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Abstract: In real applications, obtained depth images are incomplete; therefore, depth image
inpainting is studied here. A novel model that is characterised by both a low-rank structure and
nonlocal self-similarity is proposed. As a double constraint, the low-rank structure and nonlocal
self-similarity can fully exploit the features of single-depth images to complete the inpainting task.
First, according to the characteristics of pixel values, we divide the image into blocks, and similar
block groups and three-dimensional arrangements are then formed. Then, the variable splitting
technique is applied to effectively divide the inpainting problem into the sub-problems of the low-rank
constraint and nonlocal self-similarity constraint. Finally, different strategies are used to solve different
sub-problems, resulting in greater reliability. Experiments show that the proposed algorithm attains
state-of-the-art performance.

Keywords: depth image inpainting; variable splitting technique; low-rank constraint; nonlocal
self-similarity constraint

1. Introduction

With the rapid development of RGB-D (red green blue-depth) sensors [1–6], such as the Kinect
sensor, colour images and depth images can be obtained simultaneously. Depth images are widely
used in 3D reconstruction, 3D videos and medical intelligence and are therefore a research area
focus for image processing and computer vision. Initially, the development of depth images was
limited by the cost-effectiveness of devices used to acquire depth images [7–10]. In 2010, Microsoft
launched the Kinect sensor to acquire depth images, and it attracted wide attention and expanded the
associated applications.

In practical applications, depth images are of low quality and have black holes. Black holes
represent missing depth information, and the black-hole filling problem is solved via depth image
inpainting. At present, depth image inpainting methods can be divided into two categories according
to whether the corresponding colour images are guided.

The first method relies on the use of corresponding colour images as a guide. Liu et al. [11] proposed
a robust optimisation framework for colour image-guided depth image restoration. This method
performs well in suppressing texture artefacts. Lee et al. [12] proposed an adaptive edge-oriented
smoothing process based on the characteristics of holes with or without vertical lines in the colour
image. The proposed method represents a good trade-off between time savings, hole reduction, and
virtual view quality. Lei et al. [13] proposed a credibility-based multi-view depth image fusion strategy
to refine images. This method considers the view synthesis quality and inter-view correlation in an
improved repair approach.
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The second method does not use corresponding colour images as a guide. Shen et al. [14] proposed
the inpainting method using a weighted joint bilateral filter and fast marching. This method has
obtained the best performance in improving depth images by producing smooth and edge regions.
Buyssens et al. [15] proposed a suitable method for recovering the lost structures of objects to in-paint
depth images in a geometrically plausible manner. Lu et al. [16] proposed a method of inpainting
depth images through similar patches in a matrix and enforced low-rank subspace constraints, thereby
attaining good performance. Xue et al. [17] proposed the low-gradient regularisation method, an
effective approach that reduces the penalty for gradient 1 while penalizing non-zero gradients to allow
for gradual depth changes.

To reduce the complexity of the inpainting problem, we solve depth image inpainting without
corresponding colour images and fully exploit the features of depth images to complete the inpainting
task of single-depth image inpainting.

Based on previous work, the use of a single-image property as one constraint is not sufficient to
obtain satisfying inpainting results. Consequently, we use more than one constraint to perform depth
image inpainting.

Depth images can be regarded as textureless natural images that consist of many similar flat
areas and few edge areas. Depth images therefore have the characteristics of a low rank and nonlocal
self-similarity. Due to its textureless property, the effect of the low-rank constraint on inpainting will
be too great and false details will be created. Therefore, we introduce the nonlocal self-similarity
constraint. First, we regard the depth image as a matrix, and the corresponding low-rank reconstruction
model is built based on the low-rank structure of the matrix in the image. We then introduce the
nonlocal self-similarity constraint to improve the depth image results. The contributions of this paper
are summarised as follows.

1. Rather than the traditional single-constraint method, we adopt a double-constraint method.
According to the characteristics of the depth image, we combine the low-rank constraint and
nonlocal self-similarity constraint.

2. We adopt the split Bregman algorithm, which is a variable splitting technique, to divide depth
image inpainting into sub-problems, thus reducing the complexity of the solution.

3. We use different strategies to solve depth image inpainting: weighted Schatten p-norm
minimisation as the low-rank constraint and nonlocal statistical modelling as the nonlocal
self-similarity constraint. The proposed method achieves better performance.

The remainder of our paper is organised as follows. In Section 2, we present the related work. In
Section 3, we describe the details of the depth image inpainting method based on the double-constraint.
In Section 4, we present the experimental results. In Section 5, we summarise the paper.

2. Related Work

2.1. Depth Images

Depth images are greyscale images with pixel values of 0–255, and the greyscale value of the pixel
represents the distance between the spatial scene and the camera. In general, the closer the area is to
the camera, the greater the depth, while the farther away the area is to the camera, the smaller the
depth. The depth image consists of the most similar flat regions and a few edge regions which contain
a large number of regions with the same grey value. A continuous distribution with the same depth
values exists inside the object, and the gradient is 0. Depth value mutations and gradients are observed
at the edges. The Aloe depth image [18–20] is taken as an example, and the grey value of the depth
image is as shown in Figure 1.
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Figure 1. Distribution of grey values. 

As shown in Figure 1, the distribution of grey values in the depth image is very concentrated. 
Depth images have the characteristics of a low rank and nonlocal self-similarity. 

2.2. Low-rank Constraint and Nonlocal Self-similarity Constraint 

The single-depth image inpainting problem is transformed into the following mathematical 
expression: 
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Scholars have conducted some research into the solution of the NNM problem. In [21], under 
certain conditions, the NNM method is used to achieve reconstruction with limited information. In [22], 
the soft threshold operation is applied to the NNM method for matrix filling purposes in a very small 
storage space. In [23], low-level visual problems are solved by minimizing the sum of partial singular 
values. In [24], weighted nuclear model minimisation is proposed, and the method adaptively 
weights singular values differently, which improves the applicability and flexibility of low-quality 
images. 

Compared with NNM, weighted Schatten p-norm minimisation (WSNM) [25] can better 
approximate the original low-order hypothesis and consider the importance of different components. 
WSNM can be effectively applied to obtain the global optimal solution. Therefore, we use WSNM as 
the low-rank constraint. 

Figure 1. Distribution of grey values.

As shown in Figure 1, the distribution of grey values in the depth image is very concentrated.
Depth images have the characteristics of a low rank and nonlocal self-similarity.

2.2. Low-Rank Constraint and Nonlocal Self-Similarity Constraint

The single-depth image inpainting problem is transformed into the following mathematical
expression:

x = argminx
1
2
||Hx− y||22 + λ ·ψ(x). (1)

where x is the intact depth image; y is the degraded depth image; ||Hx− y||22 is the data-fidelity term;
ψ(x) is the regularisation term; λ is the weight parameter; and H is a binary template. We attempt to
obtain a potential depth image x from the degraded depth image y. According to the characteristics of
the depth image, we combine the low-rank constraint and nonlocal self-similarity constraint. Equation
(1) can be converted into Equation (2):

x = argminx
1
2
||Hx− y||22 + λ1 ·ΨLR(x) + λ2 ·ΨNSS(x). (2)

where ΨLR(x) represents the low-rank regularisation term, ΨNSS(x) represents the nonlocal
self-similarity regularisation term, and λ1 and λ2 are the weight parameters.

At present, the solution methods for low-rank matrices can be divided into two categories: low-rank
matrix decomposition and rank minimisation. The commonly used low-rank matrix decomposition
method mostly adopts the singular decomposition technique, which uses the f -norm fidelity loss to trim
the singular value matrix to obtain the optimal rank approximation solution. The rank minimisation
method mainly uses the relaxation method to minimise the rank and estimate the lowest rank for
reconstruction. The latter method has a better recovery performance. Therefore, we use the nuclear
norm minimisation-based (NNM-based) method for depth image inpainting.

Scholars have conducted some research into the solution of the NNM problem. In [21], under
certain conditions, the NNM method is used to achieve reconstruction with limited information. In [22],
the soft threshold operation is applied to the NNM method for matrix filling purposes in a very small
storage space. In [23], low-level visual problems are solved by minimizing the sum of partial singular
values. In [24], weighted nuclear model minimisation is proposed, and the method adaptively weights
singular values differently, which improves the applicability and flexibility of low-quality images.

Compared with NNM, weighted Schatten p-norm minimisation (WSNM) [25] can better
approximate the original low-order hypothesis and consider the importance of different components.
WSNM can be effectively applied to obtain the global optimal solution. Therefore, we use WSNM as
the low-rank constraint.
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In addition to the low-rank constraint, nonlocal self-similarity is another important feature of
depth images. This feature can describe the structure repetition characteristic of the nonlocal area of
the depth image and preserve the edge and detail effectively.

The repeatability of the nonlocal self-similarity description advanced mode has enabled remarkable
achievements in the field of image reconstruction. Buades et al. [26] proposed an effective denoising
model called nonlocal means (NLMs) via the degree of similarity among surrounding pixels for
denoising tasks. Jung et al. [27] proposed a class of restoration algorithms for colour images based upon
the Mumford–Shah model and nonlocal image information. These algorithms are defined to work
in a small local neighbourhood and are sufficient to denoise smooth regions with sharp boundaries.
In [28], a nonlocal self-similarity constraint is introduced into the overall cost functional to improve
the robustness of the model. The proposed method outperforms many existing image reconstruction
methods. The nonlocal self-similarity constraint produces superior results with sharper image edges.

However, traditional nonlocal self-similarity constraints fail to recover accurate structures in
depth images. We use the nonlocal self-similarity (NLSM) [29] of the three-dimensional transformation
domain as the constraint term. Compared with traditional methods, the NLSM of the three-dimensional
transformation domain represents self-similarity more effectively and has adaptive performance.

3. Double-Constraint Model

3.1. Similar Block Group and NLSM Model

The similar block group and NLSM are based on similar blocks. The construction is shown in
Figure 2.
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Figure 2. Construction of the similar block group and the non-local self-similar statistical model.

As shown in Figure 2, we first divide the image x into pixel blocks of size
√

Bs ×
√

Bs, and each
pixel block is expressed in vector form xk, where k = 1, 2, 3, . . . , n. Then, for each patch xk denoted by a
blue mark, in the red window, we determine its c similar patches, which compose set Sxk .

In the first stacking, all patches in set Sxk are arranged in a matrix to obtain similar groups, with
xGk ∈ RBs×c. Due to the characteristics of the greyscale values in the depth image, the principle of
similarity matching is the SSD principle.

In the second stacking, all patches in set Sxk are stacked in a three-dimensional zxk . By orthogonal
three-dimensional transformation T3D, the coefficients of three-dimensional arrangement T3D(zxk)

are obtained.

3.2. Solution of Depth Image Inpainting

By introducing variables u and v, we can transform Equation (2) into an equivalent constrained
form as follows:

x = argminx
1
2
||Hx− y||22 + λ1 ·ΨLR(u) + λ2 ·ΨNSS(v) s.t

[
u
v

]
= Gx (3)

where G = [I, I]T.
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By introducing externalised constraints, we arrive at the following:

x = argminx
1
2
||Hx− y||22 + λ1 · ||u||

p
w,sp + λ2 · ||ΘV||1. (4)

where ||u||pw,sp =
∑min{n,m}

i=1 ωiσ
p
i = tr(W∆p), ||ΘV||1 =

∑n
i=1 ||T

3D(zxk)||1
Then, we use the split Bregman algorithm [30] to transform complex problems into sub-problems

that are easy to solve:

xt+1 = argminx
1
2
||Hx− y||22 +

µ

2
||x− ut

− bt
||

2
2 +

µ

2
||x− vt

− bt
||

2
2 (5)

ut+1 = argminuλ1 · ||u||
p
w,sp +

µ

2
||xt+1

− ut
− bt
||

2
2 (6)

vt+1 = argminvλ2 · ||Θv||1 +
µ

2
||xt+1

− vt
− ct
||

2
2 (7)

where bt+1 = bt
− (xt+1

− ut+1) and ct+1 = ct
− (xt+1

− vt+1).
Other variable splitting techniques, such as the half quadratic splitting method, can also be used

to transform complex problems into sub-problems.
For conciseness and to avoid ambiguity, the iterations are omitted in the following discussion of

the sub-problems.

3.2.1. Sub-Problem x

The split Bregman algorithm converts Equation (4) into three sub-problems. Equation (5) represents
the minimisation problem of sub-problem x transformed into a strict convex quadratic function. The
closed solution of Equation (5) can be obtained as follows:

x = (HTH + 2µI)
−1
[HTy + µ(u + v + b + c)] (8)

3.2.2. Sub-Problem u

According to the solution of u, Equation (6) can be converted into the following equation:

u = argminu||ru − u||22 +
2λ1

µ
||u||pw,sp (9)

where ru = x− b. Let eu = ru − u, which represents the residual. Taking the Aloe depth image as an
example, we select deblurring replacement inpainting to carry out the simulation experiments. The
reasons why we chose image deblurring as an example for verification are twofold: 1. we have an
accurate original depth image for objective data comparison; and 2. image deblurring and inpainting
both satisfy Equation (1).

We chose to approximate the Aloe depth image as u. Then, the residual distribution of the kth
iteration can be obtained.

We first performed 3× 3 uniform blur kernel operations on the Aloe depth image and then added
Gaussian noise with a standard deviation of 1 to obtain a blurred depth image. Figure 3 shows the
distribution of the residuals in the experiments with three, five and seven iterations.
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As shown in Figure 3, in each iteration, the distribution of eu is suitably characterised by a
generalised Gaussian distribution with a zero mean.

According to the experiments, we formulate the following hypothesis [24,31,32]: in each iteration,
the residuals satisfy a generalised Gaussian distribution with a zero-mean. In each iteration, the
following equation is satisfied:

1
N
||ru − u||22 =

1
K

n∑
k=1

||rGk − uGk ||
2
F (10)

By substituting Equation (10) into Equation (9), we can obtain the following:

u = argminu

n∑
k=1

µN
2λ1K

||rGk − uGk ||
2
F + ||uGk ||

p
w,sp (11)

For each similar group, we assume that the singular decomposition of rGk is rGk = UΣVT,
with Σ = diag(σ1, . . . , σr), which is non-ascending. According to Von Neumann’s trace inequality
theorem [33], the solution of Equation (9) transforms the solution of ∆ = diag(δ1, . . . , δr) into
uGk = Q∆RT. The solution equation is as follows. min

δ1...δr

r∑
i=1

[(δi − σi)
2 +ωiδ

p
i ], i = 1, . . . r

s.t δi ≥ 0 and δi ≥ δ j , f or i ≤ j
(12)

The solution of Equation (11) can be converted into the following equation:

min
δi≥0

fi(δ) = (δi − σi)
2 +ωiδ

p
i , i = 1, . . . , r (13)

Equation (13) can be solved by using the generalised soft threshold (GST) algorithm [34].
If p andωi are determined, according to the GST algorithm, there is a special threshold σi ≥ τ

GST
p (ωi)

that satisfies the following equation:

τGST
p (ωi) = (2ωi(1− p))

1
2−p +ωip(2ωi(1− p))

p−1
2−p (14)

If σi < τ
GST
p (ωi), then the following holds:

fi(δ) = σi
2 +ωiδ

p
i , i = 1, . . . , r (15)

That is, δi = 0, which is the global minimum.
If σi ≥ τ

GST
p (ωi), then fi(δ) has the minimum value of SGST

p (σi;ωi), which can be obtained by
solving the following equation:

SGST
p (σi;ωi) − σi +ωip(SGST

p (σi;ωi))
p−1

= 0 (16)
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Then, sub-problem u is solved.

3.2.3. Sub-Problem v

According to the solution of v, Equation (7) can be converted into the following equation:

v = argminv
1
2
||rv − v||22 +

2λ2

µ
||Θv||1 (17)

where rv = x− c. Let ev = rv − v, which represents the residual. ev and eu have the same property. As
a result, Equation (17) can be converted into Equation (18):

v = argminv
1
2
||Θrv −Θv||

2
2 +

2Kλ2

Nµ
||Θv||1 (18)

In the above equation, any elements of Θv can be solved separately; therefore, we use the soft
threshold [35]. to solve Equation (18).

Θv = soft(Θrv ,
2Kλ2

Nµ
) (19)

Namely,
Θv( j) = sgn((Θx( j))max

{
|Θrv( j)− 2Kλ2

Nµ |, 0
}

=


ΘrV( j) − 2Kλ2

Nµ , Θrv( j) ∈ ( 2Kλ2
Nµ ,+∞)

0, Θrv( j) ∈ [− 2Kλ2
Nµ , 2Kλ2

Nµ ]

Θrv( j) + 2Kλ2
Nµ , Θrv( j) ∈ (−∞,− 2Kλ2

Nµ )

(20)

In summary, all the sub-problems in our proposed algorithm are solved. The flow chart of the
algorithm is shown in Table 1.

Table 1. Complete description of the proposed method.

Input: The observed depth image y, the degraded operator H

Output: The restored depth image x

Repeat

Step 1: Update x by Equation (8)

Step 2: For each group uGk

(1) The singular value decomposition of rGk

(2) Update uGk by Equation (12)

Aggregate uGk to form u

Step 3: Update v by Equation (20)

Until maximum iteration number is reached

4. Experiments

4.1. Depth Image Inpainting

In this paper, the hardware simulation platform was supported by a Lenovo R720 computer
(Lenovo, Beijing, China) and the software simulation platform was MATLAB R2017a (The MathWorks,
Inc., Massachusetts, USA).

The inpainting effect as analysed by subjective visual requirements and objective parameters. The
objective metrics could be assessed on the basis of two objective metrics: the peak signal-to-noise ratio
(PSNR) [36] and the feature similarity (FSIM) [37]. PSNR uses the ratio of the maximum semaphore to
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noise intensity to measure image quality, which is easy to calculate and understand and can reflect
the image quality. FSIM is a novel low-level feature similarity parameter. Phase congruency is a
dimensionless measure of the significance of a local structure, and it is used as the primary feature
in FSIM.

We used a dataset that included the Middleburry datasets [20–22] and NYU v2 dataset [38]. For
the comparison algorithm, we proposed similar algorithms, namely NNM [8] and WSNM [18].

In experiment 1, the depth images were obtained directly from the Middleburry datasets. The
area requiring repair was the actual situation. as shown in Figure 4.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 14 

 

congruency is a dimensionless measure of the significance of a local structure, and it is used as the 
primary feature in FSIM. 

We used a dataset that included the Middleburry datasets [20–22] and NYU v2 dataset [38]. For 
the comparison algorithm, we proposed similar algorithms, namely NNM [8]and WSNM [18]. 

In experiment 1, the depth images were obtained directly from the Middleburry datasets. The 
area requiring repair was the actual situation. as shown in Figure 4. 

    

(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

    
(q) (r) (s) (t) 

    
(u) (v) (w) (x) 

Figure 4. Visual quality comparison of the inpainting result (1): (a) Aloe depth image; (b)–(d) 
inpainting effects of the nuclear norm minimisation (NNM) algorithm, weighted Schatten p-norm 
minimisation (WSNM) algorithm and proposed algorithm for the Aloe depth image; (e) Art depth 
image; (f)–(h) inpainting effects of the NNM algorithm, WSNM algorithm and the proposed 
algorithm for the Art depth image; (i) Baby depth image; (j)–(l) inpainting effects of the (nuclear norm 
minimisation) NNM algorithm, WSNM algorithm and the proposed algorithm for the Baby depth 

Figure 4. Visual quality comparison of the inpainting result (1): (a) Aloe depth image; (b–d) inpainting
effects of the nuclear norm minimisation (NNM) algorithm, weighted Schatten p-norm minimisation
(WSNM) algorithm and proposed algorithm for the Aloe depth image; (e) Art depth image; (f–h)
inpainting effects of the NNM algorithm, WSNM algorithm and the proposed algorithm for the Art depth
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image; (i) Baby depth image; (j–l) inpainting effects of the (nuclear norm minimisation) NNM algorithm,
WSNM algorithm and the proposed algorithm for the Baby depth image; (m) Books depth image; (n–p)
inpainting effects of the NNM algorithm, WSNM algorithm and the proposed algorithm for the Books
depth image; (q) Dolls depth image; (r–t) inpainting effects of the NNM algorithm, WSNM algorithm
and the proposed algorithm for the Dolls depth image; (u) Lam depth image; and (v–x) inpainting
effects of the NNM algorithm, WSNM algorithm and the proposed algorithm for the Lam depth image.

As shown in Figure 4, all three algorithms met the visual requirements and no obvious repair
marks occurred. However, the details varied from image to image. The NNM algorithm and WSNM
algorithm both resulted in the smoothing of boundaries. Our proposed algorithm could reduce this
situation, as shown in the enlarged portion of the figure in the red box.

As summarized in Table 2, the proposed algorithm was superior to the other two algorithms and
the objective data were improved.

Table 2. Peak signal-to-noise ratio (PSNR)/feature similarity (FSIM) in experiment (1).

Image Algorithm (PSNR/FSIM)

NNM WSNM Proposed

Aloe 26.0395/0.9571 26.0767/0.9628 26.1296/0.9705

Art 26.8853/0.9366 27.1790/0.9825 27.1833/0.9835

Baby 30.0559/0.9413 30.2569/0.9902 30.3200/0.9932

Books 27.4590/0.9674 28.1774/0.9632 28.1806/0.9752

Dolls 29.2717/0.9758 29.0181/0.9739 29.1254/0.9745

Lam 23.5473/0.9756 24.4459/0.9761 24.4534/0.9761

In experiment 2, the depth images were obtained directly from the NYU v2 dataset. The area
requiring repair was the 10% data loss area, as shown in Figure 5.
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Figure 5. Visual quality comparison of the inpainting result (2): (a) Bedroom depth image; (b) Corrupted
bedroom depth image with 10% pixels missing; (c–e) Inpainting effects of the NNM algorithm, WSNM
algorithm and the proposed algorithm; (f) Lamp depth image; (g) Corrupted lamp depth image with
10% pixels missing; (h–j) Inpainting inpainting effects of the NNM algorithm, WSNM algorithm and
the proposed algorithm; (k) Kitchen depth image; (l) Corrupted kitchen depth image with 10% pixels
missing; (m–o) Inpainting effects of the NNM algorithm, WSNM algorithm and the proposed algorithm.

Subjectively, as shown in Figure 5, the NNM algorithms were not able to meet the visual
requirements, and the image was blurred. The WSNM algorithm and our algorithm both met the
visual requirements. However, the edge processing of algorithm WSNM was not good. Our proposed
algorithm could reduce this situation, as shown in the enlarged portion of the figure in the red box.

Objectively, as summarized in Table 3, the proposed algorithm was superior to the other two
algorithms. All the objective data were improved.

Table 3. PSNR/FSIM in experiment (2).

Image Algorithm (PSNR/FSIM)

NNM WSNM Proposed

Bedroom 23.0866/0.9475 23.4500/0.9798 23.5326/0.9820

Lamp 23.9880/0.8252 24.1906/0.8594 24.2457/0.8823

Kitchen 24.7820/0.8763 26.3996/0.8822 26.5009/0.9029

In summary, the proposed algorithm has certain advantages and can be used in depth image
inpainting applications.

4.2. Parameter Influence

To discuss the influence of different parameters on the proposed algorithm, we analysed the Aloe,
Art and Books depth images.

4.2.1. Number of Best-Matched Patches

The manual damage in this section was 10% data loss and 20% data loss. As shown in Figure 6,
when were number of pixel blocks of a similar group was in the range of 20–100, the experimental
curves are relatively flat. That is, the proposed algorithm was insensitive to the number of pixel blocks.
Therefore, the number of pixel blocks was 60.
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4.2.2. Algorithm Stability

The manual damage in this section was 10% data loss and 20% data loss. Since the objective
function is non-convex, it was difficult to mathematically prove the global convergence of the proposed
algorithm. We obtained experimental data and empirically verified the stability of the proposed
algorithm. As shown in Figure 7, the number of iterations increased, the PSNR increased monotonically
and eventually stabilised. Therefore, the stability of the proposed algorithm could be verified.
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4.2.3. Influence of p

The manual damage in this section was 10% and 20% data loss. Figure 8 shows that the value of p
was small and the objective data were improved. However, p was too small and excessive smoothing
occurred. As shown in Figure 9, p was 0.05. Therefore, we chose p = 0.2, which agreed with [39].
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5. Conclusions

The main research topic in our paper is depth image inpainting. The proposed method is based
on the fact that depth in-painted images using a low-rank structure and nonlocal self-similarity can
fully exploit the features of depth images to complete the inpainting task. The experiments prove that,
regardless of the subjective visual effect and objective contrast data, the proposed algorithm can obtain
a better repair effect and has a certain practical application value.
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