.75x 0.71 6.14 0.70 6.86 1.50
TBI3 (R1890, R2065, R2265) y = −4.32 − 21.12x 0.72 7.79 0.68 8.54 1.23
TBI4 (R1895, R2095, R2295) y = 2.21 − 8.06x 0.70 8.19 0.68 8.53 1.23
TBI5 (R2200, R1455, R2280) y = 9.28 − 263.26x 0.65 7.22 0.64 8.00 1.29
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3.4. Relationship between SOM Content and Optimal Spectral Indices

According to the correlation coefficient values, the importance region and peak wavelength
combination for the SOM could be identified and extracted efficiently (Figure 5). The correlations
between DI, RI and NDI and SOM content are symmetrical. The best performing wavelength
combinations for RI and NDI appear in the 1400–1500 and 2250–2350 nm regions, and those for DI
appear in the 1850–1950 and 2260–2360 nm regions. SI, PI, and SOM content are mainly negatively
correlated, and the wavelength located in the 750–850 nm region has a high correlation with the SOM
content. Among all 2DV forms, the optimal spectral parameters were provided by RI (R785, R805),
followed by NDI (R1885, R2345), DI (R800, R790), SI (R2260, R1450) and PI (R1490, R2340). The optimal
wavelength combinations differed in each 2DV form were extracted for subsequent linear and non-linear
regression analyses with the SOM content (Table 3).
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and NDI) forms calculated based on the calibration set (n = 112).

The important regions and peak wavelength combinations of the SOM were revealed from different
angles (x-axis, y-axis, z-axis, and optimal slice) by using a three-dimensional slice map (Figures 6–10).
Among all 3DV types, TBI3 (R1890, R2065, and R2265) performed the best in estimating the SOM, and
the correlations (r) reached a maximum of 0.85 (Figure 8d). The optimal band combinations were
inconsistent for each 3DI type (from Figure 6d to Figure 10d). Overall, these peak wavelengths occur
in the NIR region, being close to (within ± 10 nm) 1455, 1460, 1465, 1890, 1895, 2065, 2080, 2095,
2200, 2215, 2230, 2250, 2255, 2265, and 2295 nm. Mostly, these wavelengths are related to the OH
stretching in the crystal lattice and different organic molecules, such as amides or proteins, clay lattice
AL-OH absorption, illite and carbonate organics [11,45]. We extracted them for subsequent linear and
non-linear regression analyses with the SOM content (Table 3).
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Figure 10. Three-dimensional slice maps of correlations between SOM content and TBI5 based on
calibration set (n = 112). (a–c) represent slice maps based on the x-axis, y-axis, and z-axis, respectively,
and (d) represents the optimal slice map.

3.5. Estimation of SOM with Linear Model and Validation

The 15 potential variables extracted via PCA and the 2DI and 3DI algorithms are summarized in
Table 3. Here, the linear model was constructed to quantify the SOM, and the independent validation
dataset was utilized to verify the quantitative capabilities of the models. Overall, the five 3DIs
outperformed all other 2DI and 1DV models, in terms of both calibration and validation (R2

c ranging
from 0.65 to 0.72 and R2

v ranging from 0.64 to 0.70), followed by 2DI (R2
c ranging from 0.33 to 0.48 and

R2
v ranging from 0.30 to 0.49) and 1DV (R2

c ranging from 0.01 to 0.19 and R2
v ranging from 0.01 to

0.18). The optimum model yields an RPIQ of 1.50 (< 2.70), indicating that the prediction effect of the
model is not reliable. Therefore, the prediction accuracy of a single variable is insufficient, and it is
difficult to effectively explain the spatial variation of the SOM in this region.

3.6. Estimation of SOM with RF Models and Validation

Using the spectral parameter combination as the model input (see Section 2.5) and RF as the
prediction model, six prediction models were established (Table 4). The predictive performance of each
model was examined using an independent validation set. The R2 and RMSE of the calibration and
validation sets were then subjected to ANOVA; no statistically significant difference between calibration
and verification was found (p > 0.05), indicating the stability of the established model (Table 4). Using
the spectral variables of a single dimension as model inputs, the 3DI performed better, and the RPIQ
reached 3.15 (2.70 < RPIQ < 3.37), indicating that the model accuracy was acceptable, followed by 2DI
(RPIQ of 1.97) and 1DV (RPIQ of 1.46). The order of the prediction performance was consistent with
Table 3. When the spectral variables of different numbers of dimensions were combined in pairs as
model inputs, the prediction accuracy of the combined model was found to be better than that of either
of them alone. The 2DI+3DI model achieves excellent estimation (R2

V = 0.93, RMSEV = 2.52 g·kg−1

and RPIQ = 4.09); 1DV+3DI yields good outcomes (RPIQ = 3.48); and the 1DV+2DI model had
insufficient predictability (RPIQ = 2.48).
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Table 4. Statistical summary of SOM developed from each strategy by using the random forest
(RF) algorithm.

Strategy Number of mtry
Calibration (n = 112) Validation (n = 56)

R2
c RMSEc (g kg−1) R2

V RMSEv (g kg−1) RPIQ

1DV 3 0.44 6.35 0.43 7.08 1.45
2DI 5 0.74 4.39 0.70 5.23 1.97
3DI 1 0.89 2.85 0.90 3.27 3.15

1DV+2DI 10 0.83 3.71 0.82 4.16 2.48
1DV+3DI 8 0.91 2.86 0.90 2.96 3.48
2DI+3DI 8 0.94 2.29 0.93 2.52 4.09

Figure 11 shows the relationship between the measured SOM content and the predicted SOM
content for the six modeling strategies in Table 4. In general, we found that the VIS-NIR model
is more inclined to overestimate low-value and underestimate high-value SOM content, which is
consistent with the results reported by other researchers (Figure 11). The distribution of the predicted
versus measured values of the RF model constructed by 1DV deviated from the 1:1 line and had the
most outliers compared with the other models (Figure 11a). However, as the dimensions of spectral
variables increase, the scatter gradually approaches the 1:1 line in the following order: 1DV < 2DI
< 3DI (Figure 11a–c). After a pairwise combination of spectral variables with different numbers of
dimensions, the width of the confidence interval and prediction interval was narrower than that of
either of them alone (Figure 11d–f). The scatter of the 2DI+3DI model is better distributed along the 1:1
line than those of the other models, with an excellent prediction effect (Figure 11d).
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Figure 11. Comparison of measured versus predicted SOM content (n = 56) based on the RF model
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narrow area) cover the predicted SOM data and its fitting line with 95% probability, respectively.
Red and blue lines represent the fitting line and 1:1 line between the measured and predicted SOM
content, respectively.

3.7. Estimation Mechanism Analysis

We used the relative importance of the predictor variables derived from the RF model to interpret
relationships between the SOM content and different input sources (Figure 12). To the 1DV, 2DI and
3DI models, the importance of single-dimensional spectral variables to the estimation model was not
very different; the relative importance varied from 10.01% to 17.88%, 13.84% to 16.62%, and 13.37% to
17.42%, respectively. In the 1DV+2DI model (Figure 12d), NDI contributed the most to the estimation
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model, followed by RI, SI, DI, and PI. The contribution rate of the principal component variables (from
PC1 to PC5) is relatively low (from 1.74% to 6.13%). The relative importance in the 1DV+3DI and
2DI+3DI models was similar to that of the 1DV+2DI model (Figure 12d, Figure 12e). In Figure 12e, the
contribution rate of the variables in the 3DI model was significantly higher than that in the 1DV model
(Figure 12e), and TSFI2 even reached the largest contribution rate of 17.26%. In contrast, in the 2DI+3DI
model (Figure 12f), the importance of the 2DI variables increased compared to the performance of 1DV
in Figure 12e.
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4. Discussion

In electromagnetic theory, SOM is represented as an organic compound containing functional
groups with relatively discrete absorption characteristics in the Vis-NIR range [51]. In the visible
region (400–760 nm), the transition of the outer electrons from the ground states to high energy states
is the primary process of soil energy absorption [11]. In the infrared region, it exhibits the stretching
vibration and bending vibration of many organic functional group molecules [45,52]. However, their
position usually deviates to some extent from the expected position, because the real molecules do
not behave completely harmoniously [11]. Therefore, the interpretation of the soil Vis-NIR spectra
becomes more difficult when SOM is present in small amounts in the soil or the research itself depends
on the correlation with SOM.

The goal of feature extraction is to minimize errors and exclude unreliable or noisy data to the
greatest extent, which is essential to improve the interpretability of the model and/or reduce the
complexity of the prediction model [53]. Hong et al. [27] have reported that PCA results in a poorer
prediction performance than the optimal band combination algorithm, because the physical meanings
of the PCs obtained by PCA are generally not as clear as those of the original spectral variables, thereby
worsening the prediction performance. In the present study, the modeling effect of the optimal band
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combination algorithm was significantly better than PCA (Table 3), which is similar to the above
research results. Therefore, we recommend using the optimal band combination algorithm to extract
the spectral indices to measure SOM content in the coal mining area.

Whether using the linear model or RF, the results produced by 3DI were more accurate than
the results of 2DI, which were indicated by larger R2 and small RMSE (Tables 3 and 4). This could
be attributed to the fact that that adding a specific sensitive region to the two-band spectral index
by adding a third band can generally improve the estimation accuracy of the index and enhance the
anti-interference ability [21,22,40,54]. Besides, some studies have proposed constructing a four-band
reflection model, but this seems to greatly increase the data dimensions and processing difficulty,
resulting in the “curse of dimensionality” [55,56]. Therefore, in the process of designing the spectral
index, the complexity and accuracy of the index need to be comprehensively considered, especially for
other soil properties.

Although 2DI+3DI achieved the best prediction effect (R2
V = 0.93, RMSE = 2.52 and RPIQ =

4.09), the contribution rate of 2DI variables was much lower than that of 3DI variables (Figure 12f).
Furthermore, some previous studies adopted 2DI as the input predictor and obtained R2v results from
0.74 to 0.84 for SOM prediction [18,20,23,57]. Therefore, we suggest that the spectral variables of 3DI
should be considered first when establishing a spectral model for SOM. Moreover, we still recommend
using the optimal band combination algorithm to estimate the SOM because the soil spectrum is a
comprehensive reflection of soil attributes, which include not only information about the SOM, but
also the known features of OH stretching, soil moisture content, different organic molecules, AL-OH,
illites and carbonate organics [45,52]. The bands involved in the optimal spectral indices were close
to the absorption features of these components or functional groups. Through these components or
functional groups, the SOM content can be retrieved indirectly (Figures 6–10).

Although these results show excellent predictive performance, the bandwidth of the spectral
indices involved in this study had a 1 nm interval and thus cannot be applied to other ground-based and
satellite-based sensors. Therefore, a specific spectral index based on the center band and bandwidth of
existing remote sensing sensors must be built by using the optimal band combination algorithm to meet
the needs of SOM remote dynamic monitoring. At the same time, since soil samples from different
study areas usually exhibit significant spectral differences, it may not be feasible to extrapolate our
results to other study areas. However, the technique of using the optimal band combination algorithm
to derive a three-band spectral index based on sensitive soil properties can provide a viable solution.

5. Conclusions

In this study, two spectral feature extraction strategies (i.e., PCA and the optimal band combination
algorithm) were introduced to extract spectral variables. The results indicated that the model
performance of the optimal band combination algorithm is better than that of PCA, regardless
of whether linear or non-linear models are used. In the variables extracted by the optimal band
combination algorithm, the performance of the 2DI is poorer than that of the 3DI. In summary,
the accuracy of the prediction model increases with the increasing number of spectral parameter
dimensions, which is consistent with our previous hypothesis. Therefore, the three-band index
should be the preferred variable for spectral estimation of the SOM. Moreover, compared to the
two-dimensional image map, the three-dimensional slice map of the correlation (r) displays no shortage
of imagination and information. Combined with the method of optimal three-band indices, this study
provides useful insights into the assessment of soil nutrition concentrations in other regions.
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